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Abstract
Recently, Bednarz introduced a new two-parameter generalization of the Fibonacci
sequence, which is called the (k,p)-Fibonacci sequence and denoted by (Fk,p(n))n≥0. In
this paper, we study the geometry of roots of the characteristic polynomial of this
sequence.

MSC: Primary 11B39; 11C08; secondary 11N56; 11B83

Keywords: Generalized Fibonacci sequence; Characteristic polynomial;
Eneström–Kakeya theorem; Descartes’ sign rule

1 Introduction
The Fibonacci sequence (Fn)n is one of the most famous sequences in mathematics. This
sequence is defined by the binary recurrence Fn+2 = Fn+1 + Fn for n ≥ 0 with initial values
F0 = 0 and F1 = 1. So, its first ten nonzero terms are 1, 1, 2, 3, 5, 8, 13, 21, 34, and 55. A well-
known nonrecursive formula for the nth Fibonacci number is called the Binet formula:

Fn =
αn – βn

√
5

,

where α := (1 +
√

5)/2 and β := (1 –
√

5)/2. The Fibonacci numbers have been the main
object of many books (see, e.g., [1–5] and some references therein). Many generalizations
of this sequence have appeared in the literature. Probably, the most known generalization
is the k-generalized Fibonacci sequence (F (k)

n )n≥–(k–2) (also known as the k-bonacci, the
k-fold Fibonacci, or kth-order Fibonacci) defined by

F (k)
n = F (k)

n–1 + F (k)
n–2 + · · · + F (k)

n–k

with initial values F (k)
–j = 0 (for j = 0, 1, . . . , k – 2) and F (k)

1 = 1. Their recent wide and inten-
sive study was started in 1960 by Miles [6]. In 1971, Miller [7] proved some basic facts on
the geometry of the roots of their characteristic polynomial

ψk(x) := xk – xk–1 – xk–2 – · · · – x – 1,
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which was a foundation for a systematic search for a “Binet-like” formula for (F (k)
n )n (see,

e.g., [8–10]). The k-generalized Fibonacci sequence was further generalized; see [11–15].
Another generalization, applied in a new coding method, and defined by the recurrence

Fp(n) = Fp(n – 1) + Fp(n – p – 1) for n ≥ p + 2,

with Fp(j) = 1 for j = 1, . . . , p + 1, was introduced by Stakhov [16] and is called as Fibonacci
p-numbers. Stakhov and Rozin [17, 18] studied some properties of the roots of their char-
acteristic equation

xp+1 – xp – 1 = 0,

and Kılıç [13] proved that all roots are simple and provided a “Binet-like” formula for
(Fp(n))n. This sequence was gradually generalized in [19–22].

In 2008, Włoch [23] studied the total number of k-independent sets in some graphs,
which led her to the sequence (P(n, k))n≥0 called the generalized Pell numbers. For k ≥ 2,
these numbers are defined by the recurrent relation

P(n, k) = P(n – 1, k) + P(n – k + 1, k) + P(n – k, k) for n ≥ k + 3 (1)

with initial values P(i, k) = 2k – 2 for 3 ≤ i ≤ k, P(k + 1, k) = 2k + 1, and

P(k + 2, k) =

⎧
⎨

⎩

12 if k = 2,

2k + 7 if k ≥ 3.

Recently, Trojovský [24] dealt with the behavior (in the algebraic and analytic sense)
of the roots of the characteristic polynomial pk(x) = xk – xk–1 – x – 1 of the sequence
(P(n, k))n≥0.

Very recently, Bednarz [25] introduced a new type of generalization of Fibonacci num-
bers (depending on two integer parameters p ≥ 2 and k ≥ 3), called the (k, p)-Fibonacci
numbers, by the following recurrence:

Fk,p(n) = pFk,p(n – 1) + (p – 1)Fk,p(n – k + 1) + Fk,p(n – k) for n ≥ k

with initial values Fk,p(0) = 0 and Fk,p(j) = pj–1, j = 1, 2, . . . , k – 1. The characteristic polyno-
mial of this sequence is

fk,p(x) = xk – pxk–1 – (p – 1)x – 1.

In 2020, Bednarz and Włoch [26] studied interesting interpretations of these numbers
in undirected simple graphs and found some interesting identities.

In this paper, we are interested in studying the geometry of roots of the characteristic
polynomial of this sequence (Fk,p(n))n≥0. Our main result is the following:

Theorem 1 For integers p ≥ 2 and k ≥ 3, the polynomial fk,p(x) has the following proper-
ties:
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(i) fk,p(x) has a dominant root, say αk,p (which is its only positive root), and

p < αk,p < p +
2

pk–3

for all k ≥ 2. In particular, limk→∞ αk,p = p and limp→∞ αk,p = ∞;
(ii) fk,p(x) has one negative root for any p ≥ 2 and even k ≥ 3;

(iii) fk,p(x) has two negative roots when k is odd:
(iiia) p = 3 and k ≥ 7,
(iiib) p ∈ {4, 5, 6} and k ≥ 5,
(iiic) p ≥ 7 and k ≥ 3;

(iv) all roots of fk,p(x) are simple.

As in all previous generalizations of Fibonacci numbers, this theorem is the basis for
finding a Binet-like formula for direct calculation of terms of the sequence Fk,p(n), but
since the roots of its characteristic polynomial do not have a simple form, the existence of
a certain simple formula is unlikely. We will show, however, a particular case, in which we
know a little more about the roots.

Remark 1 If k ≡ 5 (mod 6), then x2 – x + 1 divides fk,p(x), that is, fk,p(ωj) = 0 for ω = (1 +√
–3)/2 and j ∈ {1, 2}. Indeed, since ω3 = –1, ω4 = –ω, ω5 = –ω2, and ω6 = 1, we have (for

k = 6t + 5, where t is a nonnegative integer)

fk,p(ω) = ω6t+5 – pω6t+4 – (p – 1)ω – 1

= ω5 – pω4 – (p – 1)ω – 1 = –
(
ω2 – ω + 1

)
= 0.

The same argument can be used to deduce that fk,p(ω2) = 0. Furthermore, a short calcula-
tion shows the factorization

fk,p(x) =
(
x2 – x + 1

)
(

x(x + 1)(x – p)
(k–5)/3∑

i=0

(–1)ix3i – 1

)

=
(
x2 – x + 1

)
(

x(x – p)
xk–2 + 1

x2 – x + 1
– 1

)

.

Example 1 Using Remark 1 (and Cardano’s formula), we can find the exact form for all
roots of the characteristic polynomial

f5,p(x) = x5 – px4 – (p – 1)x – 1

=
(
x2 – x + 1

)(
x3 – (p – 1)x2 – px – 1

)
(2)

in the following form:

α1/2 =
1
2

(1 ± √
3i),

α3 =
p – 1

3
+

3√2R
3 3√Q + S

+
3√Q + S
3 3√2

,

α4/5 =
p – 1

3
–

(1 ± i
√

3)R
3 3√4 3√Q + S

–
(1 ∓ i

√
3) 3√Q + S

6 3√2
,
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where

Q := 2p3 + 3p2 – 3p + 25, R := p2 + p + 1,

S := 3
√

3
(
23 – 6p + 5p2 + 2p3 – p4

)
.

With respect to Theorem 1, we know that the polynomial x3 –(p–1)x2 –px–1 (the second
factor in (2)) has one positive real root α3 and two roots α4/5, which are complex conjugate
for p = 1, 2, 3, and for p ≥ 4, they are negative real roots.

2 Auxiliary results
In this section, we present two results, which will be essential ingredients in the proof of
our results. For clarity, we introduce some notations. As usual, [a, b] denotes the set {a, a +
1, . . . , b} for integers a < b. Also, B[0, 1] is the closed unit ball (i.e., all complex numbers z
such that |z| ≤ 1), and Rg is the set of all complex zeros of the polynomial g(x).

The first tool is the famous Descartes sign rule, which gives an upper bound on the num-
ber of positive or negative real roots of a polynomial with real coefficients. For complete-
ness, we state it as a lemma.

Lemma 1 (Descartes’ sign rule) Let f (x) = an1 xn1 + · · · + ank xnk be a polynomial with
nonzero real coefficients and such that n1 > n2 > · · · > nk ≥ 0. Set

ν := #
{

i ∈ [1, k – 1] : ani ani+1 < 0
}

.

Then, there exists a nonnegative integer r such that #Rf = ν – 2r (multiple roots of the
same value are counted separately).

As a corollary, we have that for obtaining information on the number of negative real
roots, we must apply the previous rule for f (–x).

Remark 2 Generally speaking, the previous result says that if the terms of a single-variable
polynomial with real coefficients are ordered by descending variable exponent, then the
number of positive roots of the polynomial is equal to the number of sign differences
between consecutive nonzero coefficients minus an even nonnegative integer.

A fundamental result in the theory of recurrence sequences is the following:

Lemma 2 Let (un) be a linear recurrence sequence whose characteristic polynomial ψ(x)
splits as

ψ(x) = (x – α1)m1 (x – α2)m2 · · · (x – α�)m� ,

where the αj are distinct complex numbers. Then there exist uniquely determined nonzero
polynomials g1, . . . , g� ∈ Q({αj}�j=1)[x], with deg gj ≤ mj – 1 (mj is the multiplicity of αj as
zero of ψ(x)) for j ∈ [1,�], such that

un = g1(n)αn
1 + g2(n)αn

2 + · · · + g�(n)αn
� for all n. (3)
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The proof of this result can be found in [27, Theorem C.1].
Another useful and very important result is due to Eneström and Kakeya [28, 29].

Lemma 3 (Eneström–Kakeya theorem) Let f (x) = a0 + a1x + · · · + anxn be an n-degree
polynomial with real coefficients. If 0 ≤ a0 ≤ a1 ≤ · · · ≤ an, then all zeros of f (x) lie in
B[0, 1].

Our last tool is the following:

Lemma 4 Let f : C →C be the Möbius transformation

f (z) =
az + b
cz + d

,

where a, b, c, d are real numbers with ad – bc 
= 0. Then f –1(R) ⊆R, that is, if f (z) is a real
number, then so is z.

Proof Suppose that ω is a complex number such that f (ω) ∈R. Then f (ω) = f (ω) (where, as
usual, z denotes the complex conjugate of z). Since a, b, c, d ∈R, we have that f (ω) = f (ω),
and so f (ω) = f (ω) yields

(aω + b)(cω + d) = (aω + b)(cω + d).

After a straightforward computation, we obtain that ad(ω – ω) = bc(ω – ω). Since ad 
= bc,
we have ω = ω, that is, ω is a real number, as desired. �

Now we are ready to deal with the proof of the theorem.

3 The proof of the main theorem
3.1 Proof of item (i)
First, we use Lemma 1 to deduce that the polynomial fk,p(x) = xk – pxk–1 – (p – 1)x – 1 has
only a positive root, say αk,p. From now on, by abuse of notation, we will write f for fk,p

and α for αk,p. Since αk = pαk–1 + (p – 1)α + 1, we obtain that f (x) = (x – α)g(x), where

g(x) = xk–1 + (α – p)xk–2 + α(α – p)xk–3 + · · · + αk–3(α – p)x + αk–1 + 1 – p – pαk–2.

We claim that if z is a root of g(x), then |z| ≤ α. To prove this, it suffices to show that the
roots of h(x) := g(αx) belong to B[0, 1]. This holds by applying Lemma 3 to the polynomial

h(x) = αk–1xk–1 +
k–2∑

j=1

αk–2(α – p)xk–j–1 + αk–1 + 1 – p – pαk–2,

since

αk–1 > αk–2(α – p) > αk–1 + 1 – p – pαk–2,

where the last inequality is valid because p > 1.
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Now since α is the only positive root of f (x) and limx→∞ f (x) = +∞, we have f (x) ≥ 0
for all x ≥ α (also, α > p since f (p) = –p(p – 1) – 1). Our second claim is that if z is a
root of f (x) with ν := |z| ≥ α, then z is a real number. Indeed, since f (ν) ≥ 0. we have νk ≥
pνk–1 +(p–1)ν +1. On the other hand, the triangle inequality yields νk ≤ pνk–1 +(p–1)ν +1,
and thus

2νk =
∣
∣zk + pzk–1 + (p – 1)z + 1

∣
∣

≤ |z|k + p|z|k–1 + (p – 1)|z| + 1

= |z|k + pνk–1 + (p – 1)ν + 1 ≤ 2νk .

Thus |zk + pzk–1 + (p – 1)z + 1| = |z|k + |pz|k–1 + |(p – 1)z| + 1, implying that 1, (p – 1)z,
pzk–1, and zk lie in the same ray (this follows from the fact that the equality in the complex
triangle inequality |∑n

j=1 zj| ≤ ∑n
j=1 |zj| occurs if and only if all nonzero zj have the same

argument, that is, zj = ajη for some (aj,η) ∈R>0 ×C with j ∈ [1, n]). So, in particular, there
exists a real number t0 such that zk = 1 + t0(pzk–1 – 1). Since zk = pzk–1 + (p – 1)z + 1, we
obtain that

t0 =
pzk–1 + (p – 1)z

pzk–1 – 1
.

On the other hand, the vectors pzk–1 – (p – 1)z and pzk–1 – 1 have the same direction, so
that

t1 :=
pzk–1 – (p – 1)z

pzk–1 – 1

is a real number. Thus

t0 + t1 =
2pzk–1

pzk–1 – 1

is a real number, and so is zk–1 (by Lemma 4). From the definition of t0 we also deduce that
z ∈R.

In conclusion, we proved that if z is a root of f (x) with |z| ≥ α, then z is a real number
with |z| = α. So, z ∈ {–α,α}. Suppose that z = –α. Then since

f (α) – f (–α) = 0 and f (α) + f (–α) = 0,

we arrive at an absurdity as αk = 1 or pαk–1 = –1, which contradicts that fact that α > p > 1.
To finish the proof of this item, we must prove that

p < α < p +
2

pk–3 .
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For that, since f (p) < 0, it suffices to show (by the intermediate value theorem) that f (p +
2/pk–3) > 0. Indeed, since f (x) = xk–1(x – p) – (p – 1)x – 1, we get

f
(

p +
2

pk–3

)

=
(

p +
2

pk–3

)k–1

· 2
pk–3 – (p – 1)

(

p +
2

pk–3

)

– 1

= pk–1
(

1 +
2

pk–4

)k–1

· 2
pk–3 – p2 –

2
pk–2 + p +

2
pk–3 – 1

≥ 2p2
(

1 +
2(k – 1)

pk–4

)

– p2 –
2

pk–2 + p +
2

pk–3 – 1

> p2 + p – 1 > 0,

where we used the Bernoulli inequality (1 + x)n ≥ 1 + nx for all (n, x) ∈ Z≥0 × R>–1. The
proof is complete.

3.2 Proof of item (ii)
By using Lemma 1 and the equality f (–x) = xk + pxk–1 + (p – 1)x – 1 (for k even) f (x) has
exactly one negative root.

3.3 Proof of item (iii)
In this case, f (–x) = –xk –pxk–1 +(p–1)x–1, and so by Lemma 1 we have either zero or two
negative roots. Since f (0) = –1 and f (x) tends to –∞ (when k is odd) as x → –∞, to prove
the existence of two negative roots, we only need to find a real number r < 0 such that
f (r) > 0 (again by the intermediate value theorem). Also, let f (x) = xk–1(x – p) – (p – 1)x – 1.

3.3.1 Proof of item (iiia)
In this case, we choose r = –3/5, and thus

f
(

–
3
5

)

= –
18
5

·
(

3
5

)k–1

+
1
5

> 0

whenever k > – log 18/ log(3/5) + 1 = 6.65823 . . . . Since k ≥ 7, the proof is complete.

3.3.2 Proof of item (iiib)
In this case, for r = –1/2, we get

f
(

–
1
2

)

=
p + 1

2
–

2p + 1
2k – 2.

Therefore

f
(

–
1
2

)

=
p + 1

2
–

2p + 1
2k – 2 ≥ p + 1

2
–

2p + 1
32

– 2 ∈
{

7
32

,
21
32

,
35
32

}

for k ≥ 5 and p ∈ {4, 5, 6}.
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3.3.3 Proof of item (iiic)
In this case, also for r = –1/2, we get

f
(

–
1
2

)

=
p + 1

2
–

2p + 1
2k – 2 ≥ p + 1

2
–

2p + 1
8

– 2 ≥ 2p – 13
8

≥ 1
8

for k ≥ 3 and p ≥ 7.

3.4 Proof of item (iv)
Note that f ′′(x) = k(k – 1)xk–2 – p(k – 1)(k – 2)xk–3. So, f ′′(x) = 0 if and only if x = 0 or
x = p(k – 2)/k. However, none of these values is a root of f (x), since f (0) = –1 and its only
positive root α > p, whereas p(k –2)/k ∈ (0, p). Summarizing, a possible repeated root must
have multiplicity 2.

Now we claim that all real roots of f (x) are simple. The only positive root α must be
simple because of Lemma 1. For the negative roots, we first see that in the case of an even
k, f ′(x) has no negative roots. Since f ′(–x) = –kxk–1 – p(k – 1)xk–1 – (p – 1) (and Lemma 1),
when k is odd, we have two roots, which are distinct by the previous items, and so both
must be simple (again by Lemma 1).

In conclusion, a possible double root must be a nonreal number. Note that f (x) = 0 and
f ′(x) = 0 imply

xk–1 =
(p – 1)x + 1

x – p
and xk–2 =

p – 1
kx – p(k – 1)

,

respectively. By combining the previous relations, we arrive at the following quadratic
equation:

(p – 1)(k – 1)x2 +
(
p(p – 1)(2 – k) + k

)
x – p(k – 1) = 0.

Since the roots are not real numbers, its discriminant must be negative. However, the
discriminant is

(
p(p – 1)(2 – k) + k

)2 + 4p(p – 1)(k – 1)2 ≥ 0.

This contradiction completes our proof.

4 Conclusions
In this paper, we are interested in the behavior of the so-called (k, p)-Fibonacci num-
bers, which are a kth-order two-parameter recurrence defined by Fk,p(n) = pFk,p(n – 1) +
(p – 1)Fk,p(n – k + 1) + Fk,p(n – k) with initial values Fk,p(0) = 0 and Fk,p(j) = pj–1 (for
j ∈ [1, k – 1]). It is well known that the study of the (arithmetic and asymptotic) behavior
of a sequence is closely related to the knowledge of the analytic and algebraic properties
of roots of its characteristic polynomial (a kind of “Binet-like formula”). In our case, this
polynomial is fk,p(x) = xk – pxk–1 – (p – 1)x – 1. Therefore, in this work, we provided a
complete study of the roots of fk,p(x). For example, in our main result, we proved (among
other things) the existence of a dominant root αk,p ∈ (p, p + 2) (together with some more
accurate lower and upper bounds) for k ≥ 3 and p ≥ 2. Moreover, these bounds allow us
to deduce that (αk,p) converges to p as k → ∞ (while it is unbounded in p).
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