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Abstract
The aim of this research is investigating the Hyers–Ulam stability of second-order
differential equations. We introduce a new method of investigation for the stability of
differential equations by using the Mahgoub transform. This is the first attempt of the
investigation of Hyers–Ulam stability by using Mahgoub transform. We deal with both
homogeneous and nonhomogeneous second-order differential equations.
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1 Introduction
Ulam [1] raised the following famous stability problem concerning functional equations
in 1940: Under what conditions does there exist a homomorphism near an approximate
homomorphism? This problem was solved by Hyers [2] in Banach spaces. The stability
problems of various functional equations and functional inequalities have been extensively
investigated by a number of authors (see [3–11]).

Alsina and Ger [12] first proved the Hyers–Ulam stability for differential equations: if
ψ(t) is an approximate solution of x′ = x, then we can guarantee the existence of an ex-
act solution of x′ = x near to ψ(t). It was generalized by Takahasi et al. [13]. Later many
researchers employed the Hyers–Ulam stability of higher-order homogeneous and non-
homogeneous differential equations (see [14–24]).

The Hyers–Ulam stability of a system of first-order linear differential equations with
constant coefficients was investigated by Jung [25] by using the matrix method in 2006.
Wang, Zhou, and Sun [26] investigated the Hyers–Ulam stability of a class of first-order
linear differential equations in 2007. In 2014, Rus [27] investigated various types of stability
related to the Ulam problem for ordinary differential equations of the form u′(t) = A(u(t))+
f (t, u(t)), t ∈ [a, b].

Using the Laplace transform method, Alqifiary and Jung [28] investigated the Hyers–
Ulam stability of linear differential equations.

Motivated by the literature mentioned, in this paper, we investigate the Hyers–Ulam
stability of the homogeneous and nonhomogeneous second-order linear differential equa-
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tions

x′′(t) + μ2x(t) = 0, (1.1)

x′′(t) + μ2x(t) = q(t) (1.2)

for t ∈ I , x ∈ C2(I), and q ∈ C(I), I = [τ1, τ2], –∞ < τ1 < τ2 < ∞, by using the Mahgoub
transform method.

2 Preliminaries
In this paper, F denotes the real field R or complex field C. A function f : (0,∞) → F is
said to be of exponential order if there exist constants A, B ∈ R such that |f (t)| ≤ AetB for
all t > 0.

For each function f : (0,∞) → F of exponential order, consider the set

A =
{

f : ∃M, k1, k2 > 0
∣∣f (t)

∣∣ < Me|t|/kj , t ∈ (–1)j × [0,∞)
}

,

where the constant M is finite, whereas k1 and k2 may be infinite.
The Mahgoub transform is defined by

M
{

f (t)
}

= H[v] = v
∫ ∞

0
f (t)e–vt dt, t ≥ 0, k1 ≤ v ≤ k2,

where the variable v in the Mahgoub transform is used to factor the variable t in the argu-
ment of the function f , especially, for f ∈A.

Definition 2.1 (Convolution of two functions) Let f and g be Lebesgue-integrable func-
tions on (–∞, +∞). Let S denote the set of x for which the Lebesgue integral

h(x) =
∫ ∞

–∞
f (u)g(x – u) du

exists. This integral defines the function h on S called the convolution of f and g and
denoted by h = f ∗ g .

Now we give some definitions related to the Hyers–Ulam stability of the differential
equations (1.1) and (1.2).

Let I, J ⊆R be intervals. We denote the space of k continuously differentiable functions
from I to J by Ck(I, J) and denote Ck(I, I) by Ck(I). Further, C(I, J) = C0(I, J) denotes the
space of continuous functions from I to J . In addition, R+ := [0,∞). From now on, we
assume that I = [τ1, τ2], where –∞ < τ1 < τ2 < ∞.

Definition 2.2 We say that the differential equation (1.1) has the Hyers–Ulam stability
if there exists a constant L > 0 satisfying the following condition: If for every ε > 0, there
exists x ∈ C2(I) satisfying the inequality

∣∣x′′(t) + μ2x(t)
∣∣ ≤ ε
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for all t ∈ I , then there exists a solution y ∈ C2(I) satisfying the differential equation y′′(t) +
μ2y(t) = 0 such that

∣∣x(t) – y(t)
∣∣ ≤ Lε

for all t ∈ I . We call such L the Hyers–Ulam stability constant for (1.1).

Definition 2.3 We say that the differential equation (1.1) has the generalized Hyers–Ulam
stability with respect to φ ∈ C(R+,R+) if there exists a constant Lφ > 0 with the following
property: If for every ε > 0, there exists x ∈ C2(I) satisfying the inequality

∣∣x′′(t) + μ2x(t)
∣∣ ≤ εφ(t)

for all t ∈ I , then there exists a solution y ∈ C2(I) satisfying the differential equation y′′(t) +
μ2y(t) = 0 such that

∣∣x(t) – y(t)
∣∣ ≤ Lφεφ(t)

for all t ∈ I . We call such L the generalized Hyers–Ulam stability constant for (1.1).

Definition 2.4 We say that the differential equation (1.2) has the Hyers–Ulam stability
if there exists a constant L > 0 satisfying the following condition: If for every ε > 0, there
exists x ∈ C2(I) satisfying the inequality

∣∣x′′(t) + μ2x(t) – q(t)
∣∣ ≤ ε

for all t ∈ I , then there exists y ∈ C2(I) satisfying y′′(t) + μ2y(t) = q(t) such that

∣∣x(t) – y(t)
∣∣ ≤ Lε

for all t ∈ I . We call such L the Hyers–Ulam stability constant for (1.2).

Definition 2.5 We say that the differential equation (1.2) has the generalized Hyers–Ulam
stability with respect to φ ∈ C(R+,R+) if there exists a constant Lφ > 0 such that for every
ε > 0 and for each solution x ∈ C2(I) satisfying the inequality

∣∣x′′(t) + μ2x(t) – q(t)
∣∣ ≤ εφ(t)

for all t ∈ I , there exists y ∈ C2(I) satisfying the differential equation y′′(t) + μ2y(t) = q(t)
such that

∣∣x(t) – y(t)
∣∣ ≤ Lφεφ(t)

for all t ∈ I . We call such L the generalized Hyers–Ulam stability constant for (1.2).
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3 Hyers–Ulam stability for (1.1)
In this section, we prove the Hyers–Ulam stability and generalized Hyers–Ulam stability
of the differential equation (1.1) by using the Mahgoub transform.

Theorem 3.1 The differential equation (1.1) is Hyers–Ulam stable.

Proof Let ε > 0. Suppose that x ∈ C2(I) satisfies

∣∣x′′(t) + μ2x(t)
∣∣ ≤ ε (3.1)

for all t ∈ I . We will prove that there exists a real number L > 0 such that |x(t) – y(t)| ≤ Lε

for some y ∈ C2(I) satisfying y′′(t) +μ2y(t) = 0 for all t ∈ I . Define the function p : (0,∞) →
R by p(t) =: x′′(t) + μ2x(t) for all t > 0. By (3.1) we have |p(t)| ≤ ε. Taking the Mahgoub
transform of p, we have

M
{

p(t)
}

=
(
v2 + μ2)M

{
x(t)

}
– v3x(0) – v2x′(0), (3.2)

and thus

M
{

x(t)
}

=
M{p(t)} + v3x(0) + v2x′(0)

v2 + μ2 .

By (3.2) a function x0 : (0,∞) −→R is a solution of (1.1) if and only if

(
v2 + μ2)M{x0} – v3x0(0) – v2x′

0(0) = 0.

If there exist constants a and b in F such that v2 + μ2 = (v – a)(v – b) with a + b = 0 and
ab = μ2, then (3.2) becomes

M
{

x(t)
}

=
M{p(t)} + v3x(0) + v2x′(0)

(v – a)(v – b)
. (3.3)

Set

y(t) = x(0)
(

aeat – bebt

a – b

)
+ x′(0)

(
eat – ebt

a – b

)
.

Then we have y(0) = x(0) and y′(0) = x′(0). Taking the Mahgoub transform of y, we obtain

M
{

y(t)
}

=
v3x(0) + v2x′(0)

(v – a)(v – b)
. (3.4)

On the other hand,M{y′′(t)+μ2y(t)} = (v2 +μ2)M{y(t)}–v3y(0)–v2y′(0). Using (3.4), we
get M{y′′(t) +μ2y(t)} = 0. Since M is a one-to-one linear operator, we have y′′(t) +μ2y(t) =
0. This means that y is a solution of (1.1). It follows from (3.3) and (3.4) that

M
{

x(t)
}

– M
{

y(t)
}

=
M{p(t)} + v3x(0) + v2x′(0)

(v – a)(v – b)
–

v3x(0) + v2x′(0)
(v – a)(v – b)

=
M{p(t)}

(v – a)(v – b)
,

M
{

x(t) – y(t)
}

= M
{

p(t) ∗
(

eat – ebt

a – b

)}
.
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These equalities show that

x(t) – y(t) = p(t) ∗
(

eat – ebt

a – b

)
.

Taking the modulus on both sides and using |p(t)| ≤ ε, we get

∣∣x(t) – y(t)
∣∣ =

∣∣∣∣p(t) ∗
(

eat – ebt

a – b

)∣∣∣∣

≤
∣∣∣∣

∫ ∞

–∞
p(u)

(
ea(t–u) – eb(t–u)

a – b

)
du

∣∣∣∣

≤ ε

∣∣∣∣

∫ ∞

–∞

(
ea(t–u) – eb(t–u)

a – b

)
du

∣∣∣∣

for all t > 0, where

L =
∣∣∣∣

∫ ∞

–∞

(
ea(t–u) – eb(t–u)

a – b

)
du

∣∣∣∣,

which exists. Hence |x(t)–y(t)| ≤ Lε. By Definition 2.2 the linear differential equation (1.1)
has the Hyers–Ulam stability. This finishes the proof. �

By using the same technique as in Theorem 3.1, we can also prove the following theorem,
which shows the generalized Hyers–Ulam stability of the differential equation (1.1). The
method of the proof is similar, but we include it for completeness.

Theorem 3.2 The differential equation (1.1) is generalized Hyers–Ulam stable.

Proof Let ε > 0, and let φ ∈ C(R+,R+) be an integrable function. Assume that x ∈ C2(I)
satisfies

∣∣x′′(t) + μ2x(t)
∣∣ ≤ εφ(t) (3.5)

for all t ∈ I . We will show that there exists Lφ > 0 such that |x(t) – y(t)| ≤ Lφεφ(t) for some
y ∈ C2(I) satisfying y′′(t) + μ2y(t) = 0 for all t ∈ I . Consider the function p : (0,∞) → R

defined by p(t) =: y′′(t) + μ2y(t) for t > 0. By (3.5) we have |p(t)| ≤ εφ(t). Now taking the
Mahgoub transform of p, we have

M
{

x(t)
}

=
M{p(t)} + v3x(0) + v2x′(0)

v2 + μ2 . (3.6)

We know that a function x0 : (0,∞) →R is a solution of (1.1) if and only if

(
v2 + μ2)M{x0} – v3x0(0) – v2x′

0(0) = 0.

If there exist two constants a and b in F such that v2 + μ2 = (v – a)(v – b) with a + b = 0
and ab = μ2, then (3.6) becomes

M
{

x(t)
}

=
M{p(t)} + v3x(0) + v2x′(0)

(v – a)(v – b)
. (3.7)
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Let y(t) = x(0)( aeat–bebt

a–b ) + x′(0)( eat–ebt

a–b ). Then y(0) = x(0) and y′(0) = x′(0). Taking again the
Mahgoub transform of y, we obtain

M
{

y(t)
}

=
v3x(0) + v2x′(0)

(v – a)(v – b)
. (3.8)

Furthermore, M{y′′(t) + μ2y(t)} = (v2 + μ2)M{y(t)} – v3y(0) – v2y′(0). Thus using (3.4), we
get M{y′′(t) + μ2y(t)} = 0, and so y′′(t) + μ2y(t) = 0. Applying (3.7) and (3.8), we have

M
{

x(t)
}

– M
{

y(t)
}

=
M{p(t)} + v3x(0) + v2x′(0)

(v – a)(v – b)
–

v3x(0) + v2x′(0)
(v – a)(v – b)

=
M{p(t)}

(v – a)(v – b)
,

M
{

x(t) – y(t)
}

= M
{

p(t) ∗
(

eat – ebt

a – b

)}
.

Therefore x(t) – y(t) = p(t) ∗ ( eat–ebt

a–b ). Taking the modulus of both sides and using |p(t)| ≤
εφ(t), we get

∣∣x(t) – y(t)
∣∣ =

∣∣∣∣p(t) ∗
(

eat – ebt

a – b

)∣∣∣∣

≤
∣∣∣∣

∫ ∞

–∞
p(u)

(
ea(t–u) – eb(t–u)

a – b

)
du

∣∣∣∣

≤ εφ(t)
∣∣∣∣

∫ ∞

–∞

(
ea(t–u) – eb(t–u)

a – b

)
du

∣∣∣∣

≤ Lφεφ(t),

where the integral Lφ = | ∫ t
0 ( ea(t–u)–eb(t–u)

a–b ) du| exists for all t > 0, and φ is an integrable func-
tion. �

4 Hyers–Ulam stability for (1.2)
In this section, we investigate the Hyers–Ulam stability and generalized Hyers–Ulam sta-
bility of the differential equation (1.2). Firstly, we prove the Hyers–Ulam stability of the
nonhomogeneous linear differential equation (1.2).

Theorem 4.1 The differential equation (1.2) has the Hyers–Ulam stability.

Proof For every ε > 0 and for each solution x ∈ C2(I) satisfying

∣∣x′′(t) + μ2x(t) – q(t)
∣∣ ≤ ε (4.1)

for all t ∈ I , we will prove that there exists L > 0 such that |x(t) – y(t)| ≤ Lε for some y ∈
C2(I) satisfying y′′(t) + μ2y(t) = q(t) for all t ∈ I . The function p : (0,∞) → R defined by
p(t) =: x′′(t) +μ2x(t) – q(t) satisfies |p(t)| ≤ ε. Taking the Mahgoub transform of p, we have

M
{

x(t)
}

=
M{p(t)} + v3x(0) + v2x′(0) + M{q(t)}

v2 + μ2 . (4.2)
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Equality (4.2) shows that a function x0 : (0,∞) → F is a solution of (1.2) if and only if

(
v2 + μ2)M{x0} – v3x0(0) – v2x′

0(0) = M
{

q(t)
}

.

If there exist constants a and b in F such that v2 + μ2 = (v – a)(v – b) with a + b = 0 and
ab = μ2, then (4.2) becomes

M
{

x(t)
}

=
M{p(t)} + v3x(0) + v2x′(0) + M{q(t)}

(s – l)(s – m)
. (4.3)

Set r(t) = eat–ebt

a–b and y(t) = x(0)( lelt–memt

l–m ) + x′(0)r(t) + [(r ∗ q)(t)]. So, y(0) = x(0) and y′(0) =
x′(0). Once more, taking the Mahgoub transform of y, we have

M
{

y(t)
}

=
v3x(0) + v2x′(0)M{q(t)}

(v – a)(v – b)
. (4.4)

On the other hand, M{y′′(t) + μ2y(t)} = (v2 + μ2)M{y(t)} – v3y(0) – v2y′(0). Using (4.4),
the last equality becomes

M
{

y′′(t) + μ2y(t)
}

= M
{

q(t)
}

.

Since M is a one-to-one linear operator, we have y′′(t) + μ2y(t) = q(t), which shows that y
is a solution of (1.2). Now relations (4.3) and (4.4) necessitate that

M
{

x(t) – y(t)
}

= M
{

x(t)
}

– M
{

y(t)
}

=
M{p(t)}

(v – a)(v – b)
= M

{
p(t) ∗ r(t)

}
,

and hence x – y = p ∗ r. Taking the modulus of both sides of the last equality and using
|p(t)| ≤ ε, we get

∣∣x(t) – y(t)
∣∣ =

∣∣p ∗ r(t)
∣∣

≤
∣∣∣∣

∫ ∞

–∞
p(u)r(t – u) du

∣∣∣∣

≤ ε

∣∣∣∣

∫ ∞

–∞

(
ea(t–u) – eb(t–u)

a – b

)
du

∣∣∣∣

≤ Kε,

where

K =
∣∣∣∣

∫ ∞

–∞

(
ea(t–u) – eb(t–u)

a – b

)
du

∣∣∣∣,

which exists for all t > 0. Therefore the linear differential equation (1.2) has the Hyers–
Ulam stability. �

Analogously to Theorem 4.1, we have the following result, which shows the generalized
Hyers–Ulam stability of the differential equation (1.2).
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Theorem 4.2 The differential equation (1.2) has the generalized Hyers–Ulam stability.

Proof Let ε > 0 and φ ∈ C(R+,R+). Suppose that x ∈ C2(I) satisfies the inequality

∣∣x′′(t) + μ2x(t) – q(t)
∣∣ ≤ εφ(t) (4.5)

for all t ∈ I . We prove there exists Lφ > 0 such that |x(t) – y(t)| ≤ Lφεφ(t) for some y ∈
C2(I) satisfying y′′(t) + μ2y(t) = q(t) for all t ∈ I . Define the function p : (0,∞) → F by
p(t) := x′′(t) + μ2x(t) – q(t) for each t > 0. By (4.5) we have |p(t)| ≤ εφ(t). Now, taking the
Mahgoub transform of p(t), we get

M
{

x(t)
}

=
M{p(t)} + v3x(0) + v2x′(0) + M{q(t)}

v2 + μ2 . (4.6)

In addition, in light of relation (4.6), a function x0 : (0,∞) → F is a solution of (1.2) if and
only if

(
v2 + μ2)M{x0} – v3x0(0) – v2x′

0(0) = M
{

q(t)
}

.

However, (4.6) becomes

M
{

x(t)
}

=
M{p(t)} + v3x(0) + v2x′(0) + M{q(t)}

(s – l)(s – m)
. (4.7)

Assume that there exist constants a and b inF such that v2 +μ2 = (v–a)(v–b) with a+b = 0
and ab = μ2. Putting r(t) = eat–ebt

a–b and

y(t) = x(0)
(

aeat – bebt

a – b

)
+ x′(0)r(t) +

[
(r ∗ q)(t)

]
,

we easily obtain y(0) = x(0) and y′(0) = x′(0). Taking the Mahgoub transform of y(t), we
have

M
{

y(t)
}

=
v3x(0) + v2x′(0)M{q(t)}

(v – a)(v – b)
. (4.8)

Furthermore, M{y′′(t) + μ2y(t)} = (v2 + μ2)M{y(t)} – v3y(0) – v2y′(0). Now applying (4.4),
we obtain M{y′′(t) + μ2y(t)} = M{q(t)}. The last equality implies that y′′(t) + μ2y(t) = q(t).
This means that y is a solution of (1.2). Hence, plugging (4.7) into (4.8), we obtain

M
{

x(t) – y(t)
}

= M
{

x(t)
}

– M
{

y(t)
}

=
M{p(t)}

(v – a)(v – b)
= M

{
p(t) ∗ r(t)

}
.

Thus x – y = p ∗ r. Taking the modulus of both sides and using |p(t)| ≤ εφ(t), we get

∣∣x(t) – y(t)
∣∣ =

∣∣p ∗ r(t)
∣∣

≤
∣∣∣∣

∫ ∞

–∞
p(u)r(t – u) du

∣∣∣∣
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≤ εφ(t)
∣∣∣∣

∫ ∞

–∞

(
ea(t–u) – eb(t–u)

a – b

)
du

∣∣∣∣

≤ Lφεφ(t),

where

Lφ =
∣∣∣∣

∫ ∞

–∞

(
ea(t–u) – eb(t–b)

a – b

)
du

∣∣∣∣,

which exists for all t > 0. This completes the proof. �

5 Conclusion
In this paper, we first initiated and proposed a new method for the investigation of Hyers–
Ulam stability of differential equations by using the Mahgoub transform. Also, using this
new idea, we investigated the Hyers–Ulam stability of second-order homogeneous and
nonhomogeneous differential equations by using the Mahgoub transform.
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