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Abstract
For the high-dimensional Frenkel–Kontorova model on lattices, we have concluded
that there are heteroclinic connections between neighboring Birkhoff minimizers
which are more periodic. This conclusion is based on the existence of neighboring
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1 Introduction
The Aubry–Mather theory for the classical Frenkel–Kontorova (FK) model [1] or for
monotone twist maps [14] has been extended to high-dimensional lattice systems [7, 8,
10, 12, 15, 17, 19] and to PDEs [2, 5, 6, 9, 16]. In this paper, we study the high-dimensional
FK model on lattices. Let B ⊂ Z

d be a finite set containing the origin, which is called the
basic neighborhood of interactions, h: RB → R be a C2-smooth function satisfying some
hypotheses specified in Sect. 2. Let τk,l (k ∈ Z

d , l ∈ Z) denote the Z
d+1 translate on the

configuration space RZ
d : (τk,lx)j = xj–k + l for all j ∈ Z

d , in which x = (xj) ∈R
Z

d . We denote
hj(x) = h(τ–j,0x|B) and by W (x) =

∑
j∈Zd hj(x) the formal Lagrangian.

Like the classical FK model, we study minimizers for the local potential h. A configura-
tion x is said to be a minimizer of W if W (x + v) – W (x) ≥ 0 for every compactly supported
configuration v ∈R

Z
d . Unlike the classical FK model, for which all minimizers are Birkhoff

[1, 4], minimizers for the high-dimensional FK model or even monotone recurrence rela-
tions may not be Birkhoff, see [18] for an example. A configuration x is said to be Birkhoff
if the translation {τk,lx|k ∈ Z

d, l ∈ Z} of x is totally ordered (see Sect. 2 for the definition).
Each Birkhoff configuration on Z

d has a rotation vector which turns out to be the rotation
number for d = 1.

Let M denote the set of all Birkhoff minimizers and Mω denote the set of all Birkhoff
minimizers with rotation vector ω ∈ R

d . Then the Aubry–Mather theory for the high-
dimensional FK model tells us that Mω �= ∅ (see, for example, [7, 8, 17]) if the local potential
h satisfies hypotheses (H1)–(H3) specified in Sect. 2.
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According to Moser [16], Mω is called a minimal foliation if p0(Mω) = R (see Sect. 3
for the definition), where p0 is the projection on 0—site, i.e., p0(x) = x0. Otherwise it is
called a minimal lamination. For the classical FK model or monotone twist maps, minimal
foliations correspond to invariant circles which play an important role in the discussion
of monotone twist maps.

For the high-dimensional FK model, the rotation vector is not enough to distinguish
different minimizers. Therefore we introduce secondary invariants of Birkhoff minimizers
with the same rotation vector [15] as Bangert did in [5].

Assume that x ∈R
Z

d is a Birkhoff configuration with rotation vector ω. If (k, l) · (–ω, 1) =
0, we do not know whether τk,lx � x or τk,lx = x or τk,lx 	 x. But we do know that the set
�̄ = {(k, l) ∈ Z

d × Z|(k, l) · (–ω, 1) = 0} is a subgroup of Zd+1 and the orbit of �̄-action
{τk,lx|(k, l) ∈ �̄} is totally ordered since x is Birkhoff. Then there exists an integer t with
1 ≤ t ≤ d + 1 and unit vectors ā1, . . . , āt with ās ∈ span(Zd+1 ∩ 〈ā1, . . . , ās–1〉⊥) (1 < s ≤ t)
such that (k, l) ∈ Z

d+1 ∩ 〈ā1, . . . , ās–1〉⊥ and (k, l) · ās > 0 imply τk,lx � x, and τk,lx = x if
(k, l) ∈ Z

d+1 ∩ 〈ā1, . . . , āt〉⊥, see [15] for details. Here, we just introduce the concepts we
need in [15].

Definition 1.1 The integer t = t(x) and the unit vectors ā1(x), . . . , āt(x) are said to be the
secondary invariants of a Birkhoff configuration x.

We remark that the integer t and the unit vectors ā1, . . . , āt depend upon x. For notational
convenience, we set �̄1 = Z

d+1 and

�̄s = �̄s(x) = Z
d+1 ∩ 〈

ā1(x), . . . , ās–1(x)
〉⊥, (2 ≤ s ≤ t + 1). (1.1)

Then

ās(x) ∈ span
(
�̄s(x)

)
(2 ≤ s ≤ t). (1.2)

Definition 1.2 A system (ā1, . . . , āt) of unit vectors in R
d+1 is said to be admissible if ā1 ·

ēd+1 > 0 and if, for 2 ≤ s ≤ t,

ās ∈ span(�̄s), where �̄s = �̄s(ā1, . . . , āt) = Z
d+1 ∩ 〈ā1, . . . , ās–1〉⊥.

Here, ēd+1 = (0, . . . , 0, 1) ∈ R
d+1.

Definition 1.3 Assume that (ā1, . . . , āt) is admissible. Define

M (ā1, . . . , āt) =
{

x ∈ M |t(x) = t and ās(x) = ās for 1 ≤ s ≤ t
}

.

We remark that if (ā1, . . . , āt) is admissible, then (ā1, . . . , ās) is admissible for 1 ≤ s < t.
In [15], we have got an important conclusion: If x1 	 x2 are neighboring elements in

M (ā1, . . . , āt–1), then there exists x ∈ M (ā1, . . . , āt) such that x1 	 x 	 x2 and x is a
heteroclinic orbit connecting the neighboring elements in M (ā1, . . . , āt–1) (This is The-
orem 10.1 in [15]). For the discussion of heteroclinic orbits, we can also refer to reference
[13]. [13] gives a pure variational viewpoint of the heteroclinic orbits that is different from
reference [15], but the conclusions of the two references are similar.
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Let u, v ∈ M (ā1, . . . , āt) and u 	 v. If there is no x ∈ M (ā1, . . . , āt) such that u 	 x 	 v,
then u and v are neighboring elements in M (ā1, . . . , āt). If there is a pair of neighboring
elements in M (ā1, . . . , āt), then M (ā1, . . . , āt) is said to have a gap.

But in [15] we did not answer the question: how to ensure the existence of neighboring
elements i.e., the existence of gaps in M (ā1, . . . , āt–1)? In this paper, by the anti-integrable
limit method, we construct an example for which there exist gaps in M (ā1, . . . , āt–1), see
[3] for a similar conclusion for elliptic PDEs. By adding a large enough oscillation to the
local potential, one can prove by the implicit function theorem that all minimal foliations
can be destroyed into minimal laminations (like Theorem 3.3 together with Theorem 5.4
in [11]) and hence there always exist gaps in M (ā1, . . . , āt–1).

For this purpose, we consider that the formal Lagrangian W ε : RZ
d →R is defined by

W ε(x) =
∑

j∈Zd

hε
j (x), with hε

j (x) = V (xj) + εhj(x).

Then we are interested in variational monotone lattice recurrence relations of the form

V ′(xi) + ε
∑

j∈Zd

∂ihj(x) = 0, i ∈ Z
d and x = (xi)i∈Zd ∈R

Z
d
. (1.3)

Equation (1.3) describes a lattice of particles in periodic background that experience
ferromagnetic attraction. The background potential V : R → R is a twice continuously
differentiable and one-periodic Morse function. It is clear that equation (1.3) describes
the stationary points of the formal Lagrangian W ε . Our main result is the following.

Theorem A Assume that (ā1, . . . , āt) is an admissible system. For a sufficiently small posi-
tive number ε, the minimal solutions set M (ā1)∪· · ·∪M (ā1, . . . , āt–1) corresponding to the
local potential hε

j (or W ε) is not a foliation.That is to say, there are gaps in M (ā1, . . . , āt–1).

2 Preliminaries
We consider the configuration space R

Z
d = {x = (xk)|x : Zd → R} with the topology of

pointwise convergence. We define on the configuration space the relations ≤, <, and 	
by x ≤ y ⇔ xk ≤ yk for every k ∈ Z

d , x < y ⇔ x ≤ y but x �= y, x 	 y ⇔ xk < yk for every
k ∈ Z

d , respectively. Similarly for ≥, >, and �. We say that x and y are totally ordered if
x 	 y or x = y or x � y.

For k = (k1, . . . , kd) ∈ Z
d , define ‖k‖ =

∑d
n=1 |kn| and Br

j = {k ∈ Z
d|‖k – j‖ ≤ r}, r ∈ N and

j ∈ Z
d . For (k, l) ∈ Z

d ×Z, the Z
d+1 translate τk,l : RZ

d →R
Z

d is defined by

(τk,lx)j = xj–k + l, j ∈ Z
d.

Definition 2.1 A configuration x is said to be Birkhoff if {τk,lx|k ∈ Z
d, l ∈ Z} is totally

ordered, i.e., for all k ∈ Z
d and l ∈ Z, it follows that

τk,lx 	 x or τk,lx = x or τk,lx � x.

Each Birkhoff configuration x = (xk) has a rotation vector ω such that {xk – k · ω} in
uniformly bounded [17]. Let Bω denote the set of Birkhoff configurations with rotation
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vector ω. Then Bω is closed in the topology of pointwise convergence (product topol-
ogy). Moreover, the rotation vector ω(x) depends continuously on x [17]. In other words,
when xn ∈ Bωn are Birkhoff configurations so that limn→∞ xn = x pointwise, then the limit
limn→∞ ωn = ω exists and x ∈ Bω .

In this paper we fix for simplicity the basic neighborhood B of interactions introduced
in Sect. 1 to be Br

0 in which r ∈ N is called the range of interactions. We assume that the
C2 local potential function h: RBr

0 →R satisfies the following hypotheses:
(H1) h(ξ + 1̃) = h(ξ ), where 1̃ ∈ R

Br
0 with each component being 1;

(H2) h is bounded from below and coercive in the following sense:

lim|ξk –ξj|→∞ h(ξ ) = ∞ for k, j ∈ Br
0 with ‖k – j‖ = 1;

(H3) ∂i,kh ≤ 0 for i, k ∈ Br
0 with i �= k, while ∂0,kh < 0 for ‖k‖ = 1.

Let A ⊂ Z
d be a finite set. We call int(A) = {j ∈ A|Br

j ⊂ A} the interior of A, Ā =
⋃

j∈A Br
j

the closure of A, and ∂A = Ā\ int(A) the boundary of A. Let

WA(x) =
∑

j∈A

hj(x) and W (x) =
∑

j∈Zd

hj(x), (2.1)

where hj(x) = h(τ–j,0x|Br
0
). We remark that (H3) is called the twist condition, which is fre-

quently used in the following form: For x ∈ R
Z

d ,

∂i,khj(x) ≤ 0 for i, k ∈ Br
j with i �= k and ∂j,khj(x) < 0 for ‖j – k‖ = 1. (2.2)

We denote the support of a configuration v = (vj) by supp(v) = {j ∈ Z
d|vj �= 0}. Let VA =

{v| supp(v) ⊂ int(A)}.

Definition 2.2 A configuration x is called a minimizer for the local potential h (or for the
Lagrangian W ) if, for every finite subset A ⊂ Z

d and every v ∈ VA,

WA(x + v) – WA(x) ≥ 0.

We remark that the limit of a sequence of minimizers is also a minimizer, and each
minimizer automatically satisfies the following equation:

∑

‖j–k‖≤r

∂khj(x) = 0 for all k ∈ Z
d. (2.3)

For the following needs, we restate Theorem 10.1 in reference [15].

Theorem 2.3 (See Theorem 10.1 in [15]) Let (ā1, . . . , āt) be an admissible system with t ≥
2. If x1 	 x2 are neighboring elements in M (ā1, . . . , āt–1), then there exists x ∈ M (ā1, . . . , āt)
such that x1 	 x 	 x2, and hence x– = x1 and x+ = x2.

For x ∈ M (ā1, . . . , āt), we always denote by x– and x+ the elements in M (ā1, . . . , āt–1)
defined by x– = limn→∞ τkn ,ln x for every sequence (kn, ln) in �̄t with limn→∞(kn, ln) · āt =
–∞ and x+ = limn→∞ τkn ,ln x for every sequence (kn, ln) in �̄t with limn→∞(kn, ln) · āt = ∞.
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We say that an orbit of x ∈ M (ā1, . . . , āt) under �̄t-action {τk,lx|(k, l) ∈ �̄t} is a heteroclinic
orbit if τk,lx → x– if (k, l) · āt → –∞ and τk,lx → x+ if (k, l) · āt → +∞. In [15], x–, x+ have
the following properties:

(i) x– and x+ are more periodic than x since τk,lx± = x± for all (k, l) ∈ �̄t , while x does
not have such a property.

(ii) x– and x+ are neighboring elements in M (ā1, . . . , āt–1), that is, there are no minimiz-
ers in M (ā1, . . . , āt–1) lying between x– and x+.

In the following, we want to prove that there exist neighboring elements in M (ā1, . . . ,
āt–1), i.e., there exist gaps in M (ā1, . . . , āt–1).

3 The existence of gaps in M (ā1, . . . , āt–1)
In this section, we discuss the solutions of equation (1.3) for 0 < ε 	 1. Using the anti-
integrable limit method, an example of nonexistent minimal foliations will be constructed.
The following lemmas are similar to the results in reference [11].

Let Ri(x) =
∑

j∈Zd ∂ihj(x), then (1.3) becomes

V ′(xi) + εRi(x) = 0, i ∈ Z
d, and x = (xi)i∈Zd ∈ R

Z
d
. (3.1)

By the definition of hj, Ri(x) =
∑

j∈Zd ∂ihj(x) =
∑

‖j–i‖≤r ∂ihj(x).
If ε = 0, then

V ′(xi) = 0, i ∈ Z
d. (3.2)

Let ‖x‖∞ := supi∈Zd |xi| and Bδ(x) := {X ∈R
Z

d |‖X – x‖∞ ≤ δ}.

Lemma 3.1 Assume that x : Zd →R is a solution of (3.2) with the property that

osc(x) := sup
‖j–i‖≤r

|xj – xi| ≤ K < ∞.

Then there exist ε0 > 0 and δ0 > 0, depending only on K , such that for every ε ∈ [0, ε0] there
is unique x(ε) ∈ Bδ0 (x) that satisfies (3.1). Moreover, limε→0 ‖x(ε) – x‖∞ = 0.

Proof First, by the continuity of ∂ihj and assumption (H1), there exists a uniform constant
C1 > 0 for which

∣
∣∂ihj(X)

∣
∣ ≤ C1/(2r + 1)d for all i, j ∈ Z

d and all X with osc(X) ≤ K + 1.

Then |Ri(X)| ≤ ∑
‖j–i‖≤r |∂ihj(X)| ≤ C1 for every X with osc(X) ≤ K + 1. Particularly, if

osc(x) ≤ K and ‖X – x‖∞ ≤ 1
2 , then

osc(X) ≤ osc(x) + osc(X – x) ≤ osc(x) + 2‖X – x‖∞ ≤ K + 1.

Hence |Ri(X)| ≤ C1.
Because V is a Morse function, there exists a constant c > 0 such that |V ′′(xi)| ≥ 1

c for
all i ∈ Z

d .
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Let X = {X ∈R
Z

d |‖X – x‖∞ < ∞}. Define the operator Kε,x : B 1
2

(x) →X by

Kε,x(X)i = Xi –
V ′(Xi) + εRi(X)

V ′′(xi)
, i ∈ Z

d.

As observed above, Kε,x is well defined on B 1
2

(x), and it is clear that X is a solution of (3.1)
if and only if Kε,x(X) = X, i.e., X is a fixed point of Kε,x.

Next, we take 0 < k < 1 and select the appropriate ε0, δ0 such that Kε,x becomes a con-
tracting operator with a contracting coefficient of k. Because V only has finitely distinct
critical points on [0, 1], sufficiently small δ0 (may let 0 < δ0 < 1

2 ) can be selected to make
{(ζi – δ0, ζi + δ0)|ζiare different critical points ofV } disjoint. Furthermore, due to the con-
tinuity of V ′′, |V ′′(Xi) – V ′′(xi)| ≤ k

2c uniformly for X ∈ Bδ0 (x).
For any y, z ∈ Bδ0 (x), we have

∣
∣Kε,x(y)i – Kε,x(z)i

∣
∣ ≤

∣
∣
∣
∣(yi – zi) –

V ′(yi) – V ′(zi)
V ′′(xi)

∣
∣
∣
∣ + ε

∣
∣
∣
∣
Ri(y) – Ri(z)

V ′′(xi)

∣
∣
∣
∣.

We estimate the first item on the right-hand side:

∣
∣
∣
∣(yi – zi) –

V ′(yi) – V ′(zi)
V ′′(xi)

∣
∣
∣
∣ =

∣
∣
∣
∣
(yi – zi)
V ′′(xi)

(∫ 1

0

[
V ′′(xi) – V ′′(tyi + (1 – t)zi

)]
dt

)∣
∣
∣
∣

≤ k
2
‖y – z‖∞.

This shows that the first item is bounded by k
2 ‖y – z‖∞.

Then we estimate the second item on the right-hand side. Similar to the discussion
above, we can see that ∂i,lhj(X) is uniformly bounded on B 1

2
(x) (⇒ osc(X) ≤ K + 1). Thus

there exists C2 > 0 such that

∣
∣∂i,lhj(X)

∣
∣ ≤ C2/(2r + 1)2d.

Hence,

ε

∣
∣
∣
∣
Ri(y) – Ri(z)

V ′′(xi)

∣
∣
∣
∣ ≤ cε

∑

‖j–i‖≤r

∣
∣∂ihj(y) – ∂ihj(z)

∣
∣

= cε
∑

‖j–i‖≤r

∣
∣
∣
∣

∫ 1

0

d
dt

∂ihj
(
ty + (1 – t)z

)
dt

∣
∣
∣
∣

≤ cε
∑

‖j–i‖≤r

∑

‖l–j‖≤r

∫ 1

0

∣
∣∂i,lhj

(
ty + (1 – t)z

)∣
∣dt · |yl – zl|

≤ cεC2‖y – z‖∞

≤ k
2
‖y – z‖∞

(

ε ≤ k
2cC2

)

.

Summarizing, we found that

∥
∥Kε,x(y) – Kε,x(z)

∥
∥∞ ≤ k‖y – z‖∞.
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Then we investigate whether Kε,x maps Bδ0 (x) to Bδ0 (x). For any y ∈ Bδ0 (x) and i ∈ Z
d ,

∣
∣Kε,x(y)i – xi

∣
∣ ≤ ∣

∣Kε,x(y)i – Kε,x(x)i
∣
∣ +

∣
∣Kε,x(x)i – xi

∣
∣

≤ k‖y – x‖∞ + cC1ε

≤ kδ0 + cC1ε

≤ δ0

(

ε ≤ (1 – k)δ0

cC1

)

.

It suffices to choose 0 ≤ ε ≤ ε0 := min{ (1–k)δ0
cC1

, k
2cC2

} to make sure that Kε,x is a contracting
operator from Bδ0 (x) to Bδ0 (x). Thus, there exists a unique fixed point x(ε) ∈ Bδ0 (x) which
is the solution of (3.1).

Finally, we prove that limε→0 ‖x(ε) – x‖∞ = 0. Since

∥
∥x(ε) – x

∥
∥∞ =

∥
∥Kε,x

(
x(ε)

)
– Kε,x(x) + Kε,x(x) – x

∥
∥∞

≤ ∥
∥Kε,x

(
x(ε)

)
– Kε,x(x)

∥
∥∞ +

∥
∥Kε,x(x) – x

∥
∥∞

≤ k
∥
∥x(ε) – x

∥
∥∞ + cC1ε.

We get ‖x(ε) – x‖∞ ≤ cC1ε

1–k . �

This lemma is similar to Theorem 3.1 in reference [11]. To understand the following
content better, the proof is written out again.

In the following, let � denote the set of solutions to (3.2) with the property that osc(x) ≤
K < ∞, i.e.,

� =
{

x ∈R
Z

d |x is the solution of (3.2) and osc(x) ≤ K < ∞}
.

For every x ∈ �, solution x(ε) of (3.1) can be obtained from Lemma 3.1. Use �ε to rep-
resent the collection of these x(ε), i.e.,

�ε =
{

x(ε)|x ∈ �
}

, 0 ≤ ε ≤ ε0.

Lemma 3.2 � and �ε are defined above. Then the map


ε : � → �ε , x �→ x(ε)

is a homeomorphism in the topology of pointwise convergence.

The proof is similar to Theorem 3.3 in reference [11]. It is omitted here.

Lemma 3.3 Assume ω ∈R
d . Let K > 0 be such that osc(x) ≤ K for all x ∈ Bω , and let ε0, δ0

be as in Lemma 3.1. Then there is an ε1 (0 < ε1 ≤ ε0) such that, for all 0 ≤ ε ≤ ε1, the
following is true:

When xε is any Birkhoff solution to (3.1) of rotation vector ω, then xε ∈ Bδ0 (x) for some
Birkhoff solution x of (3.2) and hence xε = x(ε).
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The proof can be found in Theorem 5.4 of reference [11]. It is also omitted here.
This lemma shows that the Birkhoff solution of (3.1) must be extended from the solution

of (3.2) according to Lemma 3.1.

Definition 3.4 A nonempty set F consisting of stationary points is said to be a foliation,
if

(1) F is a closed set under the product topology;
(2) F is totally ordered;
(3) F is invariant for translations;
(4) p0(F ) = R.

Lemma 3.5 Let (ā1, . . . , āt) be an admissible system. The set M (ā1) ∪ · · · ∪ M (ā1, . . . , āt)
is a foliation if and only if M (ā1, . . . , āt) does not have gaps.

Proof First, we assume that M (ā1, . . . , āt) does not have gaps. Next, it is proved that the
set M (ā1) ∪ · · · ∪ M (ā1, . . . , āt) is a foliation.

Because M (ā1) ∪ · · · ∪ M (ā1, . . . , āt) is totally ordered (see Theorem 9.7 in [15]), we
only have to show that the image of mapping H satisfies Im(H) = R, where H is defined as
follows:

H : M (ā1) ∪ · · · ∪ M (ā1, . . . , āt) →R, x �→ x0.

It is also known from Theorem 9.7 in [15] that M (ā1) ∪ · · · ∪ M (ā1, . . . , āt) is closed. So
Im(H) is closed. In fact, if xn ∈ M (ā1) ∪ · · · ∪ M (ā1, . . . , āt) and xn

0 → x∗ as n → ∞. Let
us prove x∗ ∈ Im(H). Because M (ā1) ∪ · · · ∪M (ā1, . . . , āt) ⊆ Mω(ω is the rotation vector)
and xn

0 is bounded, we know that {xn} contains a subsequence converging to a minimizer x̃
by the property |xn

j – xn
0 – j ·ω| ≤ 1 and Tychonoff’s theorem in the product topology. Since

M (ā1) ∪ · · · ∪ M (ā1, . . . , āt) is a closed set, x̃ ∈ M (ā1) ∪ · · · ∪ M (ā1, . . . , āt) and x̃0 = x∗.
So x∗ ∈ Im(H). Hence, Im(H) is a closed set. If Im(H) �= R, we can find x0 < y0 ∈ Im(H) and
(x0, y0) ∩ Im(H) = ∅.

This shows that �̄+(x) = �̄+(y), where �̄+(x) = {k̄ ∈ Z
d+1|τk̄x ≥ x}. Since �̄+(x) = �̄+(y), x

and y have the same secondary invariants. Then there exists s (1 ≤ s ≤ t) such that x, y are
neighboring elements in M (ā1, . . . , ās).

When s = t, this contradicts nonexistence of gaps in M (ā1, . . . , āt).
When s < t, by Theorem 2.3, there exists w ∈ M (ā1, . . . , ās+1) with x 	 w 	 y. This

contradicts (x0, y0) ∩ Im(H) = ∅.
Then we assume that the set M (ā1) ∪ · · · ∪ M (ā1, . . . , āt) is a foliation. Next we prove

that M (ā1, . . . , āt) does not have gaps.
If there are gaps in M (ā1, . . . , āt) and x1 	 x2 is one of them, then there is x ∈ M which

satisfies x1 	 x 	 x2 and t(x) > t. This contradicts the assumption that the set M (ā1) ∪
· · · ∪ M (ā1, . . . , āt) is a foliation. �

Theorem A Assume that (ā1, . . . , āt) is an admissible system. ε is defined as Lemma 3.3,
then the minimal solutions set M (ā1) ∪ · · · ∪ M (ā1, . . . , āt–1) corresponding to the local
potential hε

j (or W ε) is not a foliation.That is to say, there are gaps in M (ā1, . . . , āt–1), so
M (ā1, . . . , āt) �= ∅.
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Proof We prove it by contradiction. If the set M (ā1) ∪ · · · ∪ M (ā1, . . . , āt–1) is a folia-
tion, we denote the foliation by F . By Lemma 3.3, F ⊂ (�ε ∩ B). Then, by Lemma 3.2,

–1

ε (F ) ⊂ �.
Because F is connected, under continuous mapping, its image 
–1

ε (F ) is also con-
nected. But � is a completely disconnected set. This is a contradiction. In fact, � satisfies
the first countable axiom (each point has a countable neighborhood base), so the finite set
is a closed set and the special single point set is also a closed set. Because the critical point
of Morse function is isolated, the single point set in � is an open set. Thus, the single point
set in � is both open and closed, � is completely disconnected.

We recall that if (ā1, . . . , āt) is admissible, then (ā1, . . . , āt–1) is admissible. By Lemma 3.5,
there are gaps in M (ā1, . . . , āt–1). Then, by Theorem 2.3, M (ā1, . . . , āt) �= ∅. �

Therefore, under the condition of Theorem A, we find an example of the nonexistence
of the minimal foliation. Thus, the hypothesis of Theorem 2.3 can be established, and the
heteroclinic orbit can be determined.
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