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Abstract

Recently, Bednarz introduced a new two-parameter generalization of the Fibonacci
sequence, which is called the (k,p)-Fibonacci sequence and denoted by (Fk,p(n))n≥0. In
this paper, we study the geometry of roots of the characteristic polynomial of this
sequence.
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1 Introduction
The Fibonacci sequence(Fn)n is one of the most famous sequences in mathematics. This

sequence is de“ned by the binary recurrenceFn+2 = Fn+1 + Fn for n ≥ 0 with initial values

F0 = 0 andF1 = 1. So, its “rst ten nonzero terms are 1, 1, 2, 3, 5, 8, 13, 21, 34, and 55. A well-

known nonrecursive formula for thenth Fibonacci number is called theBinet formula:

Fn =
� n …� n

√
5

,

where � := (1 +
√

5)/2 and � := (1 …
√

5)/2. The Fibonacci numbers have been the main

object of many books (see, e.g., [1…5] and some references therein). Many generalizations

of this sequence have appeared in the literature. Probably, the most known generalization

is the k-generalized Fibonacci sequence (F(k)
n )n≥…(k…2)(also known as thek-bonacci, the

k-fold Fibonacci, or kth-order Fibonacci) de“ned by

F(k)
n = F(k)

n…1+ F(k)
n…2+ · · · + F(k)

n…k

with initial valuesF(k)
…j = 0 (for j = 0,1, . . . ,k … 2) andF(k)

1 = 1. Their recent wide and inten-

sive study was started in 1960 by Miles [6]. In 1971, Miller [7] proved some basic facts on

the geometry of the roots of their characteristic polynomial

� k(x) := xk …xk…1…xk…2…· · · …x … 1,
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which was a foundation for a systematic search for a •Binet-likeŽ formula for (F(k)
n )n (see,

e.g., [8…10]). The k-generalized Fibonacci sequence was further generalized; see [11…15].

Another generalization, applied in a new coding method, and de“ned by the recurrence

Fp(n) = Fp(n … 1) +Fp(n …p … 1) forn ≥ p + 2,

with Fp(j) = 1 for j = 1, . . . ,p + 1, was introduced by Stakhov [16] and is called asFibonacci

p-numbers. Stakhov and Rozin [17, 18] studied some properties of the roots of their char-

acteristic equation

xp+1 …xp … 1 = 0,

and Kšlšç [13] proved that all roots are simple and provided a •Binet-likeŽ formula for

(Fp(n))n. This sequence was gradually generalized in [19…22].

In 2008, W›och [23] studied the total number ofk-independent sets in some graphs,

which led her to the sequence (P(n,k))n≥0 calledthe generalized Pell numbers. For k ≥ 2,

these numbers are de“ned by the recurrent relation

P(n,k) = P(n … 1,k) + P(n …k + 1,k) + P(n …k,k) for n ≥ k + 3 (1)

with initial valuesP(i,k) = 2k … 2 for 3≤ i ≤ k, P(k + 1,k) = 2k + 1, and

P(k + 2,k) =

⎧
⎨

⎩

12 if k = 2,

2k + 7 if k ≥ 3.

Recently, Trojovský [24] dealt with the behavior (in the algebraic and analytic sense)

of the roots of the characteristic polynomialpk(x) = xk …xk…1…x … 1 of the sequence

(P(n,k))n≥0.

Very recently, Bednarz [25] introduced a new type of generalization of Fibonacci num-

bers (depending on two integer parametersp ≥ 2 andk ≥ 3), called the (k,p)-Fibonacci

numbers, by the following recurrence:

Fk,p(n) = pFk,p(n … 1) + (p … 1)Fk,p(n …k + 1) + Fk,p(n …k) for n ≥ k

with initial valuesFk,p(0) = 0 andFk,p(j) = pj…1, j = 1, 2, . . . ,k … 1. The characteristic polyno-

mial of this sequence is

fk,p(x) = xk …pxk…1… (p … 1)x … 1.

In 2020, Bednarz and W›och [26] studied interesting interpretations of these numbers

in undirected simple graphs and found some interesting identities.

In this paper, we are interested in studying the geometry of roots of the characteristic

polynomial of this sequence (Fk,p(n))n≥0. Our main result is the following:

Theorem 1 For integers p≥ 2 and k ≥ 3, the polynomial fk,p(x) has the following proper-

ties:
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(i) fk,p(x) has a dominant root, say � k,p (which is its only positive root), and

p < � k,p < p +
2

pk…3

for all k ≥ 2. In particular, limk→∞ � k,p = p and limp→∞ � k,p = ∞;
(ii) fk,p(x) has one negative root for any p ≥ 2 and even k ≥ 3;

(iii) fk,p(x) has two negative roots when k is odd:
(iii a) p = 3 and k ≥ 7,
(iii b) p ∈ {4,5,6} and k ≥ 5,
(iii c) p ≥ 7 and k ≥ 3;

(iv) all roots of fk,p(x) are simple.

As in all previous generalizations of Fibonacci numbers, this theorem is the basis for
“nding a Binet-like formula for direct calculation of terms of the sequenceFk,p(n), but
since the roots of its characteristic polynomial do not have a simple form, the existence of
a certain simple formula is unlikely. We will show, however, a particular case, in which we
know a little more about the roots.

Remark1 If k ≡ 5 (mod 6), thenx2 …x + 1 dividesfk,p(x), that is, fk,p(� j) = 0 for � = (1 +√
…3)/2 andj ∈ {1,2}. Indeed, since� 3 = …1,� 4 = …� , � 5 = …� 2, and� 6 = 1, we have (for

k = 6t + 5, wheret is a nonnegative integer)

fk,p(� ) = � 6t+5 …p� 6t+4 … (p … 1)� … 1

= � 5 …p� 4 … (p … 1)� … 1 = …
(
� 2 …� + 1

)
= 0.

The same argument can be used to deduce thatfk,p(� 2) = 0. Furthermore, a short calcula-
tion shows the factorization

fk,p(x) =
(
x2 …x + 1

)
(

x(x + 1)(x …p)
(k…5)/3∑

i=0

(…1)ix3i … 1

)

=
(
x2 …x + 1

)
(

x(x …p)
xk…2+ 1

x2 …x + 1
… 1

)

.

Example1 Using Remark1 (and Cardano•s formula), we can “nd the exact form for all
roots of the characteristic polynomial

f5,p(x) = x5 …px4 … (p … 1)x … 1

=
(
x2 …x + 1

)(
x3 … (p … 1)x2 …px … 1

)
(2)

in the following form:

� 1/2 =
1
2

(1± √
3i),

� 3 =
p … 1

3
+

3
√

2R

3 3
√

Q + S
+

3
√

Q + S

3 3
√

2
,

� 4/5 =
p … 1

3
…

(1± i
√

3)R

3 3
√

4 3
√

Q + S
…

(1∓ i
√

3) 3
√

Q + S

6 3
√

2
,
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where

Q := 2p3 + 3p2 … 3p + 25, R:= p2 + p + 1,

S:= 3
√

3
(
23 … 6p + 5p2 + 2p3 …p4

)
.

With respect to Theorem1, we know that the polynomialx3 …(p…1)x2 …px…1 (the second

factor in (2)) has one positive real root� 3 and two roots� 4/5, which are complex conjugate

for p = 1,2,3, and forp ≥ 4, they are negative real roots.

2 Auxiliary results
In this section, we present two results, which will be essential ingredients in the proof of

our results. For clarity, we introduce some notations. As usual, [a,b] denotes the set{a,a+

1, . . . ,b} for integersa < b. Also,B[0,1] is the closed unit ball (i.e., all complex numbersz

such that|z| ≤ 1), andRg is the set of all complex zeros of the polynomialg(x).

The “rst tool is the famousDescartes sign rule, which gives an upper bound on the num-

ber of positive or negative real roots of a polynomial with real coe�cients. For complete-

ness, we state it as a lemma.

Lemma 1 (Descartes• sign rule)Let f(x) = an1xn1 + · · · + ankxnk be a polynomial with

nonzero real coe�cients and such that n1 > n2 > · · · > nk ≥ 0.Set

� := #
{
i ∈ [1,k … 1] :ani ani+1 < 0

}
.

Then, there exists a nonnegative integer r such that#Rf = � … 2r (multiple roots of the

same value are counted separately).

As a corollary, we have that for obtaining information on the number of negative real

roots, we must apply the previous rule forf (…x).

Remark2 Generally speaking, the previous result says that if the terms of a single-variable

polynomial with real coe�cients are ordered by descending variable exponent, then the

number of positive roots of the polynomial is equal to the number of sign di�erences

between consecutive nonzero coe�cients minus an even nonnegative integer.

A fundamental result in the theory of recurrence sequences is the following:

Lemma 2 Let (un) be a linear recurrence sequence whose characteristic polynomial� (x)

splits as

� (x) = (x …� 1)m1(x …� 2)m2 · · · (x …� � )m� ,

where the� j are distinct complex numbers. Then there exist uniquely determined nonzero

polynomials g1, . . . ,g� ∈ Q({� j}�
j=1)[x], with deg gj ≤ mj … 1 (mj is the multiplicity of � j as

zero of� (x)) for j ∈ [1,� ], such that

un = g1(n)� n
1 + g2(n)� n

2 + · · · + g� (n)� n
� for all n. (3)
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The proof of this result can be found in [27, Theorem C.1].

Another useful and very important result is due to Eneström and Kakeya [28, 29].

Lemma 3 (Eneström…Kakeya theorem)Let f(x) = a0 + a1x + · · · + anxn be an n-degree

polynomial with real coe�cients. If 0 ≤ a0 ≤ a1 ≤ · · · ≤ an, then all zeros of f(x) lie in

B[0,1].

Our last tool is the following:

Lemma 4 Let f :C →C be the Möbius transformation

f (z) =
az+ b
cz+ d

,

where a, b, c, d are real numbers with ad…bc 
= 0.Then f…1(R) ⊆R, that is, if f (z) is a real

number, then so is z.

Proof Suppose that� is a complex number such thatf (� ) ∈R. Thenf (� ) = f (� ) (where, as

usual,z denotes the complex conjugate ofz). Sincea,b,c,d ∈R, we have thatf (� ) = f (� ),

and sof (� ) = f (� ) yields

(a� + b)(c� + d) = (a� + b)(c� + d).

After a straightforward computation, we obtain thatad(� …� ) = bc(� …� ). Sincead 
= bc,

we have� = � , that is,� is a real number, as desired. �

Now we are ready to deal with the proof of the theorem.

3 The proof of the main theorem
3.1 Proof of item (i)
First, we use Lemma1 to deduce that the polynomialfk,p(x) = xk …pxk…1… (p … 1)x … 1 has

only a positive root, say� k,p. From now on, by abuse of notation, we will writef for fk,p

and � for � k,p. Since� k = p� k…1+ (p … 1)� + 1, we obtain thatf (x) = (x …� )g(x), where

g(x) = xk…1+ (� …p)xk…2+ � (� …p)xk…3+ · · · + � k…3(� …p)x + � k…1+ 1 …p …p� k…2.

We claim that if z is a root ofg(x), then |z| ≤ � . To prove this, it su�ces to show that the

roots of h(x) := g(� x) belong toB[0,1]. This holds by applying Lemma3 to the polynomial

h(x) = � k…1xk…1+
k…2∑

j=1

� k…2(� …p)xk…j…1+ � k…1+ 1 …p …p� k…2,

since

� k…1> � k…2(� …p) > � k…1+ 1 …p …p� k…2,

where the last inequality is valid becausep > 1.
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Now since� is the only positive root off (x) and limx→∞ f (x) = +∞, we havef (x) ≥ 0

for all x ≥ � (also, � > p since f (p) = …p(p … 1) … 1). Our second claim is that ifz is a

root of f (x) with � := |z| ≥ � , then z is a real number. Indeed, sincef (� ) ≥ 0. we have� k ≥
p� k…1+(p…1)� +1. On the other hand, the triangle inequality yields� k ≤ p� k…1+(p…1)� +1,

and thus

2� k =
∣
∣zk + pzk…1+ (p … 1)z+ 1

∣
∣

≤ |z|k + p|z|k…1+ (p … 1)|z| + 1

= |z|k + p� k…1+ (p … 1)� + 1 ≤ 2� k.

Thus |zk + pzk…1+ (p … 1)z + 1| = |z|k + |pz|k…1+ |(p … 1)z| + 1, implying that 1, (p … 1)z,

pzk…1, andzk lie in the same ray (this follows from the fact that the equality in thecomplex

triangle inequality |∑n
j=1 zj| ≤ ∑n

j=1 |zj| occurs if and only if all nonzerozj have the same

argument, that is,zj = aj� for some (aj, � ) ∈R>0 ×C with j ∈ [1,n]). So, in particular, there

exists a real numbert0 such thatzk = 1 + t0(pzk…1… 1). Sincezk = pzk…1+ (p … 1)z + 1, we

obtain that

t0 =
pzk…1+ (p … 1)z

pzk…1… 1
.

On the other hand, the vectorspzk…1… (p… 1)z andpzk…1… 1 have the same direction, so

that

t1 :=
pzk…1… (p … 1)z

pzk…1… 1

is a real number. Thus

t0 + t1 =
2pzk…1

pzk…1… 1

is a real number, and so iszk…1(by Lemma4). From the de“nition of t0 we also deduce that

z∈R.

In conclusion, we proved that ifz is a root of f (x) with |z| ≥ � , then z is a real number

with |z| = � . So,z∈ {…� ,� }. Suppose thatz = …� . Then since

f (� ) …f (…� ) = 0 and f (� ) + f (…� ) = 0,

we arrive at an absurdity as� k = 1 or p� k…1= …1, which contradicts that fact that� > p > 1.

To “nish the proof of this item, we must prove that

p < � < p +
2

pk…3
.



TrojovskýAdvances in Di�erence Equations        (2021) 2021:28 Page 7 of 9

For that, sincef (p) < 0, it su�ces to show (by the intermediate value theorem) thatf (p+

2/pk…3) > 0. Indeed, sincef (x) = xk…1(x …p) … (p … 1)x … 1, we get

f
(

p +
2

pk…3

)

=
(

p +
2

pk…3

)k…1

· 2
pk…3

… (p … 1)
(

p +
2

pk…3

)

… 1

= pk…1
(

1 +
2

pk…4

)k…1

· 2
pk…3

…p2 …
2

pk…2
+ p +

2
pk…3

… 1

≥ 2p2
(

1 +
2(k … 1)

pk…4

)

…p2 …
2

pk…2
+ p +

2
pk…3

… 1

> p2 + p … 1 > 0,

where we used theBernoulli inequality (1 + x)n ≥ 1 + nx for all (n,x) ∈ Z≥0 × R>…1. The

proof is complete.

3.2 Proof of item (ii)
By using Lemma1 and the equalityf (…x) = xk + pxk…1+ (p … 1)x … 1 (fork even)f (x) has

exactly one negative root.

3.3 Proof of item (iii)
In this case,f (…x) = …xk …pxk…1+(p…1)x…1, and so by Lemma1we have either zero or two

negative roots. Sincef (0) = …1 andf (x) tends to …∞ (whenk is odd) asx → …∞, to prove

the existence of two negative roots, we only need to “nd a real numberr < 0 such that

f (r) > 0 (again by the intermediate value theorem). Also, letf (x) = xk…1(x…p) … (p… 1)x… 1.

3.3.1 Proof of item(iii a)

In this case, we chooser = …3/5, and thus

f
(

…
3
5

)

= …
18
5

·
(

3
5

)k…1

+
1
5

> 0

wheneverk > …log 18/ log(3/5) + 1 = 6.65823 . . . . Sincek ≥ 7, the proof is complete.

3.3.2 Proof of item(iii b)

In this case, forr = …1/2, we get

f
(

…
1
2

)

=
p + 1

2
…

2p + 1
2k

… 2.

Therefore

f
(

…
1
2

)

=
p + 1

2
…

2p + 1
2k

… 2≥ p + 1
2

…
2p + 1

32
… 2∈

{
7
32

,
21
32

,
35
32

}

for k ≥ 5 andp ∈ {4,5,6}.
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3.3.3 Proof of item(iii c)
In this case, also forr = …1/2, we get

f
(

…
1
2

)

=
p + 1

2
…

2p + 1
2k

… 2≥ p + 1
2

…
2p + 1

8
… 2≥ 2p … 13

8
≥ 1

8

for k ≥ 3 andp ≥ 7.

3.4 Proof of item (iv)
Note that f ′′(x) = k(k … 1)xk…2…p(k … 1)(k … 2)xk…3. So,f ′′(x) = 0 if and only if x = 0 or
x = p(k … 2)/k. However, none of these values is a root off (x), sincef (0) = …1 and its only
positive root� > p, whereasp(k…2)/k ∈ (0,p). Summarizing, a possible repeated root must
have multiplicity 2.

Now we claim that all real roots off (x) are simple. The only positive root� must be
simple because of Lemma1. For the negative roots, we “rst see that in the case of an even
k, f ′(x) has no negative roots. Sincef ′(…x) = …kxk…1…p(k … 1)xk…1… (p… 1) (and Lemma1),
when k is odd, we have two roots, which are distinct by the previous items, and so both
must be simple (again by Lemma1).

In conclusion, a possible double root must be a nonreal number. Note thatf (x) = 0 and
f ′(x) = 0 imply

xk…1=
(p … 1)x + 1

x …p
and xk…2=

p … 1
kx …p(k … 1)

,

respectively. By combining the previous relations, we arrive at the following quadratic
equation:

(p … 1)(k … 1)x2 +
(
p(p … 1)(2 …k) + k

)
x …p(k … 1) = 0.

Since the roots are not real numbers, its discriminant must be negative. However, the
discriminant is

(
p(p … 1)(2 …k) + k

)2
+ 4p(p … 1)(k … 1)2 ≥ 0.

This contradiction completes our proof.

4 Conclusions
In this paper, we are interested in the behavior of the so-called (k,p)-Fibonacci num-
bers, which are akth-order two-parameter recurrence de“ned byFk,p(n) = pFk,p(n … 1) +
(p … 1)Fk,p(n …k + 1) + Fk,p(n …k) with initial values Fk,p(0) = 0 and Fk,p(j) = pj…1 (for
j ∈ [1,k … 1]). It is well known that the study of the (arithmetic and asymptotic) behavior
of a sequence is closely related to the knowledge of the analytic and algebraic properties
of roots of its characteristic polynomial (a kind of •Binet-like formulaŽ). In our case, this
polynomial is fk,p(x) = xk …pxk…1… (p … 1)x … 1. Therefore, in this work, we provided a
complete study of the roots offk,p(x). For example, in our main result, we proved (among
other things) the existence of a dominant root� k,p ∈ (p,p + 2) (together with some more
accurate lower and upper bounds) fork ≥ 3 andp ≥ 2. Moreover, these bounds allow us
to deduce that (� k,p) converges top ask → ∞ (while it is unbounded inp).
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