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Abstract
We show herein the existence and uniqueness of solutions for coupled fractional
order partial differential equations modeling a thermoelastic fractional Kirchhoff plate
model associated with initial, Dirichlet, and nonlocal boundary conditions involving
fractional Caputo derivative. Some efficient results of existence and uniqueness are
obtained by employing the energy inequality method.
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1 Introduction
The systems of differential equations of time fractional order have been studied by many
authors, and several results have been obtained. These types of systems have been success-
fully used in modeling many problems in different processes and systems such as physical
and biological ones. Fractional calculus (fractional derivatives) can be used to describe
viscoelastic materials much better than using ordinary derivatives, since for the ordinary
derivatives the solution of the system predicts an instantaneous response, but when using
the fractional derivatives, the solution of the system predicts a retarded response that de-
pends on the history of the applied causes (see [1]), see also [2–5]. Many generalizations
of thermoelasticity coupled theory were investigated (see [6]), they model heat conduc-
tion in solids as a wave propagation phenomenon. In this regard, the reader can see also
[7–13], where the authors studied other models of fractional order thermoelasticity. Some
new and recent results on fractional Caputo and Riemann–Liouville operators and their
applications can be found in [14–19]. The reader also could refer to some recent ther-
moelasticity problems investigated by [20–22]. It is important to mention that fractional
nonlocal problems are much harder to deal with, and this is because of the nonlocal nature
of the fractional derivative and the nonlocal nature of the boundary condition (boundary
integral condition). It seems that the functional analysis method we apply in this paper is
very efficient to solve some nonlocal fractional initial boundary value problems for single
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and systems of some different classes of partial differential equations. We can find only a
few papers that use the previous method in the literature, and we can cite, for example,
[23–28].

Motivated by the above papers, in this work we deal with the existence and uniqueness
of solutions for a fractional order initial boundary value problem for a two-dimensional
coupled linear thermoelastic system of fourth order with nonlocal conditions defined by
problem (2.1)–(2.4), which models a thermoelastic fractional Kirchhoff plate. If in our
fractional thermoelasticity model (2.1) we let α to approach 1, we obtain some classes
of classical thermoelastic models which all describe vibrations of some thin thermoelastic
plate, and these vibrations are described by the Kirchhoff plate. See for example the model
studied in [29]: In the domain Q = � × (0, T), with � a bounded, open, connected set in
R

2, with boundary ∂Q = ∂�× (0, T), the authors consider the following nonhomogeneous
controlled system associated with some initial and boundary conditions:

⎧
⎨

⎩

Vtt – η�Vtt + �2V = F , in Q,

βUt – �U – C�Vt = H , in Q,
(1.1)

where η, β , and C, were positive constants. The authors considered the null controllability
problem for system (1.1), which describes thermoelastic plates. The reader could also see
[30], where the authors studied the uniform stability of an integer order thermoelastic
plate, with some prescribed initial and boundary conditions taken from [31], which reads
as follows:

⎧
⎨

⎩

Vtt – γ�Vtt + �2V + α�U = 0, in (0,∞) × �,

βUt – η�U + σU – α�Vt = 0, in (0,∞) × �,
(1.2)

where α, β , η are positive constants and γ is a nonnegative constant. For other nonfrac-
tional models, the reader could refer to [32–34] and the references therein.

This paper is structured as follows. After a short introduction in section one, in section
two, the problem to investigate is reformulated and some function spaces are introduced.
In section three, the main result of uniqueness of the solution of the posed problem is
given. In section four, we establish the proof of the main result concerning the solvability
of the posed problem.

2 Problem setting
Let � = (0, a) × (0, b) be a bounded open subset of R2 with sufficiently smooth boundary,
and let T > 0 be the terminal time. We consider on (0, T)×� the following inhomogeneous
fractional thermoelastic system with the control functions f ∈ L2(0, T ; L2(�)) (external
force), and g ∈ L2(0, T ; L2(�)) (external thermal influence), which reads as follows:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

L1(M, θ ) = ∂α+1
t M + �2M – γ ∂α+1

t (�M) + d�θ

= f (x, y, t),

L2(M, θ ) = β∂α
t θ – η�θ + δθ – d�Mt

= g(x, y, t),

(2.1)
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along with the initial conditions

⎧
⎪⎪⎨

⎪⎪⎩

�1M = M(x, y, 0) = M0(x, y),

�2M = Mt(x, y, 0) = M1(x, y),

�3θ = θ (x, y, 0) = θ0(x, y),

(2.2)

boundary Dirichlet conditions on the displacement M
{
M(0, y, t) = M(a, y, t) = 0,
M(x, 0, t) = M(x, b, t) = 0,

∣
∣
∣
∣
∣
, (2.3)

and boundary integral conditions on the displacement M and on the thermal damping θ

⎧
⎨

⎩

∫ a
0 xkMdx =

∫ b
0 ykMdy = 0,

∫ 1
0 xkθ dx =

∫ 1
0 ykθ dy = 0, k = 0, 1,

(2.4)

where �1, �2, �3 designate the trace operators and ∂α+1
t M is the time fractional Caputo

derivative of order 1 + α with α ∈ (0, 1) for the function M [14], and it is given by the
formula

∂α+1
t M(x, t) =

1
(1 – α)

∫ t

0

Mττ (x, τ )
(t – τ )α

dτ ,

and β , δ, γ , d, and η are strictly positive constants. In the elastic differential equation in
(2.1), the term ∂α+1

t (�M) accounts for rotational inertia for γ > 0, where γ is proportional
to the thickness of the plate, the constant d stands for the thermoelastic coupling parame-
ter, the parameters δ and η are thermal coefficients, and β is considered as the heat capac-
ity. The given model (2.1)–(2.4) mathematically describes a fractional Kirchhoff plate, the
displacement of which is represented by the function M subjected to a thermal damping
as quantified by θ . The boundary integral conditions may be interpreted as the average
and weighted average of the displacement and the thermal damping. We mention here
that some of the hinged conditions are replaced by nonlocal conditions (2.4), this may be
due to the fact that some of the data cannot be measured on the boundary.

For establishing the existence and uniqueness of solution of problems (2.1)–(2.4), we
reformulate them in an operator form, which allows us to obtain some energy estimates
needed for our proofs. The solution of problems (2.1)–(2.4) can be regarded as the solution
of the operator equation

AU = W =
({f , u0, u1}, {g, θ0}

)
, (2.5)

whereA : E −→F is an unbounded operator with domainD(A) consisting of all functions
(M, θ ) belonging to L2(QT )×L2(QT ) for which Mxxxx, Myyyy, ∂α

t Mt , Mxxtt , Myytt , Mxxt ,
Myyt , Mt , θxx, θyy, ∂α

t θ are in L2(QT ), and satisfying conditions (2.3)–(2.4). Let E be a
Banach space of functions U = (M, θ ) ∈ (L2(QT ))2 endowed with the finite norm

‖U‖2
E =

∥
∥Mx(·, ·, τ )

∥
∥2

C(0,T ;B1,y
2 (�)) +

∥
∥My(·, ·, τ )

∥
∥2

C(0,T ;B1,x
2 (�))

+
∥
∥M(·, ·, τ )

∥
∥2

C(0,T ;L2(�)), (2.6)
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and let F be a Hilbert space constituting of the elements W = ({f ,M0,M1}, {g, θ0})
equipped with the norm

‖AU‖2
F = ‖W‖2

F

= ‖M0‖2
H1

0 (�) + ‖M1‖2
L2(�) + ‖θ0‖2

L2(�) + ‖f ‖2
L2(QT ) + ‖g‖2

L2(QT ). (2.7)

We introduce here the following function spaces: Let H1(�) be the usual Sobolev space
with the inner product

(Z, Y )H1(�) = (Z, Y )L2(�) + (Zx, Yx)L2(�),

where L2(�) is the space of square integrable functions. And let C(0, T ; BN
2 (�)), C(0, T ;

B1,x
2 (�)), C(0, T ; B1,y

2 (�)), C(0, T ; B1,x,y
2 (�)) be the set of continuous mappings from the in-

terval [0, T] into the Hilbert spaces BN
2 (�)), B1,x

2 (�), B1,y
2 (�), B1,x,y

2 (�), respectively, having
the inner products

(Z, Y )BN
2 (�) =

∫

�

�N
x Z.�N

x Y dx dy, (Z, Y )B1,x
2 (�) =

∫

�

�xZ.�xY dx dy,

(Z, Y )B1,y
2 (�) =

∫

�

�yZ.�yY dx dy, (Z, Y )B1,x,y
2 (�) =

∫

�

�xyZ.�xyY dx dy,

with BN
2 (�)) (see [35]) being the set of function Z such that �N

θ Z = 1
(N–1)!

∫ θ

0 (θ – ν)N–1 ×
Z(ν, t) dν ∈ L2(�) for N ∈ N

∗ and Z ∈ L2(�) for N = 0.
The following crucial lemmas are needed to be used in different proofs of our results.

Lemma 2.1 ([23]) For any absolutely continuous function L(t) on the interval [0, T], the
following inequality holds:

L(t) C∂
β
t L(t) ≥ 1

2
C∂

β
t L2(t), 0 < β < 1. (2.8)

Lemma 2.2 ([36]) Let N (s) be nonnegative and absolutely continuous on [0, T] and for
almost all s ∈ [0, T] satisfy the inequality

dN
ds

≤ A1(s)N (t) + B1(s), (2.9)

where the functions A1(s) and B1(s) are summable and nonnegative on [0, T]. Then

N (s) ≤ exp

(∫ s

0
A1(t) dt

)(

N (0) +
∫ s

0
B1(t) dt

)

. (2.10)

Lemma 2.3 ([23]) Let a nonnegative absolutely continuous function Q(t) satisfy the in-
equality

C∂
β
t Q(t) ≤ b1Q(t) + b2(t), 0 < β < 1, (2.11)
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for almost all t ∈ [0, T], where b1 is a positive constant and b2(t) is an integrable nonnega-
tive function on [0, T]. Then

Q(t) ≤ Q(0)Eβ

(
b1tβ

)
+ (β)Eβ ,β

(
b1tβ

)
D–β

t b2(t), (2.12)

where

Eβ (x) =
∞∑

n=0

xn

(βn + 1)
and Eβ ,μ(x) =

∞∑

n=0

xn

(βn + μ)
,

are the Mittag-Leffler functions and

D–α
t h(x, t) =

1
(α)

∫ t

0

h(x, τ )
(t – τ )1–α

dτ

is the Riemann–Liouville integral of order 0 < α < 1 of the function h [37].

3 The energy inequality (uniqueness of solution)
Theorem 3.1 For any function U = (M, θ ) belonging to D(A), there exists a positive con-
stant D∗, independent of M and θ , such that the following a priori estimate holds:

∥
∥Mx(·, ·, τ )

∥
∥2

C(0,T ;B1,y
2 (�)) +

∥
∥My(·, ·, τ )

∥
∥2

C(0,T ;B1,x
2 (�))

+
∥
∥M(·, ·, τ )

∥
∥2

C(0,T ;L2(�))

≤D∗(‖M0‖2
H1

0 (�) + ‖M1‖2
L2(�) + ‖θ0‖2

L2(�)

+ ‖f ‖2
L2(QT ) + ‖g‖2

L2(QT )

)
, (3.1)

where

D∗ = max

{

2H,
HωTα

(α + 1)
+ 1

}

with

H = max

{

1, C∗,
T1–αab

2(1 – α)(1 – α)
+

a
2

+
b
2

}

,

ω =
(
(α).Eα,α

(
H.Tα

))
Hmax

(

1,
Tα+1

(α + 1)(α + 1)

)

,

and

C∗ =
max{1, ab

4δ
, ab

8 }
min{1, 2,β ,γ , 2η, δ} .

Proof Taking the scalar product in L2(�) of partial differential (2.1) equations and the
operators M1(M) = �2

xyMt and M2(θ ) = �2
xyθ , respectively, where

�2
xyv(x, y, t) =

∫ x

0

∫ ξ1

0

∫ y

0

∫ η1

0
v(γ ,ρ, t) dρ dη1 dγ dξ1,
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then we have

(
∂α

t Mt ,�2
x�2

yMt
)

L2(�) +
(
Mxxxx,�2

x�2
yMt

)

L2(�)

+
(
Myyyy,�2

x�2
yMt

)

L2(�) + 2
(
Mxxyy,�2

x�2
yMt

)

L2(�)

– γ
(
∂α+1

t Mxx,�2
x�2

yMt
)

L2(�) – γ
(
∂α+1

t Myy,�2
x�2

yMt
)

L2(�)

+ d
(
θxx,�2

x�2
yMt

)

L2(�) + d
(
θyy,�2

x�2
yMt

)

L2(�)

+ β
(
∂α

t θ ,�2
x�2

yθ
)

L2(�) – η
(
θxx,�2

x�2
yθ

)

L2(�)

– η
(
θyy,�2

x�2
yθ

)

L2(�) + δ
(
θ ,�2

x�2
yθ

)

L2(�)

– d
(
Mxxt ,�2

x�2
yθ

)

L2(�) – d
(
Myyt ,�2

x�2
yθ

)

L2(�)

=
(
f (x, y, t),�2

x�2
yMt

)

L2(�) +
(
g(x, y, t),�2

x�2
yθ

)

L2(�). (3.2)

We separately consider the inner products in (3.2). Integrating by parts and taking into
account boundary and initial conditions (2.2)–(2.4), we obtain

(
∂α

t Mt ,�xxyyMt
)

L2(�) =
(
∂α

t (�xyMt),�xyMt
)

L2(�), (3.3)

(Mxxxx,�xxyyMt)L2(�) =
1
2

∂

∂t
‖�yMx‖2

L2(�), (3.4)

(Myyyy,�xxyyMt)L2(�) =
1
2

∂

∂t
‖�xMy‖2

L2(�), (3.5)

2(Mxxyy,�xxyyMt)L2(�) =
∂

∂t
‖M‖2

L2(�), (3.6)

–γ
(
∂α+1

t Mxx,�xxyyMt
)

L2(�) = γ
(
∂α

t �yMt ,�yMt
)

L2(�), (3.7)

–γ
(
∂α+1

t Myy,�xxyyMt
)

L2(�) = γ
(
∂α

t �xMt ,�xMt
)

L2(�), (3.8)

d(θxx,�xxyyMt)L2(�) = –d(�yθ ,�yMt)L2(�), (3.9)

d(θyy,�xxyyMt)L2(�) = –d(�xθ ,�xMt)L2(�), (3.10)

β
(
∂α

t θ ,�xxyyθ
)

L2(�) = β
(
∂α

t (�xyθ ),�xyθ
)

L2(�), (3.11)

–η(θxx,�xxyyθ )L2(�) = η‖�yθ‖2
L2(�), (3.12)

–η(θyy,�xxyyθ )L2(�) = η‖�xθ‖2
L2(�), (3.13)

δ(θ ,�xxyyθ )L2(0,1) = δ‖�xyθ‖2
L2(�), (3.14)

–d(Mxxt ,�xxyyθ )L2(�) = d(�yθ ,�yMt)L2(�), (3.15)

–d(Myyt ,�xxyyθ )L2(�) = d(�xθ ,�xMt)L2(�). (3.16)

Substitution of equations (3.3)–(3.16) into (3.2) yields

(
∂α

t (�xyMt),�xyMt
)

L2(�) +
1
2

∂

∂t
‖�yMx‖2

L2(�)

+
1
2

∂

∂t
‖�xMy‖2

L2(�) +
∂

∂t
‖M‖2

L2(�)
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+ γ
(
∂α

t �yMt ,�yMt
)

L2(�) + γ
(

∂α
t �xMt ,�xMt

)

L2(�)

+ β
(
∂α

t (�xyθ ),�xyθ
)

L2(�) + η‖�yθ‖2
L2(�)

+ η‖�xθ‖2
L2(�) + δ‖�xyθ‖2

L2(�)

=
(
f (x, y, t),�xxyyMt

)

L2(�) +
(
g(x, y, t),�xxyyθ

)

L2(�). (3.17)

By using Lemma 2.1, Cauchy ε inequality αβ ≤ ε
2α2 + 1

2ε
β2, and a Poincare type inequality

[38], we obtain

1
2
∂α

t ‖�xyMt‖2
L2(�) +

β

2
∂α

t ‖�xyθ‖2
L2(�)

+
1
2

∂

∂t
‖�yMx‖2

L2(�) +
1
2

∂

∂t
‖�xMy‖2

L2(�)

+
∂

∂t
‖M‖2

L2(�) +
γ

2
∂α

t ‖�yMt‖2
L2(�)

+
γ

2
∂α

t ‖�xMt‖2
L2(�) + η‖�yθ‖2

L2(�)

+ η‖�xθ‖2
L2(�) + δ‖�xyθ‖2

L2(�)

≤ ε1

2
‖f ‖2

L2(�) +
ab
8ε1

‖�xyMt‖2
L2(�)

+
ε2

2
‖g‖2

L2(�) +
ab
8ε2

‖�xyθ‖2
L2(�). (3.18)

If in (3.18) we let ε1 = 1, ε2 = ab
4δ

, it follows that

∂α
t ‖�xyMt‖2

L2(�) + β∂α
t ‖�xyθ‖2

L2(�) +
∂

∂t
‖�yMx‖2

L2(�)

+
∂

∂t
‖�xMy‖2

L2(�) + 2
∂

∂t
‖M‖2

L2(�) + γ ∂α
t ‖�yMt‖2

L2(�)

+ γ ∂α
t ‖�xMt‖2

L2(�) + 2η‖�yθ‖2
L2(�) + 2η‖�xθ‖2

L2(�) + δ‖�xyθ‖2
L2(�)

≤ ‖f ‖2
L2(�) +

ab
8

‖�xyMt‖2
L2(�) +

ab
4δ

‖g‖2
L2(�). (3.19)

We now discard the last three terms of the left-hand side (3.19) and get the inequality

∂α
t ‖�xyMt‖2

L2(�) + ∂α
t ‖�xyθ‖2

L2(�)

+
∂

∂t
‖�yMx‖2

L2(�) +
∂

∂t
‖�xMy‖2

L2(�)

+
∂

∂t
‖M‖2

L2(�) + ∂α
t ‖�yMt‖2

L2(�) + ∂α
t ‖�xMt‖2

L2(�)

≤ C
(‖f ‖2

L2(�) + ‖�xyMt‖2
L2(�) + ‖g‖2

L2(�)
)
, (3.20)

where

C∗ =
max{1, ab

4δ
, ab

8 }
min{1, 2,β ,γ , 2η, δ} . (3.21)
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Now replacing t by τ and integrating with respect to τ from zero to t, we obtain

Dα–1
t ‖�xyMt‖2

L2(�) + Dα–1
t ‖�xyθ‖2

L2(�) + ‖�yMx‖2
L2(�)

+ ‖�xMy‖2
L2(�) + ‖M‖2

L2(�) + Dα–1
t ‖�yMt‖2

L2(�) + Dα–1
t ‖�xMt‖2

L2(�)

≤H
(∫ t

0
‖f ‖2

L2(�) dτ +
∫ t

0
‖g‖2

L2(�) dτ +
∫ t

0
‖�xyMτ‖2

L2(�) dτ

+ ‖M1‖2
L2(�) + ‖θ0‖2

L2(�) + ‖M0‖2
H1

0 (�)

)

, (3.22)

where

H = max

{

1, C∗,
T1–αab

2(1 – α)(1 – α)
+

a
2

+
b
2

}

. (3.23)

Now, by dropping the last six terms from the left-hand side of (3.22) and applying
Lemma 2.3 with

Q(t) =
∫ t

0
‖�xyMτ‖2

L2(�) dτ , Q(0) = 0,

∂α
t Q(t) = Dα–1

t ‖�xyMt‖2
L2(�),

(3.24)

we have

∫ t

0
‖�xyMτ‖2

L2(�) dτ ≤ ω
(
D–α–1

t ‖f ‖2
L2(�) + D–α–1

t ‖g‖2
L2(�)

+ ‖M1‖2
L2(�) + ‖θ0‖2

L2(�) + ‖M0‖2
H1

0 (�)

)
, (3.25)

where

ω =
(
(α).Eα,α

(
H.Tα

))
Hmax

(

1,
Tα+1

(α + 1)(α + 1)

)

. (3.26)

By virtue of the inequality

D–α–1
t ‖f ‖2

L2(�) + D–α–1
t ‖g‖2

L2(�)

≤ tα

(α + 1)

(∫ t

0
‖f ‖2

L2(�) dτ +
∫ t

0
‖g‖2

L2(�) dτ

)

, (3.27)

it follows from inequalities (3.22), (3.25), and (3.27) that

Dα–1
t ‖Mt‖2

B1,x,y
2 (�)

+ Dα–1
t ‖θ‖2

B1,x,y
2 (�)

+ Dα–1
t ‖Mt‖2

B1,x
2 (�)

+ Dα–1
t ‖Mt‖2

B1,y
2 (�)

+ ‖My‖2
B1,x

2 (�)
+ ‖M‖2

L2(�) + ‖Mx‖2
B1,y

2 (�)

≤D∗(‖M0‖2
H1

0 (�) + ‖M1‖2
L2(�) + ‖θ0‖2

L2(�)

+ ‖f ‖2
L2(QT ) + ‖g‖2

L2(QT )

)
, (3.28)
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where

D∗ = max

{

2H,
HωTα

(α + 1)
+ 1

}

. (3.29)

If we discard the first four terms on the left-hand side of (3.28) and then pass to the supre-
mum with respect to t from 0 to T , the a priori bound (3.1) follows. �

4 Solvability of the posed problem
As we only know that the range of the operator A : E → F , R(A) is a subset of F , we
extend A in such a way that ‖U‖E ≤ C‖A U‖F for all U ∈ D(A ) and R(A) = F . For this
purpose, we prove the following.

Theorem 4.1 The unbounded operator A : E →F admits a closure A with the domain of
definition D(A).

Proof The proof is analogous to [39]. �

Theorem 4.2 For any (f , g) ∈ (L2(QT ))2 and any (M0,M1, θ0) ∈ H1
0 (�) × (L2(QT ))2, there

exists a unique strong solution U = (M, θ ) = (A)–1(W ) = (A–1)(W ) of problem (2.1)–(2.4).

Proof To prove that problem (2.1)–(2.4) has a unique strong solution for all W =
({f ,M0,M1}, {g, θ0}) ∈ F , it suffices to prove that the range of the operator A is dense in
F . We first prove it in the case when D(A) = D0(A) = {U ∈D(A) : �1M = �2M = �3θ = 0}.
For this purpose we need to prove the following result. �

Theorem 4.3 If for some function G = (G1, G2) belongs to (L2(�))2 and for any U =
(M, θ ) ∈D0(A) we have

(
L1(M, θ ), G1

)

L2(QT ) +
(
L2(M, θ ), G2

)

L2(QT ) = 0, (4.1)

then G = (G1, G2) = (0, 0) almost everywhere in QT .

Assume that the proof of Theorem 4.3 is achieved. We suppose that, for some element
G = (G1, G2) = ({f ,σ1,σ2}, {g,σ3}) ∈ R(A)⊥ and for all U ∈D(A),

(AU ,χ )F =
({{

L1(M, θ ),�1M,�2M
}

,
{
L2(M, θ ), l3θ

}}
,
{{f ,σ1,σ2}, {g,σ3}

})

E

=
(
L1(M, θ ), f

)

L2(QT ) + (�1M,σ1)H1
0 (�)

+ (�2M,σ2)L2(�) +
(
L2(M, θ ), g

)

L2(QT ) + (�3θ ,σ3)L2(�)

= 0, (4.2)

we must prove that G = 0. Taking U ∈D0(A) in (4.2), we get

(
L1(M, θ ), f

)

L2(QT ) +
(
L2(M, θ ), g

)

L2(QT ) = 0. (4.3)
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Hence, by virtue of Theorem 4.3, it follows from (4.3) that f = g = 0. Thus (4.2) takes the
form

(�1M,σ1)H1
0 (�) + (�2M,σ2)L2(�) + (�3θ ,σ3)L2(�) = 0. (4.4)

By the fact that the ranges of the trace operators �1, �2, and �3 are, respectively, dense in the
spaces H1

0 (�), L2(�), L2(�), we conclude from (4.4) that σ1 = σ2 = σ3 = 0. Consequently,
G = (G1, G2) = (0, 0), that is, R(A)⊥ = {0}, thus R(A) = F .

To complete the proof of Theorem 4.2, we prove Theorem 4.3.

Proof of Theorem 4.3 Equation (4.1) implies

(
∂α+1

t M + Mxxxx + Myyyy + 2Mxxyy

– γ ∂α+1
t Mxx – γ ∂α+1

t Myy + dθxx + dθyy, G1
)

L2(QT )

+
(
β∂α

t θ – ηθxx – ηθyy + δθ

– dMxxt – dMyyt , G2
)

L2(QT ) = 0. (4.5)

Let Z(x, t) be a function satisfying the initial, boundary, and integral conditions such that
Z , Zx, Zy, �tZ , �tZx, �tZy, ∂α+1

t Z ∈ L2(QT ). We set M = �2
x�2

y�2
t Z , θ = �4

x�4
y�2

t Z , and
define G1 = �tZ , G2 = �2

t Z . Clearly, G1 and G2 belong to L2(QT ). Relations (4.1) and (4.2)
imply that

(
(
∂α+1

t
(�2

x�2
y�2

t Z
)
,�tZ

)

L2(QT ) +
((�2

x�2
y�2

t Z
)

xxxx,�tZ
)

L2(QT )

+
((�2

x�2
y�2

t Z
)

yyyy,�tZ
)

L2(QT ) + 2
((�2

x�2
y�2

t Z
)

xxyy,�tZ
)

L2(QT )

– γ
(
∂α+1

t
(�2

x�2
y�2

t Z
)

xx,�tZ
)

L2(QT ) – γ
(
∂α+1

t
(�2

x�2
y�2

t Z
)

yy,�tZ
)

L2(QT )

+ d
((�4

x�4
y�2

t Z
)

xx,�tZ
)

L2(QT ) + d
((�4

x�4
y�2

t Z
)

yy,�tZ
)

L2(QT )

+ β
(
∂α

t
(�4

x�4
y�2

t Z
)
,�2

t Z
)

L2(QT ) – η
((�4

x�4
y�2

t Z
)

xx,�2
t Z

)

L2(QT )

– η
((�4

x�4
y�2

t Z
)

yy,�2
t Z

)

L2(QT ) + δ
(�4

x�4
y�2

t Z ,�2
t Z

)

L2(QT )

– d
((�2

x�2
y�2

t Z
)

xxt ,�2
t Z

)

L2(QT ) – d
((�2

x�2
y�2

t Z
)

yyt ,�2
t Z

)

L2(QT )

= 0. (4.6)

We separately consider the terms in (4.6). Integrating by parts and taking into account that
Z satisfies boundary and initial conditions (2.2)–(2.4), we obtain

(
(
∂α+1

t
(�2

x�2
y�2

t Z
)
,�tZ

)

L2(�) = (
(
∂α

t
(�2

x�2
y�tZ

)
,�tZ

)

L2(�)

= (
(
∂α

t (�x�y�tZ),�x�y�tZ
)

L2(�), (4.7)
((�2

x�2
y�2

t Z
)

xxxx,�tZ
)

L2(�) =
((�2

y�2
t Z

)

xx,�tZ
)

L2(�)

=
1
2

∂

∂t
∥
∥�y�2

t Zx
∥
∥2

L2(�), (4.8)
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((�2
x�2

y�2
t Z

)

yyyy,�tZ
)

L2(�) =
((�2

x�2
t Z

)

yy,�tZ
)

L2(�)

=
1
2

∂

∂t
∥
∥�x�2

t Zy
∥
∥2

L2(�), (4.9)

2
((�2

x�2
y�2

t Z
)

xxyy,�tZ
)

L2(�) = 2
(�2

t Z ,�tZ
)

L2(�)

=
∂

∂t
∥
∥�2

t Z
∥
∥2

L2(�), (4.10)

–γ
(
∂α+1

t
(�2

x�2
y�2

t Z
)

xx,�tZ
)

L2(�) = γ
(
∂α

t (�y�tZ), (�y�tZ)
)

L2(�), (4.11)

–γ
((�2

x�2
y�2

t Z
)

yy,�tZ
)

L2(�) = γ
(
∂α

t (�x�tZ), (�x�tZ)
)

L2(�), (4.12)

d
((�4

x�4
y�2

t Z
)

xx,�tZ
)

L2(�) = d
(�2

x�4
y�2

t Z ,�tZ
)

L2(�)

= d
(�2

x�2
y�2

t Z ,�2
y�tZ

)

L2(�), (4.13)

d
((�4

x�4
y�2

t Z
)

yy,�tZ
)

L2(�)

= d
(�4

x�2
y�2

t Z ,�tZ
)

L2(�) = d
(�2

x�2
y�2

t Z ,�2
x�tZ

)

L2(�), (4.14)

β
(
∂α

t
(�4

x�4
y�2

t Z
)
,�2

t Z
)

L2(�) = β
(
∂α

t
(�2

x�2
y�2

t Z
)
,�2

x�2
y�2

t Z
)

L2(�), (4.15)

–η
((�4

x�4
y�2

t Z
)

xx,�2
t Z

)

L2(�) = –η
(�2

x�4
y�2

t Z ,�2
t Z

)

L2(�)

= η
∥
∥�x�2

y�2
t Z

∥
∥2

L2(�), (4.16)

–η
((�4

x�4
y�2

t Z
)

yy,�2
t Z

)

L2(�) = –η
(�4

x�2
y�2

t Z ,�2
t Z

)

L2(�)

= η
∥
∥�y�2

x�2
t Z

∥
∥2

L2(�), (4.17)

δ
(�4

x�4
y�2

t Z ,�2
t Z

)

L2(�) = δ
∥
∥�2

x�2
y�2

t Z
∥
∥2

L2(�), (4.18)

–d
((�2

x�2
y�2

t Z
)

xxt ,�2
t Z

)

L2(�) = –d
(�2

y�tZ ,�2
t Z

)

L2(�)

= d
(�y�tZ ,�y�2

t Z
)

L2(�), (4.19)

–d
((�2

x�2
y�2

t Z
)

yyt ,�2
t Z

)

L2(�) = d
(�x�tZ ,�x�2

t Z
)

L2(�). (4.20)

Substitution of equations (4.7)–(4.20) into (4.6) yields

2(
(
∂α

t (�x�y�tZ),�x�y�tZ
)

L2(�) + 2β
(
∂α

t
(�2

x�2
y�2

t Z
)
,�2

x�2
y�2

t Z
)

L2(�)

+
∂

∂t
∥
∥�x�2

t Zy
∥
∥2

L2(�) +
∂

∂t
∥
∥�2

t Z
∥
∥2

L2(�)

+ γ
(
∂α

t (�y�tZ), (�y�tZ)
)

L2(�) + γ
(
∂α

t (�x�tZ), (�x�tZ)
)

L2(�)

+
∂

∂t
∥
∥�y�2

t Zx
∥
∥2

L2(�) + 2η
∥
∥�x�2

y�2
t Z

∥
∥2

L2(�)

+ 2η
∥
∥�y�2

x�2
t Z

∥
∥2

L2(�) + 2δ
∥
∥�2

x�2
y�2

t Z
∥
∥2

L2(�)

× 2d
(�2

x�2
y�2

t Z ,�2
y�tZ

)

L2(�) + 2d
(�2

x�2
y�2

t Z ,�2
x�tZ

)

L2(�)

+ 2d
(�y�tZ ,�y�2

t Z
)

L2(�) + 2d
(�x�tZ ,�x�2

t Z
)

L2(�)

= 0. (4.21)
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By using Lemma 2.1, Cauchy ε inequality, and Poincare type inequality, we obtain

∂α
t ‖�x�y�tZ‖2

L2(�) + β∂α
t
∥
∥�2

x�2
y�2

t Z
∥
∥2

L2(�) + γ ∂α
t ‖�y�tZ‖2

L2(�) + γ ∂α
t ‖�x�tZ‖2

L2(�)

+
∂

∂t
∥
∥�2

t Z
∥
∥2

L2(�) +
∂

∂t
∥
∥�y�2

t Zx
∥
∥2

L2(�) + 2η
∥
∥�x�2

y�2
t Z

∥
∥2

L2(�)

+ 2η
∥
∥�y�2

x�2
t Z

∥
∥2

L2(�) + 2δ
∥
∥�2

x�2
y�2

t Z
∥
∥2

L2(�) +
∂

∂t
∥
∥�x�2

t Zy
∥
∥2

L2(�)

≤ ε2da2b2T2

8
‖�x�y�tZ‖2

L2(�) + ε1d
∥
∥�2

x�2
y�2

t Z
∥
∥2

L2(�)

+
(

db2

2ε1
+ ε3d

)

‖�y�tZ‖2
L2(�) +

(

ε4d +
da2

2ε2

)

‖�x�tZ‖2
L2(�)

+
(

db2

2ε3
+

da2

2ε4

)
∥
∥�2

t Z
∥
∥2

L2(�). (4.22)

We now take ε1 = ε2 = ε3 = ε4 = 1, drop the last five terms of the left-hand side of (4.22),
replace t by τ , and integrate both sides with respect to τ from 0 to t, then we get

Dα–1
t ‖�x�y�tZ‖2

L2(�) + Dα–1
t

∥
∥�2

x�2
y�2

t Z
∥
∥2

L2(�)

+ Dα–1
t ‖�y�tZ‖2

L2(�) + Dα–1
t ‖�x�tZ‖2

L2(�) +
∥
∥�2

t Z
∥
∥2

L2(�)

≤ �∗
(∫ t

0
‖�x�y�tZ‖2

L2(�) dτ +
∫ t

0

∥
∥�2

x�2
y�2

t Z
∥
∥2

L2(�) dτ

+
∫ t

0
‖�y�tZ‖2

L2(�) dτ +
∫ t

0
‖�x�tZ‖2

L2(�) dτ +
∫ t

0

∥
∥�2

t Z
∥
∥2

L2(�) dτ

)

, (4.23)

where

�∗ =
max{ da2b2T2

8 , db2

2ε1
+ d, d + da2

2 , db2

2 + da2

2 }
min{1,β ,γ , 2η} . (4.24)

Since (see (4.23))

∥
∥�2

t Z
∥
∥2

L2(�) ≤ �∗
(∫ t

0

∥
∥�2

t Z
∥
∥2

L2(�) dτ

)

+ �∗
(∫ t

0
‖�y�tZ‖2

L2(�) dτ +
∫ t

0
‖�x�tZ‖2

L2(�) dτ

+
∫ t

0
‖�x�y�tZ‖2

L2(�) dτ +
∫ t

0

∥
∥�2

x�2
y�2

t Z
∥
∥2

L2(�) dτ

)

, (4.25)

then if we set

N (t) =
∫ t

0

∥
∥�2

t Z
∥
∥2

L2(�) dτ ,

dN (t)
dt

=
∥
∥�2

t Z
∥
∥2

L2(�), (4.26)

N (0) = 0,
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then, according to Lemma 2.2 (Gronwall–Bellman), we obtain

N (t) ≤ �∗e�∗T
(∫ t

0
‖�x�y�tZ‖2

L2(�) dτ +
∫ t

0

∥
∥�2

x�2
y�2

t Z
∥
∥2

L2(�)dτ

+
∫ t

0
‖�y�tZ‖2

L2(�) dτ +
∫ t

0
‖�x�tZ‖2

L2(�) dτ

)

. (4.27)

Now, by omitting the last term on the left-hand side of (4.23) and by using inequality (4.27),
we obtain

Dα–1
t ‖�x�y�tZ‖2

L2(�) + Dα–1
t

∥
∥�2

x�2
y�2

t Z
∥
∥2

L2(�)

+ Dα–1
t ‖�y�tZ‖2

L2(�) + Dα–1
t ‖�x�tZ‖2

L2(�)

≤ (
�∗)2(1 + e�∗T)

(∫ t

0
‖�x�y�tZ‖2

L2(�) dτ

+
∫ t

0

∥
∥�2

x�2
y�2

t Z
∥
∥2

L2(�) dτ +
∫ t

0
‖�y�tZ‖2

L2(�) dτ

+
∫ t

0
‖�x�tZ‖2

L2(�) dτ

)

. (4.28)

Lemma 2.3 can be applied by taking

Q(t) =
∫ t

0
‖�x�y�tZ‖2

L2(�) dτ +
∫ t

0

∥
∥�2

x�2
y�2

t Z
∥
∥2

L2(�) dτ

+
∫ t

0
‖�y�tZ‖2

L2(�) dτ +
∫ t

0
‖�x�tZ‖2

L2(�) dτ

∂α
t Q(t) = Dα–1

t ‖�x�y�tZ‖2
L2(�) + Dα–1

t
∥
∥�2

x�2
y�2

t Z
∥
∥2

L2(�)

+ Dα–1
t ‖�y�tZ‖2

L2(�) + Dα–1
t ‖�x�tZ‖2

L2(�)

Q(0) = 0.

(4.29)

It follows from (4.29) that

Q(t) ≤ V .0 = 0, (4.30)

where

V = (α)Eα,α
(
W ∗Tα

)
max

(

1,
Tα+1

(α + 1)(α + 1)

)

and

W ∗ =
(
�∗)2(1 + e�∗T)

.

It follows from (4.30) that G1 = �tZ = 0, G2 = �2
t Z = 0 a.e. in QT . This achieves the proof

of Theorem 4.2. �
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5 Conclusion
The existence and uniqueness of solutions for a fractional order initial boundary value
problem for a two-dimensional coupled linear thermoelastic system of fourth order with
nonlocal conditions which models a thermoelastic fractional Kirchhoff plate are estab-
lished. The method of energy inequalities is successfully applied for obtaining a priori
estimates for the solution from which the uniqueness of the solution follows. Then, from
Hilbert space theory, a density argument is employed to establish the solvability of the
given problem. It is found that the application of the functional analysis method to systems
of fractional order is very efficient in spite of the difficulties of choosing the appropriate
multipliers and functions space solutions as well as the different hard computations.
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