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Abstract
In this paper, we study and analyze the susceptible-infectious-removed (SIR)
dynamics considering the effect of health system. We consider a general incidence
rate function and the recovery rate as functions of the number of hospital beds. We
prove the existence, uniqueness, and boundedness of the model. We investigate all
possible steady-state solutions of the model and their stability. The analysis shows
that the free steady state is locally stable when the basic reproduction number R0 is
less than unity and unstable when R0 > 1. The analysis shows that the phenomenon
of backward bifurcation occurs when R0 < 1. Then we investigate the model using the
concept of fractional differential operator. Finally, we perform numerical simulations
to illustrate the theoretical analysis and study the effect of the parameters on the
model for various fractional orders.
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1 Introduction
The spread of Covid-19 diseases is a very complex phenomenon carried out by many
researchers. Many mathematical models were proposed including complex and simple
mathematical models to understand the disease behavior. Faal et al. [1] proposed a model
for the spread of the COVID-19 disease taking into account the superspreader, hospital-
ized, and fatality class. The authors analyzed the local stability of the steady-state solution
and the model sensitivity. Mandal et al. [2] introduced a mathematical model taking into
account a quarantine class and governmental intervention measures. In this study, the au-
thors consider the basic reproduction number as an important parameter in analyzing the
dynamics of the model. Recently, significant works were carried out to study the behav-
ior of COVID-19 by means of mathematical models. Lin et al. [3] proposed SEIR models
for the COVID-19 using data from China considering the impact of social isolation poli-
cies including governmental actions. The model successfully captures the course of the
COVID-19 outbreak, whereas Wells et al. [4] and Gostic et al. [5] consider the impact of
travel restrictions and border control on the global spread of the COVID-19.
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The SIR model is commonly used for disease modeling, in particular, for the COVID-19
analysis [6–8]. The dynamic behavior of SIR model, including the stability, bifurcation, and
chaos, has been studied over many decades [9–12]. In most studies the authors assume
that the recovery rate is a constant. However, in reality the recovery rate depends on time
of recovering process such as the health system, including the number of hospital beds
and medicines.

In recent years, many researchers have studied the systems of differential equations with
fractional operators [13–15]. The epidemic models involving a fractional operator were
also investigated by many authors because they deeply show biological and physical per-
spectives of the diseases [16, 17].

Rao et al. [18] studied an SIRS epidemic model assuming different death rates for each
subclass, and the fraction of newborn children is represented by the parameter p. In this
paper, we propose and analyze the extended SIRS epidemic model presented in [18] with
the concept of fractional differential operator. In fact, we propose and study a model in-
cluding three nonlinear differential equations with general incidence rate function and
nonlinear recovery rate depending on the health system. The main focus of this study is
analyzing the basic properties of model and demonstrating the stability properties of the
model.

The rest of the paper is arranged as follows. We propose a dynamical model in Sect. 2.
Then we formulate and establish the existence, uniqueness, positivity, and boundedness of
solutions in Sect. 3. The steady-state solutions of the model and their stability are studied
in Sects. 4 and 5, whereas numerical simulations of the steady-state solution brunches has
is presented in Sect. 6. Section (7) contains a detailed dynamic behavior of the model with
fractional derivative. We finish this study with conclusion in Sect. 8.

2 The dimensional model
In this section, we extend the model suggested in [18] to include a nonlinear incidence
rate and recovery rate. The recovery rate is a function of both the hospital bed-population
ratio b1 > 0 and the infected I. Thus the recovery rate α is given by [19]

α = α0 +
(α1 – α0)b1

I + b1
, (1)

where the parameter α1 and α0 are the maximum and minimum per capita recovery rates,
respectively. The nonlinear incidence rate is generalized by the function

f (S, I) =
β1SI

a1 + a2S + a3I
. (2)

Thus the system of differential equations is given by

dS
dt

= (1 – p)b – μ1S – f (S, I) + γ R, (3)

dI
dt

= f (S, I) – (μ2 + α)I, (4)

dR
dt

= pb – (μ3 + γ )R + αI, (5)
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where the total population is split into three parts: S(t) is the susceptible population, I(t)
is the infected population, and R(t) is the recovered population, so that N = S + I + R. The
details and interpretation of the model can be found in [18]. We assume that all parameters
are positive.

3 Basic properties of model
3.1 Positivity of solution
In this section, we prove that under nonnegative conditions, the model solutions are pos-
itive.

Theorem 1 Let S0, I0, R0 ≥ 0. The solution of (3)–(5) with (S(0), I(0), R(0)) = (S0, I0, R0) is
nonnegative, that is, S(t), I(t), R(t) ≥ 0 for t > 0.

Proof Let x(t) = (S(t), I(t), R(t)) be the solution of system under initial conditions x0 =
(S(0), I(0), R(0)) = (S0, I0, R0) ≥ 0.

By the continuity of solution, for all of S(t), I(t), R(t) that have positive initial values at
t = 0, we have the existence of an interval (0, t0) such that S(t), I(t), R(t) ≥ 0 for 0 < t < t0.
We will prove that t0 = ∞.

If S(t1) = 0 for t1 ≥ 0 and other solutions stay positive at t = t1, then

dS
dt

(t = t1) = (1 – p)A + γ R > 0. (6)

This ensures that at any time the solution reaches the axis, its derivative increases, and the
function S(t) does not cross to negative part. We can show by similar analysis that

dI
dt

(t = t1) = 0, (7)

dR
dt

(t = t1) = pb + αI ≥ 0. (8)

So x(t) never crosses the axes S = 0, I = 0, R = 0 when it touches them. Thus, for any positive
initial conditions, all equation solutions are positive. �

Theorem 1 Let (S(t), I(t), R(t)) be the solution of system (3)–(5) with initial conditions
(S0, I0, R0), and let μ = min(μ1,μ2,μ3). The compact set

� =
{(

S(t), I(t), R(t)
) ∈R

3
+, W ≤ b/μ

}
(9)

is positively invariant and attracts all solutions in R
3
+.

Proof Let W (t) = S(t) + I(t) + R(t). Then from the system (3)–(5) we have

dW
dt

≤ b – min(μ1,μ2,μ3)W = b – μW .

This implies that

dW
dt

+ μW ≤b. (10)
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Solving (10), we obtain

0 < W ≤ b
μ

+
(

W (0) –
b
μ

)
exp(–μt), (11)

where W (0) is the initial condition. Thus 0 < W (t) < b
μ

as t reaches infinity, and hence �

is a positively invariant and attractive set. �

3.2 Basic reproduction number
We use the next-generation matrix method [24] to calculate the reproduction number R0

of model (3)–(5):

R0 =
(γ1 + μ3[1 – p])bβ1

a2(γ 1 + μ3[1 – p])(α1 + μ2)b + a1μ1(μ3 + γ1)(α1 + μ2)
. (12)

4 Equilibria
In this section, we consider the number of equilibrium solutions of model (3)–(5). It is
clear that the model has a disease-free equilibrium given by

E0(S, I, R) =
(

b(γ1 + μ3[1 – p])
μ1(μ3 + γ1)

, 0,
pb

μ3 + γ1

)
. (13)

The non-free steady state of model (3)–(5) can be obtained by setting the right sides to
zero. From equations (3)–(5) we have

S =
(α0 + μ2)I2 + ((p – 1)b + b1[α1 + μ2] – γ1R)I + bb1(p – 1) – γ1b1R

μ1(I + b1)
, (14)

R =
α0I2 + (b1α1 + pb)I + bb1p

(I + b1)(μ3 + γ1)
. (15)

Substituting equations ((14) and (15)) into equation (3), we obtain

E1(I) = c3I3 + c2I2 + c1I + c0 = 0, (16)

where c0, c1, c2, and c3 are defined by

c3 =
(
(α0 + μ2)μ3 + γ1μ2

)
β1 + (α0 + μ2)(a2α0 + a2μ2 – a3μ1)μ3 (17)

+ γ1(α0 + μ2)(a2μ2 – a3μ1),

c2 = –
(
γ1 + μ3(1 – p)

)
(a2α0 + a2μ2 – β1)b + (c21 + c22 + c23)b1 + c24,

c1 = –
(
γ1 + μ3(1 – p)

)(
a2[α0 + α1 + 2μ2] – 2β1

)
b1b + (c11 + c12)b1

2 + c13,

c0 = b1
2[R0 – 1],

c21 =
(
(2γ1 + 2μ3)μ2

2 + (γ1 + 2μ3)(α0 + α1)μ2 + 2α0α1μ3
)
a2,

c22 = –
(
2μ1μ2(μ3 + γ1) + μ1(μ3 + γ1)(α0 + α1)

)
a3,

c23 = –
(
2μ2(γ1 + μ3) + μ3(α0 + α1)

)
β1,

c24 = –a1μ1(μ3 + γ1)(α0 + μ2),
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Table 1 Number of possible positive real roots of equation (16). c4 = basic reproduction number R0,
c5 = sign change number, c6 = possible number of positive real roots

Case c3 c2 c1 c0 c4 c5 c6

1 – + + + R0 > 1 1 1
2 – + + – R0 < 1 2 0, 2
3 – + – + R0 > 1 3 1, 3
4 – + – – R0 < 1 2 0, 2
5 – – + + R0 > 1 1 1
6 – – + – R0 < 1 2 0, 2
7 – – – + R0 > 1 1 1
8 – – – – R0 < 1 0 0

c11 = (α1 + μ2)(μ3α1 + γ1μ2 + μ2μ3)a2,

c12 = –
[
(μ3 + γ1)(α1 + μ2)μ1a3 + (μ3α1 + γ1μ2 + μ2μ3)β1

]
,

c13 = –(μ3 + γ1)(α0 + α1 + 2μ2)b1a1μ1.

If R0 = 1, then c0 = 0, so equation (16) reduces to the equation

E1(I) =I
[
a3I2 + a2I + a1

]
= 0, (18)

where I = 0 is the disease-free equilibrium. By equation (16) the coefficient c0 > 0 when
R0 > 1 and c0 < 0 when R0 < 1. Thus the number of possible positive real roots depends on
the values of c3, c2, and c1. The possible roots analyzed by the Descartes rule of signs are
shown in Table 1.

Theorem 2 System (3)–(5):
1. has a one equilibrium if the basic reproduction number is greater than 1 and Cases 1,

5, and 7 are satisfied;
2. can have more than one equilibrium if the basic reproduction number is greater than

1 and Case 3 is satisfied;
3. can have two or more equilibria if the basic reproduction number is less than 1 and

Cases 2, 4, and 6 are satisfied.

The existence of multiple steady state suggests the possibility of backward bifurcation
where the phenomenon of three branches of steady-state equilibrium occurs at the same
point.

5 Stability
In this section, we focus on analysis of the stability of the equilibrium of equations (3)–(5).
We study the stabilities of two types of the disease equilibrium, that is, E0 and E1.

5.1 Local stability of the disease-free equilibrium
In this section, we study the stability of the free equilibrium E0. The Jacobian matrix of
system (3)–(5) at E0 is

J(E0) =

⎡

⎢
⎣

–μ j12 γ1

0 j22 0
0 α1 –[μ3 + γ1]

⎤

⎥
⎦ , (19)
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where

J12 = –
β1b(γ1 + μ31[1 – p])

μ1(μ3 + γ1)

(
a2b(γ1 + μ3[1 – p])

μ1(μ3 + γ1)
+ a1

)–1

< 0,

J22 = –
(γ1 + μ3[1 – p])(a2α1 + a2μ2 – β1)b + a1μ1(μ3 + γ1)(α1 + μ2)

a2b(γ1 + μ3[1 – p]) + a1μ1(μ3 + γ1)
.

The eigenvalues of matrix (19) are given by

λi =

⎡

⎢
⎣

–μ1

–[μ3 + γ1]
J22

⎤

⎥
⎦ . (20)

A simple calculation shows that J22 = R0 – 1. So, we have the following result.

Lemma 1 The free steady-state solution E0 is locally asymptotically stable if R0 < 1 and is
unstable if R0 > 1.

5.2 Stability of equilibria E1

In this section, we show that the nonfree steady-state solution E1 of system (3)–(5) is stable
under specific condition. The Jacobian of the system can be written as

J(E1) =

⎡

⎢
⎣

–J11 –J12 γ1

J21 –J22 0
0 J32 –[μ3 + γ1]

⎤

⎥
⎦ , (21)

where

J11 =
[

β1I(Ia3 + a1)
(Ia3 + a2S + a1)2 + μ1

]
, (22)

J12 =
[

β1S(a2S + a1)
(Ia3 + a2S + a1)2

]
,

J21 =
β1I(Ia3 + a1)

(Ia3 + a2S + a1)2 ,

J22 =
(α1 – α0)b1

2

(I + b1)2 + α0 –
β1S(a2S + a1)

(Ia3 + a2S + a1)2 + μ2,

J32 =
(α1 – α0)b1

2

(I + b1)2 + α0. (23)

From equation (4) we get the following relations:

β1SI
a1 + a2S + a3I

–
(

μ2 + α0 +
(α1 – α0)b1

I + b1

)
I = 0, (24)

J22 = –
β1SIa3

(Ia3 + a2S + a1)2 +
(α1 – α0)b1I

(I + b1)2 . (25)

By simple analysis we get that the characteristics equation of J(E1) is

λ3 + B1λ
2 + B2λ + B3, (26)
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where

B1 = J22 + J11 + μ1 + μ3 + γ1,

B2 = (J12 + J22 + γ1 + μ3)J11 + (J22 + γ1 + μ3)μ1 + (γ1 + μ3)J22,

B3 =
(
(J12 + J22 – J32)γ1 + μ3(J12 + J22)

)
J11 + J22μ1[γ1 + μ3].

We further use the Rough–Hurtwiz criterion to show the stability of the steady state E1.
We have

B1B2 – B3 = B11J11
2 + B22J11 + B33,

B11 = (J22 + J12 + μ3 + γ1),

B22 =
(
J22

2 +
(
J12 + 2[μ3 + μ1 + γ1]

)
J22 + γ1

2 +
(
J32 + 2[μ3 + μ1]

)
γ1

+ μ1[J12 + 2μ3] + μ3
2),

B33 = (μ3 + μ1 + γ1)J22
2 + (μ3 + μ1 + γ1)2J22 + μ1(μ3 + μ1 + γ1)(μ3 + γ1).

(27)

By the Routh–Hurwitz theorem E1 is locally asymptotically stable when B1 > 0, B3 > 0, and
B1B2 – B3 > 0. Theses conditions are satisfied when the following condition holds:

S
(Ia3 + a2S + a1)2 <

μ2

β1
. (28)

Thus we have following results.

Lemma 2 The steady-state solution E1 of model (3)–(5) is locally asymptotically if

S
(Ia3 + a2S + a1)2 <

μ2

β1
. (29)

Theorem 3 The backward bifurcation occurs if b1 < bcr , and no backward bifurcation oth-
erwise.

Proof We show the conditions for the existence of backward bifurcation for system (3)–(5)
using the center manifold approach.

First, making a transformation of variables, we have x1 = S, x2 = I, x3 = R. Then model
(3)–(5) can be written in the form dX

dt = F(X), where F = (f1, f2, f3). Hence

dS
dt

= f1 = (1 – p)b – μ1S – f (S, I) + γ R, (30)

dI
dt

= f2 = f (S) – (μ2 + α)I, (31)

dR
dt

= f3 = pb – (μ3 + γ )R + αI, (32)

α = α0 +
(α1 – α0)b1

I + b1
,

f (S, I) =
β1SI

a1 + a2S + a3I
.
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Now let β1 = β∗
1 be the bifurcation parameter. When R0 = 1, we have the following relation:

β1 =
S0a2[α1 + μ2] + a1[α1 + μ2]

S0
, (33)

and the model equation has one zero eigenvalue, and the other eigenvalues are negative.
The behavior of the system near β1 = β∗

1 can be studied by applied the center manifold
theory. The Jacobian matrix at free steady state E0 is

J(E0) =

⎡

⎢
⎣

–μ1 – β1S0
S0a2+a1

γ 1
0 β1S0

S0a2+a1
– α1 – μ2 0

0 α1 –[μ3 + γ1]

⎤

⎥
⎦ . (34)

The right eigenvectors can be obtained as W = (w1, w2, w3)T , where (w1, w2, w3)T =
(– α1μ3+μ2[γ1+μ3]

α1μ1
, μ3+γ1

α1
, 1). The left eigenvectors can be obtained as V = (v1, v2, v3) = (0, 1, 0).

The existence of backward bifurcation depends on the coefficients a and b in [25, Theo-
rem 4.1]. The nonzero partial derivatives of system (30)–(32) at disease-free equilibrium
E0 are

∂f1

∂x1 ∂x2
(E0) = –

(α1 + μ2)a1

S0(a2S0 + a1)
, (35)

∂f1

∂x2 ∂x1
(E0) = –

(α1 + μ2)a1

S0(a2S0 + a1)
, (36)

∂f1

∂x2 ∂x2
(E0) =

2a3(α1 + μ2)
a2S0 + a1

, (37)

∂f2

∂x1 ∂x2
(E0) =

(α1 + μ2)a1

S0(a2S0 + a1)
, (38)

∂f2

∂x2 ∂x1
(E0) =

(α1 + μ2)a1

S0(a2S0 + a1)
, (39)

∂f2

∂x2 ∂x2
(E0) = –2

(
(α1 + μ2)a3

a2S0 + a1
+

α0 – α1

b1

)
, (40)

∂f3

∂x2 ∂x2
(E0) = 2

(
α0 – α1

b1

)
. (41)

The coefficient a is obtained as

a =
3∑

k,i,j=1

vkwiwj
∂fk

∂xi ∂xj
= w1w2

∂f2

∂x1 ∂x2
(E0) + w2w1

∂f2

∂x2 ∂x1
(E0) + w2w2

∂f2

∂x2 ∂x2
(E0)

= –2
(

a3(μ3 + γ1)2(α1 + μ2)
α12(a2S0 + a1)

+
(α0 – α1)(μ3 + γ1)2

b1α12

)

–
2(α1μ3 + μ2[γ1 + μ3])(μ3 + γ1)(α1 + μ2)a1

α12μ1S0(a2S0 + a1)
. (42)

The bifurcation parameter b at E0 is given by

∂f2

∂x2 ∂β∗
1

(E0) =
S0

S0a2 + a1
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and can be obtained as

b =
3∑

k,i=1

vkwi
∂fk

∂xi ∂β
∗
1

= v2w2
∂f2

∂x2 ∂β∗
1

(E0)

=
(μ3 + γ1)S0

α1(S0a2 + a1)
> 0. (43)

Clearly, b is always positive. According to [25, Theorem 4.1], the backward bifurcation
phenomenon exists when the coefficient a is positive. Thus the condition for backward
bifurcation is given by

b1 < b1,cr =
μ1S0[a2(μ3 + γ1)(α1 – α0)S0 + a1(μ3 + γ1)(α1 – α0)]
[α1 + μ2][S0a3μ1(μ3 + γ1) + a1(α1μ3 + μ2[γ1 + μ3])]

. (44)
�

The existence of the backward bifurcation at R0 = 1 requires condition (44) to be sat-
isfied. When the number of hospital beds b1 is below the critical point b1,cr, the number
of hospital beds open to the public is below demand, and as a result, some patients fail to
access to healthcare. In this situation, there remains a high infection leading to a backward
bifurcation.

6 Numerical simulations
In this section, we carry out some numerical calculations to support our theoretical re-
sults. The values of parameters used for numerical simulations are indicated in Table 2.
We study the branch of steady state with respect to the model parameters. Figure 1 shows
the curves of the infected population I for different values of b1, donated by the number
of hospital beds and a specific value of general incidence rate (a1 = a2 = a3 = 1). It shows
that there is a forward bifurcation at R0 = 1.

If we decrease the value of b1 from 2 to 1.6, then the backward bifurcation does not occur.
These values are higher than the critical value of b1,cr = 1.64. If we decrease the value of
b1 to 0.1, less than the critical value b1,cr = 1.64, then we can observe from Fig. 1(a) that
the backward bifurcation occurs. Note that in Fig. 1(a) the above line of the curve is a
stable state and the below line of the curve is an unstable state. This result indicates that

Table 2 Parameters values

Parameters Values Reference

b 1 [20]
p 0.8 [0,1] [21]
α0 0.0714 Assumed.
α1 0.0857 Assumed.
β1 0.5 [20]
γ 0.25 [20]
μ1 0.2 [22]
μ2 0.2 [22]
μ3 0.2 [22]
b1 [0,20] 1.9 [23]
a1 1 Assumed.
a2 1 Assumed.
a3 1 Assumed.
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Figure 1 The figure showing a backward bifurcation varying the parameter b1 for R0. The values of the
parameters are stated in Table 2

Figure 2 The figure showing a backward bifurcation
varying the parameter b1 for R0 < 1. The values of the
parameters are stated in Table 2

in managing an infectious disease the number of hospital beds plays a significant role.
Figure 2 shows the effect of the value of b1 on the curve when the backward bifurcation
occurs. We observe that as the value of b1 decreases, the area of the curve increases.



Alqahtani Advances in Difference Equations          (2021) 2021:2 Page 11 of 16

Figure 2 shows the infected population size I as a function of reproduction number R0

when the parameter b1 is varied for the case R0 < 1. It illustrates that as the value of b1

increases, the infected population size I decreases. It also shows the existence of a back-
ward bifurcation, and the area of backward bifurcation curve decreases as the value b1

increases.

7 The model with fractional derivative
We consider the model with the Caputo–Fabrizio fractional derivatives

Dα3
t S(t) = (1 – p)b – μ1S – f (S, I) + γ R,

Dα3
t I(t) = f (S) – (μ2 + α)I,

Dα3
t R(t) = pb – (μ3 + γ )R + αI,

α = α0 +
(α1 – α0)b1

I + b1
,

f (S, I) =
β1SI

a1 + a2S + a3I
.

Here we have 0 < α3 < 1 and

Dα3
t =

1
�(1 – α3)

∫ t

0
f (τ )′(t – τ )–α3 dτ . (45)

We present the existence of positive solution of the system,

Dα3
t S(t) =(1 – p)b – μ1S – f (S, I) + γ R ≥ –μ1S – f (S, I) ≥ –μ1S. (46)

Then

S(t) ≥S(0) exp
(
–μ1tα3

)
for all t ∈ [0, t].

We can similarly show that

I(t) ≥ I(0) exp
(
–(μ2 + a0)tα3

)
for all t ∈ [0, t].

R(t) ≥ R(0) exp
(
–(μ3 + γ )tα3

)
for all t ∈ [0, t].

Thus for all t ∈ [0, t], we have that S(t), I(t), and R(t) are positive.

7.1 Existence and uniqueness
Here we present the condition under which the system of equations has a unique solution.
To achieve this, we have

S(t) – S(0) =
1

�(α3)

∫ t

0
f1(S, I, R, τ )1(t – τ )α3–1 dτ . (47)

I(t) – I(0) =
1

�(α3)

∫ t

0
f2(S, I, R, τ )2(t – τ )α3–1 dτ . (48)
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R(t) – R(0) =
1

�(α3)

∫ t

0
f3(S, I, R, τ )3(t – τ )α3–1 dτ . (49)

We will show that, for all i = 1, 2, 3,
(1) |fi(xi, t)|2 ≤ ki(|xi|2 + 1) and
(2) |fi(xi, t) – fi(x′

i, t)|2 ≤ ki(|xi – x′
i|2):

∣∣f1(S, I, R, τ )
∣∣2

=
∣∣∣∣(1 – p)b – μ1S –

βSI
a1 + a2S + a3I

+ γ R
∣∣∣∣ (50)

≤ 4
(
(1 – p)b

)2 + 4μ1|S|2 + 4γ 2|R|2 +
4β2|S|2|I|2

|a1 + a2S + a3I|2 (51)

≤ 4(1 – p)2b2 + 4μ2
1|S|2 + 4γ 2|R|2 +

4β2 sup(|S|2|I|2)
min |a1 + a2S + a3I|2 (52)

≤ 4(1 – p)2b2 + 4μ2
1|S|2 + 4γ 2‖R‖2

∞ + 4μ2
1 +

4β2‖I‖2∞
M

|S|2 (53)

≤ (
4(1 – p)2b2 + 4μ2

1|S|2 + 4γ 2‖R‖2
∞

)

×
(

1 +
4μ2

1 + 4β2‖I‖2∞
M |S|2

4(1 – p)2b2 + 4μ2
1|S|2 + 4γ 2‖R‖2∞

)
(54)

≤ (
4(1 – p)2b2 + 4μ2

1|S|2 + 4γ 2‖R‖2
∞

)(
1 + |S|2) (55)

≤ k1
(
1 + |S|2) if

4μ2
1 + 4β2‖I‖2∞

M
4(1 – p)2b2 + 4γ 2‖R‖2∞

< 1, (56)

∣∣f1(S, I, R, τ ) – f (S1, I, R, τ )
∣∣2

=
∣∣∣∣–μ1(S – S1) –

β(S – S1)I
a1 + a2S + a3I

∣∣∣∣

2

(57)

≤ 2μ1S – S1|2 + 2β2
∣∣∣∣

I
a1 + a2S + a3I

∣∣∣∣

2

|S – S1|2 (58)

≤ 2μ1|S – S1|2 + 2β2
∣∣∣∣sup

I
a1 + a2S + a3I

∣∣∣∣

2

|S – S1|2 (59)

≤ 2μ1|S – S1|2 + 2β2M|S – S1|2 ≤ k2|S – S1|2, (60)
∣∣f2(S, I, R, τ )

∣∣2

=
∣∣f (S, I) – (μ2 + α)I

∣∣2 (61)

≤ sup
∣∣f (S) – (μ2 + α)

∣∣2|I|2 ≤ k3
(
1 + |I|2), (62)

where

k3 = sup
∣
∣f (S) – (μ2 + α)

∣
∣2, (63)

∣∣f2(S, I, R, τ ) – f (S, I1, R, τ )2
∣∣2 ≤ k3|I – I1|2, (64)

∣∣f3(S, I, R, τ )
∣∣2

=
∣∣pb – (μ3 + γ )R + αI

∣∣2 (65)
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≤ 3(pb)2 + 3(μ3 + γ )2|R|2 + 3|α|2|I|2 (66)

≤ 3(pb)2 + 3(μ3 + γ )2|R|2 + 3 sup |α|2|I|2 (67)

≤ 3(pb)2 + 3(μ3 + γ )2|R|2 + M1 (68)

≤ 3
(
(pb)2 + M1

)
(1 +

(μ3 + γ )2

(pb)2 + M1
|R|2 (69)

≤ 3
(
(pb)2 + M1

)(
1 + |R|2) if

(μ3 + γ )2

(pb)2 + M1
< 1, (70)

∣∣f3(S, I, R, τ ) – f3(S, I, R3, τ )2
∣∣2 = (μ3 + γ )2|R – R1|2 ≤ k4|R – R1|2. (71)

Therefore, under the condition

max

( 4μ2
1 + 4β2‖I‖2∞

M
4(1 – p)2b2 + 4γ 2‖R‖2∞

,
(μ3 + γ )2

(pb)2 + M1

)
< 1, (72)

the system admits a unique solution.

7.2 Numerical solution
In this section, we present the numerical solution of the equations. We use the numerical
scheme of Atangan and Toufiq [26]. To use their scheme, we have

Dα
t S(t) = f1(S, I, R, τ ),

Dα
t I(t) = f2(S, I, R, τ ),

Dα
t R(t) = f3(S, I, R, τ ).

The next step is converting the above to

S(t) = S(0) +
1

�(α3)

∫ t

0
f1(S, I, R, τ )(t – τ )α3 dτ , (73)

I(t) = I(0) +
1

�(α3)

∫ t

0
f2(S, I, R, τ )(t – τ )α3 dτ , (74)

R(t) = R(0) +
1

�(α3)

∫ t

0
f3(S, I, R, τ )(t – τ )α3 dτ . (75)

Following their scheme, we have

S(tn+1) = S(0) +
(	t)α3

�(α3 + 2)

n∑

j=0

(
f1(Sj, Ij, Rj, τj)

)
(n + 1 – j)α3 (n – j + 2 + α3)

– (n – j)α3 (n – j + 1 + α3))

–
(
f1(Sj–1, Ij–1, Rj–1, τj–1)

)
(n + 1 – j)α3+1 – (n – j)α3 (n – j + 1 + α3)),

I(tn+1) = I(0) +
(	t)α3

�(α3 + 2)

n∑

j=0

(
f2(Sj, Ij, Rj, τj)

)
(n + 1 – j)α3 (n – j + 2 + α3)

– (n – j)α3 (n – j + 1 + α3))
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Figure 3 Numerical simulation of the susceptible population S(t), the infected population I(t), and the
recovered population R(t) for different values of fractional order. The values of the parameters are stated in
Table 2

–
(
f2(Sj–1, Ij–1, Rj–1, τj–1)

)
(n + 1 – j)α3+1

– (n – j)α3 (n – j + 1 + α3)),

R(tn+1) = R(0) +
(	t)α3

�(α3 + 2)

n∑

j=0

(
f3(Sj, Ij, Rj, τj)

)
(n + 1 – j)α3 (n – j + 2 + α3)

– (n – j)α3 (n – j + 1 + α3))

–
(
f3(Sj–1, Ij–1, Rj–1, τj–1)

)
(n + 1 – j)α3+1 – (n – j)α3 (n – j + 1 + α3)).

Figure 3 shows numerical simulations for different values of fractional order. We observe
a slight change in the behavior of curves as the values of fractional order increase.
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8 Conclusion
In this paper, we considered the SIR model with general incidence rate function and non-
linear recovery rate to model the spread of disease. The nonlinear recovery rate depends
on the influence of health system.

We proved the existence, uniqueness, and boundedness of the model solution. We stud-
ied all possible steady-state solutions of the model and details of stability and also derived
the reproductive number. The analysis shows that the free steady state is locally stable
when the reproductive number is less than unity and unstable otherwise. The model shows
the phenomenon of backward bifurcation when R0 < 0 and the parameter b1 is less than
the critical value given by

b1 < b1,cr =
μ1S0[a2(μ3 + γ1)(α1 – α0)S0 + a1(μ3 + γ1)(α1 – α0)]
[α1 + μ2][S0a3μ1(μ3 + γ1) + a1(α1μ3 + μ2[γ1 + μ3])]

. (76)

When the parameter b1 is sufficiently greater that the critical value b1,cr, the disease in-
fection decreases because the number of hospital beds increases. Therefore, to treat the
disease in a community, the hospital resources must be improved.

Finally, we applied the theory of fractional derivatives to the model for different values
of fractional orders. We used the numerical technique of Atangan and Toufiq, which is
very accurate for solving fractional differential equations.
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