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Abstract
This paper is motivated by the series of research papers that consider parasitoids’
external input upon the host–parasitoid interactions. We explore a class of
host–parasitoid models with variable release and constant release of parasitoids. We
assume that the host population has a constant rate of increase, but we do not
assume any density dependence regulation other than parasitism acting on the host
population. We compare the obtained results for constant stocking with the results
for proportional stocking. We observe that under a specific condition, the release of a
constant number of parasitoids can eventually drive the host population (pests) to
extinction. There is always a boundary equilibrium where the host population extinct
occurs, and the parasitoid population is stabilized at the constant stocking level. The
constant and variable stocking can decrease the host population level in the unique
interior equilibrium point; on the other hand, the parasitoid population level stays
constant and does not depend on stocking. We prove the existence of
Neimark–Sacker bifurcation and compute the approximation of the closed invariant
curve. Then we consider a few host–parasitoid models with proportional and
constant stocking, where we choose well-known probability functions of parasitism.
By using the software package Mathematica we provide numerical simulations to
support our study.

Keywords: Difference equations; Equilibrium; Host–parasitoid; Neimark–Sacker
bifurcation; Stability; Stocking

1 Introduction
Mathematical models of host–parasitoid interaction can exhibit an exciting and com-
plex dynamics. Among host–parasitoid models, competitive models can have simple dy-
namics. There is a competitive exclusion principle in ecology that states that two-species
competing for the same limited recourse cannot coexist indefinitely. (Similar competition
scenarios take part in mathematical models from biomathematics involving chemotaxis
and/or reaction–diffusion phenomena for a single species: see [19, 21].) One population
will drive away another. If any of the depleted population members remained, it would
happen because they adapted to different niches.

© The Author(s) 2021. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other
third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

https://doi.org/10.1186/s13662-020-03193-9
http://crossmark.crossref.org/dialog/?doi=10.1186/s13662-020-03193-9&domain=pdf
http://orcid.org/0000-0002-5331-9766
mailto:kalabusicsenada06@gmail.com
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There are a lot of research papers about the host–parasitoid models under different eco-
logical factors and different assumptions; see, for example, [2, 3, 6, 10–13, 15–17, 20] and
references therein.

The following system of difference equations gives a general model describing the host–
parasitoid behavior in discrete time:

xn+1 = rxnf (xn, yn),

yn+1 = exn
(
1 – f (xn, yn)

)
,

where xn and yn are the adult host and adult parasitoid densities, respectively, at genera-
tion n. The parameter r > 0 is the number of eggs laid by a host that survives through the
larvae, pupae, and adult stages, and f (xn, yn) denotes the portion of host larvae that are
safe from parasitism. The parameter e > 0 is the number of eggs laid by a parasitoid on a
single host that survives through larvae, pupae, and adult stages. In the classical discrete-
time Nicholson–Bailey model, f (xn, yn) = e–ayn , where a is the searching efficiency of the
parasitoid, referred to as the “area of discovery.”

Lauwerier and Metz [20] investigated the following generalization of the Nicholson–
Bailey model:

xn+1 = rxnf (yn),

yn+1 = rxn
(
1 – f (yn)

)
,

(1)

where f (yn) is the fraction of host larvae that escapes parasitism, 1 – f (yn) is the frac-
tion of host larvae that will be parasitized. The function f (y) is differentiable such that
f ′(y) < 0, f (0) = r, and f (∞) < 1. The Neimark–Sacker bifurcation of nontrivial equilib-
rium of (1) was studied in [20] for various combinations of the parameters. The obtained
results were applied to the several well-known special cases of the function f . The authors
investigated in particular the so-called simple (S) model where f (y) = 1/(1 + ym), m > 0, the
Hassel–Varley (HV ) model where f (y) = e–ym , 0 < m ≤ 1 (Hassell and Varley, 1969, [11]),
the parasitoid–parasitoid interaction (PP) model where f (y) = e–

√
1+y–1

m , m > 0 (Metz, Vaz
Nunez 1977, [20]), and the Hassel (H) model where f (y) = [me–y + (1 – m)e–by], 0 < m < 1,
b > 0 (Hassell, 1984, [10]). If m < 1, then there is mutual interference between parasitoids.
If m > 1, then there is cooperative hunting. If m = 1, then there is no cooperation among
parasitoids.

In [3], we examined how the possibility of a proportional refuge for a host affects the
dynamics of model (1), that is, we consider the model

xn+1 = axn + bxnf (yn),

yn+1 = cxn
(
1 – f (yn)

)
,

where f (y) is a differentiable function such that f ′(y) < 0, f (0) = 1, and f (∞) = 0.
In [17], by using the analytical approach we explore the global behavior and bifurcation

in a class of host–parasitoid models when a constant number of the hosts are safe from
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parasitism:

xn+1 = a + bxnf (yn),

yn+1 = cxn
(
1 – f (yn)

)
,

where a, b, c > 0, f (yn) is the proportion of hosts that are safe from parasitism and satisfies
the following assumption:

(H1) f ∈ C[0,∞)∩C3(0,∞), f (y) > 0, f ′(y) < 0, f ′′(y) ≥ 0 for y > 0, and f (0) = 1, f (∞) = 0.
The parameter b can be interpreted as the intrinsic growth rate of the host population
unsafe from attack by parasitoids.

Biological control is a method of reducing pest populations by natural enemies, also
known as biological control agents. Many natural host populations are pests. Many wasps
and some flies are parasitoids, and most of the parasitoids have a narrow host range that
can be used as biological control agents. When natural enemies are not present in adequate
quantities to reduce pests, they can sometimes be increased with natural enemies’ release.
There are two inoculative and inundative releases. Inoculative releases are applied when
the pest populations are low, and relatively few natural enemies are released, usually once
or twice over the season. Inundative releases involve releasing large numbers of natural
enemies, often several times over a growing season.

Many authors studied the effects of inoculative release or external stocking in the
discrete-time host–parasitoid models; see, for example, [1, 4, 6, 8, 9, 13, 14, 18, 26] and
references therein. Yakubu [30] showed that a stocking with constant or variable rate or
harvesting may be used to obtain stable coexistence of two competing species that would
otherwise exclude each other with no stocking or harvesting occurs. Selgrade and Roberds
[26] introduced a constant stocking or harvesting into a general class of two-dimensional
discrete populations models where each fitness function depends on a linear combination
of the densities of the interacting populations. They obtained conditions under which the
stocking or harvesting will reverse the period-doubling bifurcation and stabilize the equi-
librium, which otherwise, with no stocking or harvesting, would lose stability through a
period-doubling bifurcation. In a recent paper [31] the authors consider a two-species
competitive model described by differential equations with Michaelis–Menten-type har-
vesting in the first species. They show that nonlinear harvesting can exhibit more compli-
cated dynamics compared to linear harvesting.

Insect populations frequently suffer some density-dependent effect in addition to mor-
tality from insect parasitoid [23]. In [23], authors were examining the question “Does the
ordering of density dependence and parasitism in the host life cycle have a significant ef-
fect on the dynamics of the interaction?” To discuss this question, they examined three
host–parasitoid model properties, each having the host density-dependence acting differ-
ently. They concluded that the relative position in the life cycle of parasitism and density
dependence in models does indeed affect their dynamical properties. In [14] the authors
considered a simple discrete-time host–parasitoid model to explore the impact of exter-
nal input of parasitoids upon the host–parasitoid interactions, where it was assumed that
parasitism occurs first followed by density-dependence. Jang [13] studied two general two-
dimensional host–parasitoid systems, one with no stocking and the other with stocking.
In both models, it was assumed that the density-dependence of the host acts first followed
by parasitism, unlike the models investigated in [14]. The pest population is considered
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to host, and the parasitoids are natural enemies of the hosts. She found that a constant
stocking can eliminate the pests if the stocking is sufficiently large. Moreover, stocking
can simplify the host–parasitoid interaction by stabilizing a coexisting steady state.

Motivated by the research papers mentioned above, the primary goal of this paper is
investigating a class of host–parasitoid models with variable and constant parasitoid pop-
ulation stock rates. Assuming that the number of parasitoids released per generation into
host–parasitoid interaction is a function of density yn, we denote the stocking rate of par-
asitoids by g(yn), where the function g : [0,∞) → [0,∞) is continuous and nonnegative.
That is, we consider the following two-dimensional host–parasitoid model:

xn+1 = axnf (yn), (2)

yn+1 = bxn
(
1 – f (yn)

)
+ g(yn),

where a, b, c, and d are positive real constants. The function f satisfies the following
assumptions: f is a real nonnegative function that is sufficiently smooth on (0,∞) with
f (0) = 1 and f (∞) = 0, f ′(y) exists for all y > 0, and f ′(y) < 0. The function f denotes the
proportion of host that escapes parasitism. In the absence of stocking g(yn) ≡ 0, if a = b,
then we have a host–parasitoid system explored in [20]. In variable stocking, a fixed por-
tion of parasitoids is released, g(yn) = cyn, where c > 0. In constant stocking, a fixed number
of parasitoids is added during each generation of parasitoids population, g(yn) = d, where
d is positive constant. Here we do not include density dependence regulation other then
parasitism acting on the host population. More precisely, we investigate the following two
host–parasitoid systems:

xn+1 = axnf (yn), (3)

yn+1 = bxn
(
1 – f (yn)

)
+ cyn,

and

xn+1 = axnf (yn), (4)

yn+1 = bxn
(
1 – f (yn)

)
+ d.

In system (3), we assume that the proportional level of parasitoids is added per genera-
tion into host–parasitoid interaction to control the host population. In system (4), it is as-
sumed that a constant number of parasitoids is added per generation into host–parasitoid
interaction to control the host population. We compare the long-term behavior of these
two systems and compare the long-term behavior of each system with the system investi-
gated in [20].

We organize the rest of the paper as follows. In Sect. 2, we present linearized stability
results for system (2) with no stocking. Then we analyze system (3) with variable released
entirely. In the case of the coexisting steady state, we show that if the host growth rate is
greater than 1 and if 0 < c < 1, then the level of the host population decreases as a function
of c in the unique interior equilibrium. The level of parasitoids population stays constant.
Similarly to the system with no stocking, the extinction equilibrium with variable stocking
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can be globally asymptotically stable. The effect of constant stocking of parasitoids is stud-
ied in Sect. 2.3. We can see that the constant stocking of parasitoids can eliminate the host
(pests) population. See Theorem 2 in this subsection. We obtain that the constant stocking
eliminates the equilibrium for which the host population survives and the parasitoid ex-
tinct. This equilibrium type exists in model (2) with no stocking (g(yn) ≡ 0) and model (3)
with variable stocking, and in both systems, this equilibrium is semistable. The constant
stocking eliminates the system extinction equilibrium with no stocking and the system
with variable stocking. Moreover, the constant stocking of the parasitoids can lower the
host level in the unique coexisting equilibrium. In each model, a Neimark–Sacker bifur-
cation occurs when the interior equilibrium becomes nonhyperbolic. Thus the oscillatory
behavior of two species appears about the interior steady state. A few examples of host–
parasitoid models with proportional and constant stocking with well-known functions of
probability of escaping parasitism are given in Sect. 2.4. Using the software package Math-
ematica, we provide numerical simulations for these examples to support our findings.
Finally, the conclusion is given in Sect. 3.

2 Systems with stocking of parasitoids
First, we state linearized stability results for a simple model of host–parasitoid interaction
(2) with no stocking. Like we said, the Neimark–Sacker bifurcation of model (2) with no
stocking and a = b was studied in [20]. Then we provide a detailed analysis of system (2)
with proportional and constant stocking of parasitoids.

2.1 System with no stocking
The host–parasitoid interaction without external stocking of parasitoids is given by

xn+1 = axnf (yn), (5)

yn+1 = bxn
(
1 – f (yn)

)
.

Equilibria (x̄, ȳ) of (5) satisfy the following equations:

x̄ = ax̄f (ȳ), (6)

ȳ = bx̄
(
1 – f (ȳ)

)
.

Obviously, system (5) has an extinction equilibrium E0 = (0, 0) where both populations
become extinct. The extinction equilibrium always exists. For a > 1, system (5) has an in-
terior equilibrium E1 = ( af –1( 1

a )
b(a–1) , f –1( 1

a )) in R
2
+, where both populations coexist. Moreover,

if a = 1 and f (ȳ) = 1, then system (5) has another boundary equilibrium E2 = (x̄, 0), where
the host population survives, and the parasitoid population becomes extinct.

The Jacobian matrix of system (5) has the following form

J(x, y) =

(
af (y) axf ′(y)

b(1 – f (y)) –bxf ′(y)

)

.

The Jacobian matrix evaluated at E0 = (0, 0) is

J(0, 0) =

(
a 0
0 0

)

.
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The eigenvalues are λ1 = a and λ2 = 0. We further assume that f ′
+(0) and f ′′

+ (0) exist. The
proof of the following lemma is straightforward and is omitted.

Lemma 1
(i) If a < 1, then E0 is globally asymptotically stable in R

2
+.

(ii) If a > 1, then E0 is unstable (a saddle point) with stable manifold
Ms = {(x, y) : x = 0, 0 < y < ∞} and unstable manifold Mu = {(x, y) : 0 < x < ∞, y = 0}.

(iii) If a = 1, then E0 is globally attracting.

The Jacobian matrix evaluated at E1 = ( af –1( 1
a )

b(a–1) , f –1( 1
a )) has the form

J(E1) =

(
1 ax̄f ′(ȳ)

b(a–1)
a –bx̄f ′(ȳ)

)

.

The trace and determinant of the Jacobian matrix are

Tr(J) = 1 – bx̄f ′(ȳ), Det(J) = –abx̄f ′(ȳ),

respectively. Notice that both expressions are positive.
Using the linearized stability results, we obtain the following lemma, which describes

the interior local character of equilibrium.

Lemma 2 The following statements hold:
(i) If –x̄f ′(ȳ) < 1

ab , then E1 is locally asymptotically stable.
(ii) If –x̄f ′(ȳ) > 1

ab , then E1 is a repeller.
(iii) If –x̄f ′(ȳ) = 1

ab , then E1 is nonhyperbolic with complex conjugate eigenvalues

λ1 = 1–a+i
√

(a+1)(3a–1)
2a , λ2 = 1–a–i

√
(a+1)(3a–1)
2a of modulus 1.

The third statement of the lemma shows the occurrence of the Neimark–Sacker bifur-
cation described in [20].

At the boundary equilibrium E2 = (x̄, 0) the Jacobian is

J(E2) =

(
1 x̄
0 –bx̄f ′(y)

)

.

The trace and determinant of this Jacobian are Tr(J) = 1 – bx̄f ′(0) and Det(J) = –bx̄f ′(0).
Observe that Tr(J) = 1 + Det(J), which implies that the boundary equilibrium is nonhyper-
bolic. The eigenvalues are λ1 = 1 and λ2 = –bx̄f ′(0). We apply the center manifold theory
to answer weather E2 is locally asymptotically stable or unstable. To shift the equilibrium
(x̄, 0) to the origin, we set un = xn – x̄, vn = yn. System (5) becomes

un+1 = (un + x̄)f (vn) – x̄,

vn+1 = b(un + x̄)
(
1 – f (vn)

)
.
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Set F(u, v) = (u + x̄)f (v) – x̄, G(u, v) = b(u + x̄)(1 – f (v)). Taylor’s expansions of the functions
F(u, v) and G(u, v) at (0, 0) are, respectively,

F(u, v) = u + x̄f ′(0)v + f ′(0)uv +
1
2

x̄f ′′(0)v2 + O3,

G(u, v) = –bx̄f ′(0)v – bf ′(0)uv –
1
2

f ′′(0)x̄ + O3.

Now we can write the system in the form

(
u
v

)

�→
(

1 x̄f ′(0)
0 –bx̄f ′(0)

)(
u
v

)

+

(
f ′(0)uv + 1

2 x̄f ′′(0)v2 + O3

–bf ′(0)uv – 1
2 f ′′(0)x̄ + O3

)

.

Set A =
(

1 x̄f ′(0)
0 –bx̄f ′(0)

)
. The eigenvalues associated with the matrix A are λ1 = 1 and λ2 =

–bx̄f ′(0), and the corresponding eigenvectors are v1 =
( 1

0

)
and v2 =

(
1

– 1+bx̄f ′(0)
x̄f ′(0)

)
, respec-

tively. Set T =
(

1 1
0 – 1+bx̄f ′(0)–c

x̄f ′(0)

)
. The inverse matrix of T is T–1 =

(
1 x̄f ′(0)

1+bx̄f ′(0)

0 –x̄f ′(0)
1+bx̄f ′(0)

)

.

Letting
( u

v
)

= T
( ω1

ω2

)
, we have u = ω1 + ω2 and v = – 1+bx̄f ′(0)

x̄f ′(0) ω2.
Now we have

T

(
ω1

ω2

)

�→
(

1 x̄f ′(0)
0 –bx̄f ′(0)

)

T

(
ω1

ω2

)

+

(
F1(ω1,ω2)
G1(ω1,ω2)

)

,

where

F1(ω1,ω2) = –f ′(0)
1 + bx̄f ′(0)

x̄f ′(0)
ω1ω2

+
(

x̄f ′′(0)
2

(
1 + bx̄f ′(0)

x̄f ′(0)

)2

– f ′(0)
1 + bx̄f ′(0)

x̄f ′(0)

)
ω2

2 + O3,

and

G1(ω1,ω2) = bf ′(0)
1 + bx̄f ′(0)

x̄f ′(0)
ω1ω2

+
(

bf ′(0)(1 + bx̄f ′(0))
x̄f ′(0)

–
bx̄f ′′(0)

2

(
1 + x̄f ′(0)

x̄f ′(0)

)2)
ω2

2 + O3.

We have
(

ω1

ω2

)

�→
(

1 0
0 –bx̄f ′(0)

)(
ω1

ω2

)

+

(
F2(ω1,ω2)
G2(ω1,ω2)

)

, where

(
F2(ω1,ω2)
G2(ω1,ω2)

)

= T–1

(
F1(ω1,ω2)
G1(ω1,ω2)

)

, and

F2(ω1,ω2) =
–1
x̄

ω1ω2 +
(

–1
x̄

+
x̄f ′′(0)(1 + bx̄f ′(0))

2(x̄f ′(0))2

)
ω2

2,

G2(ω1,ω2) = –bf ′(0)ω1ω2 –
(

bf ′(0) –
x̄f ′′(0)(1 + bx̄f ′(0))

2x̄f ′(0)

)
ω2

2.
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Assume that the center manifold has the form ω1 = h(ω2) = d1ω
2
2 + d2ω

3
2. We compute

the coefficients d1, d2 from the equation

h
((

–bx̄f ′(0)
)
ω2 + G2

((
h(ω2)

)
,ω2

))
– h(ω2) – F2

(
h(ω2)

)
,ω2) = 0.

Then we equate equal powers of ω2, and in that way we can compute h(ω2). After tedious
calculations we obtain that the dynamics of the system is reduced to the dynamics of the
following one-dimensional function:

ω2 �→ (
–bx̄f ′(0)

)
ω2 –

(
bf ′(0) –

bx̄f ′(0)(1 + bx̄f ′(0))
2x̄f ′(0)

)
ω2

2 – bf ′(0)d1ω
3
2.

Now we easily see that if –bx̄f ′(0) < 1, then the zero equilibrium is locally asymptotically
stable, and if –bx̄f ′(0) > 1, then it is unstable. As result of the above discussion, we have
the following lemma.

Lemma 3 For the boundary equilibrium of system (5), the following statements hold:
(i) If –bx̄f ′(0) < 1, then (x̄, 0) is locally asymptotically stable.

(ii) If –bx̄f ′(0) > 1, then (x̄, 0) is unstable.

2.2 The host–parasitoid system with variable stocking
In this subsection, we investigate the host–parasitoid model with variable stocking

xn+1 = axnf (yn), (7)

yn+1 = bxn
(
1 – f (yn)

)
+ cyn,

where a, b, c are positive real parameters, and f : R+ → [0, 1] is such that f (y) > 0, f ′(y) < 0,
and f (0) = 1, f (∞) = 0.

Before we compute equilibrium points and analyze their stability, we note the following.
If c > 1, then the second equation of system (7) implies yn > cn–1y0, where y0 is a given
initial state of parasitoids. Hence yn → ∞ as n → ∞. From the first equation of system (7)
we have that xn+1 < af (cn–1y0)xn. Since the function f is continuous and decreasing with
f (∞) = 0, there exists n0 > 1 such that af (cn–1y0) < af (cn0–1y0) < 1 for all n ≥ n0, which
implies that xn → 0 as n → ∞. So we have the following lemma.

Lemma 4 Let c > 1. Then (xn, yn) → (0,∞) as n → ∞.

Lemma 4 states that if the coefficient of releasement c is greater than one, then the host
population goes to extinction asymptotically.

The equilibrium points (x̄, ȳ) of system (7) are solutions of the system

x̄ = ax̄f (ȳ),

ȳ = bx̄
(
1 – f (ȳ)

)
+ cȳ.

We easily see that if x̄ = 0 and c �= 1, then ȳ = 0, and the only solution is E0 = (0, 0). However,
if c = 1, then there is an infinite number of solutions of the form (0, ȳ) with ȳ ∈ R

+. Also,
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if ȳ = 0 and a �= 1, then the only solution is E0 = (0, 0). However, if a = 1, then there is an
infinite number of solutions of the form (x̄, 0) with x̄ ∈R

+. Now we assume that x̄ �= 0 and
ȳ �= 0. Then the first equation of system (7) implies f (ȳ) = 1

a or, equivalently, ȳ = f –1( 1
a ).

Now the second equation implies x̄ = a(1–c)
b(a–1) f –1( 1

a ). So, we obtain the equilibrium point
Ep = ( a(1–c)

b(a–1) f –1( 1
a ), f –1( 1

a )), which exists only if a > 1 and 0 < c < 1.
To examine the stability of the equilibrium points, we associate the following map with

system (7). Set

T

(
x
y

)

=

(
axf (y)

bx(1 – f (y)) + cy

)

=

(
f (x, y)
g(x, y)

)

. (8)

The Jacobian associated with map (8) is

J(T) =

(
af (y) axf ′(y)

b(1 – f (y)) –bxf ′(y) + c

)

. (9)

The following lemma holds for the extinction equilibrium E0 = (0, 0). We further assume
that f ′

+(0), f ′′
+ (0) exist.

Lemma 5 The following lemma holds for E0 = (0, 0):
(i) If 0 < a < 1 and 0 < c < 1, then E0 is locally asymptotically stable. If, in addition,

f ′′(y) > 0 for all y ∈R+, then E0 is globally asymptotically stable.
(ii) If a > 1 and c > 1, then E0 is a repeller.

(iii) If either a > 1 and 0 < c < 1 or 0 < a < 1 and c > 1, then E0 is a saddle point with
stable manifold Ms

1 and unstable manifold Mu
1 , where either

Ms
1 =

{
(x, y) : x = 0, 0 < y < ∞}

, Mu
1 =

{
(x, y) : 0 < x < ∞, y = 0

}

or

Ms
1 =

{
(x, y) : 0 < x < ∞, y = 0

}
, Mu

1 =
{

(x, y) : x = 0, 0 < y < ∞}
.

Proof We prove statement (i), since the proofs of statements (ii) and (iii) follow directly
from the linearized stability result. The Jacobian of the map T at the point E0 is

J =

(
a 0
0 c

)

.

Sine a < 1, the first equation of system (7) implies xn+1 < axn and xn → 0 as n → ∞.
That is, for all ε > 0, there exists n0 such that xn < ε for all n ≥ n0. Now, for n ≥ n0, from
the second equation we have yn+1 < bε(1 – f (yn)) + cyn. Set zn+1 = bε(1 – f (zn)) + czn and
h(z) = bε(1 – f (z)) + cz. We have h′(z) = –bεf ′(z) + c > 0. Since f ′(z) is a decreasing function
with f (∞) = 0 and ε > 0 is arbitrarily small, –bεf ′(0) can be arbitrarily small, which implies
that h′(0) = –bεf ′(0) + c can be less than 1. On the other hand, h′′(z) = –bεf ′′(z) < 0, since
f ′′(z) > 0. Lemma 3 from [2] implies that z = 0 is a unique fixed point of the function h(z),
which is globally asymptotically stable. Now we conclude yn → 0 as n → ∞. Hence (0, 0)
is globally asymptotically stable. �
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Lemma 6
(i) If a = 1 and 0 < c < 1 or c > 1, then the equilibrium (x̄, 0) of system (7) is

nonhyperbolic, and its dynamics is reduced to the one-dimensional map
ω2 �→ (–bx̄f ′(0) + c)ω2 – (bf ′(0) – bx̄f ′(0)(1+bx̄f ′(0)–c)

2x̄f ′(0) )ω2
2 – bf ′(0)D1ω

3
2 , where

D1 = 1
(1–bx̄f ′(0)+c)2 ( f ′(0)(c–1)

x̄f ′(0) + x̄f ′′(0)
x̄f ′(0) – f ′(0)(c–1)

x̄f ′(0) ). If 0 < c < 1 and –bx̄f ′(0) < 1 – c, then
(x̄, 0) is locally asymptotically stable. If c > 1, then –bx̄f ′(0) > 1 – c, that is, (x̄, 0) is
unstable.

(ii) If c = 1 and 0 < a < 1 or a > 1, then the equilibrium (0, ȳ) of system (7) is
nonhyperbolic, and its dynamics is reduced to the one-dimensional map
w1 �→ af (ȳ)w1 + f ′(ȳ)(w2

1 + c1w3
1 + c2w4

1), where

c1 =
f ′(ȳ)(f (ȳ)(a + 1) – 2)

a2(f (ȳ))2(f (ȳ) – 1) – f (ȳ) + 1 – f ′(ȳ)(f (ȳ)(a + 1) – 2))

and

c2 =
–2ac1f (ȳ)f ′(ȳ)(f (ȳ) – 1))

a3(f (ȳ))3(f (ȳ) – 1) – f (ȳ) + 1 + f ′(ȳ)(f (ȳ)(a + 1) – 2)
.

If af (ȳ) < 1, then (0, ȳ) is locally asymptotically stable. If af (ȳ) > 1, then (0, ȳ) is
unstable.

Proof (i) If a = 1 and 0 < c < 1 or c > 1, then the Jacobian matrix at (x̄, 0) has the form J =(
1 x̄f ′(0)
0 –bx̄f ′(0)+c

)
, and we see that Tr(J) = 1 + Det(J), which means that (x̄, 0) is nonhyperbolic.

Now we compute the corresponding center manifold. First, we shift the equilibrium point
(x̄, 0) of system (7) to the origin by letting un = xn – x̄, vn = yn. So, we have the system

un+1 = (un + x̄)f (vn) – x̄,

vn+1 = b(un + x̄)
(
1 – f (vn)

)
+ cvn. (10)

System (10) has (0, 0) as an equilibrium point. The map associated with system (10) is
given by

T

(
u
v

)

=

(
(u + x̄)f (v) – x̄

b(u + x̄)(1 – f (v)) + cv

)

.

Set

F(u, v) = (u + x̄)f (v) – x̄ and G(u, v) = b(u + x̄)
(
1 – f (v)

)
+ cv.

Taylor’s expansions of these two maps at the point (0, 0) are given by

F(u, v) = u + x̄f ′(0)v + f ′(0)uv +
x̄f ′′(0)

2
v2 + O3,

G(u, v) =
(
–bx̄f ′(0) + c

)
v – bf ′(0)uv –

bx̄f ′′(0)
2

v2 + O3,

respectively.
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Now system (10) can be written in the form

(
u
v

)

�→
(

1 x̄f ′(0)
0 –bx̄f ′(0) + c

)(
u
v

)

+

(
f ′(0)uv + x̄f ′′(0)

2 v2 + O3

–bf ′(0)uv – bx̄f ′′(0)
2 v2 + O3

)

.

Set A =
(

1 x̄f ′(0)
0 –bx̄f ′(0)+c

)
. The eigenvalues associated with the matrix A are λ1 = 1 and λ2 =

–bx̄f ′(0) + c, and the corresponding eigenvectors are v1 =
( 1

0

)
and v2 =

(
1

– 1+bx̄f ′(0)–c
x̄f ′(0)

)
, re-

spectively. Set T =
(

1 1
0 – 1+bx̄f ′(0)–c

x̄f ′(0)

)
. The inverse matrix of T is T–1 =

(
1 x̄f ′(0)

1+bx̄f ′(0)–c

0 –x̄f ′(0)
1+bx̄f ′(0)–c

)

.

Letting
( u

v
)

= T
( ω1

ω2

)
, we have u = ω1 + ω2 and v = – 1+bx̄f ′(0)–c

x̄f ′(0) ω2.
Now we have

T

(
ω1

ω2

)

�→
(

1 x̄f ′(0)
0 –bx̄f ′(0) + c

)

T

(
ω1

ω2

)

+

(
F1(ω1,ω2)
G1(ω1,ω2)

)

,

where

F1(ω1,ω2) = –f ′(0)(
1 + bx̄f ′(0) – c

x̄f ′(0)
ω1ω2

+
(

x̄f ′′(0)
2

(
1 + bx̄f ′(0) – c

x̄f ′(0)

)2

– f ′(0)
1 + bx̄f ′(0) – c

x̄f ′(0)

)
ω2

2 + O3,

and

G1(ω1,ω2) = bf ′(0)
1 + bx̄f ′(0) – c

x̄f ′(0)
ω1ω2

+
(

bf ′(0)(1 + bx̄f ′(0) – c)
x̄f ′(0)

–
bx̄f ′′(0)

2

(
1 + x̄f ′(0) – c

x̄f ′(0)

)2)
ω2

2 + O3.

We have

(
ω1

ω2

)

�→
(

1 0
0 –bx̄f ′(0) + c

)(
ω1

ω2

)

+

(
F2(ω1,ω2)
G2(ω1,ω2)

)

, where

(
F2(ω1,ω2)
G2(ω1,ω2)

)

= T–1

(
F1(ω1,ω2)
G1(ω1,ω2)

)

, and

F2(ω1,ω2) =
f ′(0)(c – 1)

x̄f ′(0)
ω1ω2 +

(
f ′(0)(c – 1)

x̄f ′(0)
+

x̄f ′′(0)(1 – c)(1 + bx̄f ′(0) – c)
2(x̄f ′(0))2

)
ω2

2,

G2(ω1,ω2) = –bf ′(0)ω1ω2 –
(

bf ′(0) –
x̄f ′′(0)(1 + bx̄f ′(0) – c)

2x̄f ′(0)

)
ω2

2.

Assume that the center manifold has the form ω1 = h(ω2) = D1ω
2
2 + D2ω

3
2. We compute

the coefficients D1, D2 from the equation

h
((

–bx̄f ′(0) + c
)
ω2 + G1

((
h(ω2)

)
,ω2

))
– h(ω2) – F1

(
h(ω2)

)
,ω2) = 0.
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We then equate equal powers of ω2, and then in that way we can compute h(ω2). After
tedious calculations we obtain that the dynamics of the system is reduced to the dynamics
of the following one-dimensional map:

ω2 �→ (
–bx̄f ′(0) + c

)
ω2 –

(
bf ′(0) –

bx̄f ′(0)(1 + bx̄f ′(0) – c)
2x̄f ′(0)

)
ω2

2 – bf ′(0)D1ω
3
2.

Now we easily see that for 0 < c < 1, if –bx̄f ′(0) < 1 – c, then (x̄, 0) is locally asymptotically
stable. On the other hand, for c > 1, we have –bx̄f ′(0) > 1 – c, that is, (x̄, 0) is unstable.

(ii) If c = 1 and 0 < a < 1 or a > 1, then the Jacobian matrix at (0, ȳ) has the form J =(
f (ȳ) 0

b(1–f (ȳ)) 1

)
, and we see that Tr(J) = 1 + Det(J), which means that (x̄, 0) is nonhyperbolic. In

both cases, we easily see that the condition for nonhyperbolic equilibrium Tr(J) = 1+Det(J)
is satisfied. Now we compute the corresponding center manifold. By substitution un = xn,
vn = yn – ȳ system (7) becomes

un+1 = aunf (vn + ȳ), (11)

vn+1 = bun
(
1 – f (vn + ȳ)

)
+ vn,

and (0, 0) is an equilibrium point of this system.
Now we proceed as in the previous case. The linearized system at (0, 0) is

(
f (u, v)
g(u, v)

)

=

(
af (ȳ) 0

b(1 – f (ȳ) 1

)(
u
v

)

+

(
f ′(ȳ)uv

–bf ′(ȳ)uv

)

.

The matrix of the eigenvectors is T =
( 1 0

b(1–f (ȳ))
af (ȳ)–1 1

)
. Its inverse is T =

(
b(f (ȳ)–1)
1–af (ȳ) 0

b(1–f (ȳ))
1–af (ȳ) 1

)

. Now

take
( u

v
)

= T
( w1

w2

)
, that is, u = w1 and v = b(1–f (ȳ))

af (ȳ)–1 w1 + w2. The system becomes

T

(
w1

w2

)

�→
(

af (ȳ) 0
b(1 – f (ȳ)) 1

)

T

(
w1

w2

)

+

(
f ′(ȳ)w1( b(1–f (ȳ))

af (ȳ)–1 w1 + w2)

–bf ′(ȳ)w1( b(1–f (ȳ))
af (ȳ)–1 w1 + w2)

)

.

By applying T–1 we obtain

(
w1 w2

)
�→

(
af (ȳ) 0

0 1

)(
w1

w2

)

+

(
H1(w1, w2)
H2(w1, w2)

)

,

where

H1(w1, w2) = f ′(ȳ)
(
w2

1 + w1w2
)
,

H2(w1, w2) =
f ′(ȳ)(f (ȳ)(a + 1) – 2)

f (ȳ) – 1
(
w2

1 + w1w2
)
.

Assume that the center manifold has the form w2 = h(w1) = c1w2
1 + c2w3

2. We compute
the coefficients c – 1 and c2 from the equation

h
(
af (ȳ)w1 + f ′(ȳ)

(
w2

1 + w1h(w1)
))

– h(w1) –
f ′(ȳ)(f (ȳ)(a + 1) – 2)

f (ȳ) – 1
(
w2

1 + w1h(w1)
)

= 0.
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We then equate equal powers of w1 and obtain that

c1 =
f ′(ȳ)(f (ȳ)(a + 1) – 2)

a2(f (ȳ))2(f (ȳ) – 1) – f (ȳ) + 1 – f ′(ȳ)(f (ȳ)(a + 1) – 2))

and

c2 =
–2ac1f (ȳ)f ′(ȳ)(f (ȳ) – 1))

a3(f (ȳ))3(f (ȳ) – 1) – f (ȳ) + 1 + f ′(ȳ)(f (ȳ)(a + 1) – 2)
.

So, we compute h(w1). Now the dynamics of the system is reduced to the one-dimensional
map w1 �→ af (ȳ)w1 + f ′(ȳ)(w2

1 + c1w3
1 + c2w4

1). Now we easily see that the zero is an equilib-
rium point of this map and if af (ȳ) < 1, then the zero equilibrium is locally asymptotically
stable. If af (ȳ) > 1, then the zero equilibrium is unstable. �

Now we investigate the stability of the coexistence equilibrium Ep(x̄, ȳ) = ( a(1–c)
b(a–1) f –1( 1

a ),
f –1( 1

a )) = ( a(1–c)
b(a–1) ȳ, ȳ). The Jacobian evaluated at Ep is given by

J =

(
1 ax̄f ′(ȳ)

b(a–1)
a –bx̄f ′(ȳ) + c

)

.

Lemma 7 Let 0 < c < 1 and a > 1. Then the following statements hold:
(i) If –x̄f ′(ȳ) < 1–c

ab or, equivalently, –ȳf ′(ȳ) < a–1
a2 , then Ep is locally asymptotically

stable.
(ii) If –x̄f ′(ȳ) > 1–c

ab or, equivalently, –ȳf ′(ȳ) > a–1
a2 , then Ep is a repeller.

(iii) If –x̄f ′(ȳ) = 1–c
ab or, equivalently, –ȳf ′(ȳ) = a–1

a2 , then there are complex-conjugate
eigenvalues μ1 and μ̄1, where

μ1 =
(a + 1) + c(a – 1) + i

√
(1 – c)(a – 1)(3a + 1 + c(a – 1))

2a

and |μ1| = 1.

Proof The proof is based on the linearized stability theorem. The trace and determinant
of the Jacobian at the point Ep are

Tr(J) = 1 – bx̄f ′(ȳ) + c > 0,

Det(J) = –bx̄f ′(ȳ) + c – b(a – 1)x̄f ′(ȳ) = c – abx̄f ′(ȳ) > 0,

respectively. Note that the trace and determinant are always greater than zero. Since 0 <
c < 1 and a > 1, we see that the determinant is always greater than zero. Now we check the
condition

∣∣Tr(J)
∣∣ < 1 + Det(J) < 2.

This condition is equivalent to

1 – bx̄f ′(ȳ) + c < 1 + c – bax̄f ′(ȳ) < 2.
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We easily see that the left inequality is always true. On the other hand, the second inequal-
ity holds if –x̄f ′(ȳ) < 1–c

ab and statement (i) is true. Now we check the conditions

∣∣Tr(J)
∣∣ < 1 + Det(J) and

∣∣Det(J)
∣∣ > 1.

These conditions are equivalent to

1 – bx̄f ′(ȳ) + c < 1 + c – ab and c – abx̄f ′(ȳ) > 1.

The first inequality is always true, and the second holds if

–x̄f ′(ȳ) >
1 – c
ab

,

that is, the equilibrium is a repeller.
If –x̄f ′(ȳ) = 1–c

ab , then the Jacobian at Ep is

J(Ep) =

(
1 c–1

b
b(a–1)

a
1–c+ac

a

)

.

Straightforward calculations show that Det(J) = 1 and the eigenvalues are μ1 and μ̄1, where
|μ1| = 1 and μ1 = (a+1)+c(a–1)+i

√
(1–c)(a–1)(3a+1+c(a–1))

2a . �

The third statement of the lemma shows that the Neimark–Sacker bifurcation can occur.
To see the kind of dependence between the interior equilibrium and the coefficients of

the releasement c, we consider x̄ as a function of c. Observe that ȳ does not depend on c.
The first derivative is x̄′(c) = – af –1( 1

a )
b(a–1) . For a > 1, the host population level at the interior

steady state decreases. On the other hand, the level of the parasitoid population is con-
stant.

As we saw in Lemma 7, for a > 1, a Neimark–Sacker bifurcation can occur at the in-
terior equilibrium. In the following subsection, we prove the existence and compute the
direction of the Neimark–Sacker bifurcation.

2.2.1 Neimark–Sacker bifurcation
When parameter a > 1 varies, a Neimark–Sacker bifurcation occurs at Ep. Therefore Ep

becomes unstable, and a stable invariant curve appears around Ep. Moreover, we compute
the asymptotic approximation of this invariant curve caused by Neimark–Sacker bifur-
cation. The occurrence of Neimark–Sacker bifurcations is very significant in biological
systems since it suggests the existence of oscillatory behavior of the populations.

By using procedure given in [25] we find an explicit form of the limit curve near the
positive equilibrium point of (7). According to the procedure, by change of variable un =
xn – a(1–c)ȳ

(a–1)b and vn = yn – ȳ we shift the equilibrium point (x̄, ȳ) = ( a(1–c)ȳ
(a–1)b , ȳ) to the origin.

We have
⎧
⎨

⎩
un+1 = a( a(1–c)ȳ

(a–1)b + un)f (vn + ȳ) – a(1–c)ȳ
(a–1)b ,

vn+1 = b( a(1–c)ȳ
(a–1)b + un)(1 – f (vn + ȳ)) + c(vn + ȳ) – ȳ.

(12)
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Let F1 be the map associated with system (12), that is,

F1

(
u
v

)

=

(
a( a(1–c)ȳ

(a–1)b + u)f (ȳ + v) – a(1–c)ȳ
(a–1)b

b( a(1–c)ȳ
(a–1)b + u)(1 – f (ȳ + v)) + c(ȳ + v) – ȳ

)

.

The Jacobian matrix associated with the map F1 is

JacF1 (u, v) =

(
af (v + ȳ) a(u – a(c–1)ȳ

(a–1)b )f ′(v + ȳ)

b(1 – f (v + ȳ)) c – b(u – a(c–1)ȳ
(a–1)b )f ′(v + ȳ)

)

.

Now (0, 0) is a fixed point of F1, and

JacF1 (0, 0) =

⎛

⎝
1 a2(1–c)ȳf ′(ȳ)

(a–1)b
(a–1)b

a c + a(c–1)ȳf ′(ȳ)
a–1

⎞

⎠ . (13)

We further prove the existence of the Neimark–Sacker bifurcation. We need the follow-
ing lemma.

Lemma 8 Let a0 > 1 be such that

f (–1)
(

1
a0

)
f ′

(
f (–1)

(
1
a0

))
=

1 – a0

a2
0

.

Then (0, 0) is an equilibrium point of the map F1. If μ1(a0) and μ1(a0) are the corresponding
eigenvalues of A1 = JacF1 (0, 0)|a=a0 , then

μ1(a0) =
(a0 – 1)c + a0 + i�1 + 1

2a0
,

where

�1 =
√

1 – c
√

(a0 – 1)
(
a0(c + 3) – c + 1

)
.

Furthermore:
(a) |μ1(a0)| = 1;
(b) μ1(a0)k �= 1 for k = 1, 2, 3, 4;
(c) d1 = d1(a0) = d

da |μ1(a)||a=a0 = (c–1)(a3
0 ȳ2f ′′(ȳ)–2a2

0+4a0–2)
2(a0–1)2a0

;
(d) The corresponding eigenvectors are

q1(a0) =
(

–a0c + a0 + c + i�1 – 1
2(a0 – 1)b

, 1
)T

and

p1(a0) =
(

–
i(a0 – 1)b

�1
,

2a0

a0(c + 3) – c – i�1 + 1

)
,

where A1q1(a0) = μ1q1(a0), p1(a0)A1 = μ1p1(a0), and p1(a0)q1(a0) = 1.
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Proof Let a0 be such that

f (–1)
(

1
a0

)
f ′

(
f (–1)

(
1
a0

))
=

1 – a0

a2
0

.

Now we have

A1 = JacF1 (0, 0) =

(
1 – (c–1)(1–a0)

b(a0–1)
b(a0–1)

a0
c + (c–1)(1–a0)

(a0–1)a0

)

.

Then μ1(a0) and μ1(a0) are the eigenvalues of the A1, where

μ1(a0) =
(a0 – 1)c + a0 + 1 + i

√
1 – c

√
(a0 – 1)(a0(c + 3) – c + 1)

2a0
.

The corresponding eigenvectors are q1(a0) and q1(a0), respectively, where

q1(a0) =
(

–a0c + a0 + c – 1 + i
√

1 – c
√

(a0 – 1)(a0(c + 3) – c + 1)
2(a0 – 1)b

, 1
)T

.

A straightforward calculation shows that |μ1(a0)| = 1 and μk
1(a0) �= 1 for k = 1, 2, 3, 4. The

eigenvalues of (13) are

μ1(a) =
a(c – 1)ȳf ′(ȳ) + ac + a – c – 1 + i�(a, c)

2(a – 1)
,

where

�(a, c) =
√

(1 – c)
(
a2(c – 1)ȳ2f ′(ȳ)2 + 2a(a – 1)ȳ(–2a + c + 1)f ′(ȳ) + (a – 1)2(c – 1)

)
.

Now we get

∣∣μ1(a)
∣∣2 = μ1(a)μ1(a) =

a2(c – 1)ȳf ′(ȳ)
a – 1

+ c =
a2(c – 1)f (–1)( 1

a )f ′(f (–1)( 1
a ))

a – 1
+ c.

The first derivative with respect to a is

d
da

∣
∣μ1(a)

∣
∣ =

(
(c – 1)

(
f ′

(
f (–1)

(
1
a

))(
(a – 2)af (–1)

(
1
a

)
f ′

(
f (–1)

(
1
a

))
– a + 1

)

– (a – 1)f (–1)
(

1
a

)
f ′′

(
f (–1)

(
1
a

))))

/
(

2(a – 1)2f ′
(

f (–1)
(

1
a

))
√

a2(c – 1)f (–1)( 1
a )f ′(f (–1)( 1

a ))
a – 1

+ c
)

.

By using the fact

f (–1)
(

1
a0

)
f ′

(
f (–1)

(
1
a0

))
=

1 – a0

a2
0

,
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for a = a0, we obtain |μ1(a0)| = 1 and

d1 = d1(a0) =
d

da
∣∣μ1(a)

∣∣
∣
∣∣
∣
a=a0

=
(c – 1)(a3

0ȳ2f ′′(ȳ) – 2a2
0 + 4a0 – 2)

2(a0 – 1)2a0
,

where ȳ = ȳ(a0) = f (–1)( 1
a0

). The rest of the proof is almost immediate, so we skip it. �

For sufficiently small δ, let a = a0 + δ. By Lemma 8 system (12) can be transformed into
the Arnold normal form

zn+1 = μ(δ)zn + γ (δ)z2
nz̄n + O

(|zn|4
)
.

By polar coordinates we have

(
rn+1

θn+1

)

=

(
|μ(δ)|rn + α(δ)r3

n + O(r4
n)

θn + argμ(δ) + b(δ)r2
n + O(r3

n)

)

, (14)

where α(δ) = Re(γ (δ)/μ(δ)) and β(δ) = Im(γ (δ)/μ(δ)). By Taylor’s expansion of the coeffi-
cients about δ = 0, the first equation of (14) becomes

rn+1 =
(
1 + d1(a0)δ

)
rn + α1(0)r3

n + O
(
r4

n
)
.

Further, by the procedure described in [25] we compute K20 and K11. For a = a0, we have

F01

(
u
v

)

= A1

(
u
v

)

+ G01

(
u
v

)

, (15)

where

G01

(
u
v

)

=

⎛

⎝
a0buf (ȳ+v)– a0(c–1)ȳ(a0 f (ȳ+v)–1)

a0–1 –bu–cv+v
b

–a0buf (ȳ+v)+bu+(c–1)v
a0

+ (c–1)ȳ(a0f (ȳ+v)–1)
a0–1

⎞

⎠

=

⎛

⎝
a2

0(1–c)ȳv3f (3)(ȳ)
6(a0–1)b – a2

0(c–1)ȳv2f ′′(ȳ)
2(a0–1)b + 1

2 a0uv2f ′′(ȳ) + (1–a0)uv
a0 ȳ + O((|u| + |v|)4)

– (1–a0)buv
a2

0 ȳ + a0(c–1)ȳv3f (3)(ȳ)
6(a0–1) + a0(c–1)ȳv2f ′′(ȳ)

2(a0–1) – 1
2 buv2f ′′(ȳ) + O((|u| + |v|)4)

⎞

⎠ .

If we take the basis of R2 as �1 = (q1, q̄1), where q1 = q1(a0), then we can represent (u, v)
as

(
u
v

)

= �1

(
z
z̄

)

= (q1z + q̄1z̄).

Let

G01

(

�1

(
z
z̄

))

=
1
2
(
g20z2 + 2g11zz̄ + g02z̄2) + O

(|z|3). (16)
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By using package Mathematica we obtain

g20 =
∂2

∂z2 G01

(

�1

(
z
z̄

))∣
∣∣
∣∣
z=0

=

⎛

⎝
a3

0(1–c)ȳ2f ′′(ȳ)+(a0–1)(a0(c–1)–c–i�1+1)
(a0–1)a0bȳ

a3
0(c–1)ȳ2f ′′(ȳ)+(a0–1)(–a0c+a0+c+i�1–1)

(a0–1)a2
0 ȳ

⎞

⎠ ,

g11 =
∂2

∂z∂ z̄
G01

(

�1

(
z
z̄

))∣
∣∣
∣∣
z=0

=

⎛

⎝
(c–1)((a0–1)2–a3

0 ȳ2f ′′(ȳ))
(a0–1)a0bȳ

a0(c–1)ȳf ′′(ȳ)
a0–1 – (a0–1)(c–1)

a2
0 ȳ

⎞

⎠ .

(17)

Set

�2 = a3
0(c – 1)ȳ2f ′′(ȳ) + (a0 – 1)(–a0c + a0 + c + i�1 – 1)

and

�3 = –a0(c + 1)(2c – i�1 – 2) + a2
0
(
c(c + 2) – 1

)
+ (c – 1)(c – i�1 – 1).

We obtain

K20 =
(
μ2

1I – A1
)–1g20 =

⎛

⎝
– a0�2((a0–2)a0(c2–1)+i�1((a0–1)c+a0+1)+(c–1)2)

(a0–1)2b(c–1)�3 ȳ(a0(c+2)–c+1)

– �2((a0–1)(–a0(c+3)(c–1)+2a2
0+(c–1)2)–i�1((a0–1)c+a0+1))

(a0–1)2(c–1)�2 ȳ(a0(c+2)–c+1)

⎞

⎠ ,

K11 = (I – A1)–1g11 =

⎛

⎜
⎝

(c–1)((a0–1)2–a3
0 ȳ2f ′′(ȳ))

(a0–1)2bȳ
a2

0 ȳ2 f ′′(ȳ)
a0–1 + 1

a0
–1

ȳ

⎞

⎟
⎠ .

(18)

By using K20 and K11 we have

g21 =
∂3

∂z2∂ z̄
G01

(

�1

(
z
z̄

)

+
1
2

K20z2 + K11zz̄

)∣
∣∣
∣∣
z=0

. (19)

The package Mathematica yields

α1(0) = α1(a0) =
1
2

Re(p1g21μ̄1) =
(1 – c)(2(a0 – 1)3(a0(c – 1) – c) + �1(a0)a3

0ȳ2)
4(a0 – 1)2a2

0ȳ2 , (20)

where

�1(a0) = a3
0(c – 2)ȳ2f ′′(ȳ)2 + (1 – a0)

(
3(a0 – 1)c – 2a0 + 1

)
f ′′(ȳ) – (a0 – 1)a0P∗f (3)(ȳ).

Thus we have the following theorem; see [29].

Theorem 1 Let b > 0 and 0 < c < 1. Let a0 > 1 be a positive real number such that

f (–1)
(

1
a0

)
f ′

(
f (–1)

(
1
a0

))
=

1 – a0

a2
0

.
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If d1(a0) �= 0 and α1(a0) �= 0, then system (7) passes through a Neimark–Sacker bifurcation
at the unique positive equilibrium point

Ep(x̄, ȳ) =
(

a0(1 – c)
(a0 – 1)b

f (–1)
(

1
a0

)
, f (–1)

(
1
a0

))

when the parameter a varies in a small neighborhood of a0.
If d1(a0) > 0 and α1(a0) < 0 (resp., α1(a0) > 0), then the Neimark–Sacker bifurcation of

model (7) at a = a0 is supercritical (resp., subcritical), and there exists an unique closed
invariant curve �(a), which is attracting (resp., repelling), and bifurcates from Ep for a > a0

(resp., a < a0).
If d1(a0) < 0 and α1(a0) < 0 (resp., α1(a0) > 0), then the Neimark–Sacker bifurcation of

model (7) at a = a0 is supercritical (resp., subcritical), and there exists an unique closed
invariant curve �(a), which is attracting (resp., repelling), and bifurcates from Ep for a < a0

(resp., a > a0).
Let a = a0 + δ. Then for small δ, the curve �(a) can be approximated by

(
u
v

)

≈ (x̄, ȳ) + 2ρ0 Re
(
q1eiθ ) + ρ2

0
(
Re

(
K20e2iθ ) + K11

)
, θ ∈ R,

where

ρ0 =

√

–
d1(a0)
α1(a0)

δ.

2.3 The host–parasitoid model with constant stocking
We assume that the constant number d of the parasitoid is added to the host–parasitoid
interaction to control the host population; that is, we consider the system

xn+1 = axnf (yn), (21)

yn+1 = bxn
(
1 – f (yn)

)
+ d,

where the function f satisfies the same conditions as in model (2), and the constants
a, b, d > 0. The equilibrium points (x̄, ȳ) satisfy

x̄ = ax̄f (ȳ),

ȳ = bx̄
(
1 – f (ȳ)

)
+ d.

In contrast to the systems with no stocking and variable stocking, observe that system
(21) cannot have an extinction equilibrium since d is a positive constant. However, if x̄ = 0,
then ȳ = d. Hence there is a boundary equilibrium E0 = (0, d) at which the host (pest)
population becomes extinct. We remark that this steady state does not occur in the systems
with no stocking and variable stocking. If a = 1, x̄ �= 0, and f (ȳ) = 1, then ȳ = d. There are
infinitely many equilibrium points E1 = (x̄, d) that exist only for a = 1. If a �= 1 and x̄ �= 0,
then there is an interior equilibrium point E2 = ( a(f –1( 1

a )–d)
b(a–1) , f –1( 1

a )) = ( a(ȳ–d)
b(a–1) , ȳ). Since E2
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must be in R
2
+ and ȳ = f –1( 1

a ) = bx̄(1 – f (ȳ)) + d > d, we have that E2 exists if

f –1
(

1
a

)
> d, a > 1. (22)

The Jacobian matrix associated with system (21) is

J(x, y) =

(
af (y) axf ′(y)

b(1 – f (y)) –bxf ′(y)

)

.

Now we investigate the stability of the boundary equilibrium E0 = (0, d). The Jacobian
evaluated at the boundary equilibrium E0 = (0, d) is

J(0, d) =

(
af (d) 0

b(1 – f (d)) 0

)

.

The eigenvalues are λ1 = af (d) and λ2 = 0. Hence, if af (d) < 1, then E0 is locally asymptot-
ically stable, and if af (d) > 1, then E0 is unstable. If af (d) = 1, then E0 is nonhyperbolic.

Note that the second equation of system (21) implies that yn > d for all n. Since the func-
tion f is decreasing, f (yn) < f (d) for all n. Now the first equation implies xn+1 < af (d)xn.
If af (d) < 1, then limn→∞ xn = 0, which means that E0 is globally attracting. Hence, if
af (d) < 1, then E0 = (0, d) is globally asymptotically stable.

If af (d) = 1, then xn+1 < xn. This implies that the sequence {xn} is decreasing and
bounded below, so it must converge. Set limn→∞ xn = l. If l > 0, then by taking the limit in
xn+1 < af (d)xn we obtain af (d) > 1, which is a contradiction. Consequently, limn→∞ xn = 0
if af (d) ≤ 1. Now by taking the limit in the second equation of system (21) we obtain
limn→∞ yn = d. We conclude that if af (d) = 1, then the boundary equilibrium is globally
attracting. To answer whether the boundary equilibrium is locally asymptotically stable or
unstable, we use the center manifold theory. By the change of variable un = xn, vn = yn – d
we transform system (21) to the following system with equilibrium (0, 0):

un+1 = aunf (vn + d),

vn+1 = bun
(
1 – f (vn + d)

)
.

Set F(u, v) = auf (v + d) and G(u, v) = bu(1 – f (v + d)). Taylors’ expansions of these two
functions about (0, 0) are, respectively,

F(u, v) = u + af ′(d)uv + O3,

G(u, v) =
b(a – 1)

a
u – bf ′(d)uv + O3.

Consider the map

(
u
v

)

�→
(

1 0
b(a–1)

a 0

)(
u
v

)

+

(
af ′(d)uv + O3

–bf ′(d)uv + O3

)

.

The eigenvalues of the linear part are λ1 = 1 and λ2 = 0 with the corresponding eigenvec-
tors

( a
b(a–1)

)
and

( 0
1

)
. To find the center manifold, we diagonalize the matrix

( 1 0
b(a–1)

a 0

)
by
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using the matrix T =
( a 0

b(a–1) 1
)
. Letting

( u
v
)

= T
( ω1

ω2

)
yields

T

(
ω1

ω2

)

�→
(

1 0
b(a–1)

a 0

)

T

(
ω1

ω2

)

+

(
af ′(d)aω1(b(a – 1)ω1 + ω2 + O3)

–bf ′(d)aω1(b(a – 1)ω1 + ω2 + O3)

)

.

By applying T–1 =
(

1
a 0

– b(a–1)
a 1

)
to both sides we obtain

(
ω1

ω2

)

�→
(

1 0
0 0

)(
ω1

ω2

)

+

(
aω1f ′(d)(b(a – 1)ω1 + ω2)

–abω1f ′(d)(b(a – 1)ω1 + ω2)

)

.

Set F1(ω1,ω2) = aω1f ′(d)(b(a – 1)ω1 + ω2), G1(ω1,ω2) = –abω1f ′(d)(b(a – 1)ω1 + ω2). Then

Mc =
{

(ω1,ω2) ∈R
2 : ω2 = h(ω1), h(0) = h′(0) = 0

}
.

The function h has to satisfy the equation

h(Aω1 + F1
(
ω1, h(ω1)

)
– Bh(ω1) – G1

(
ω1, h(ω1)

)
= 0.

Since A = 1 and B = 0, the equation becomes

h(ω1 + F1
(
ω1, h(ω1)

)
– G1

(
ω1, h(ω1)

)
= 0. (23)

Assume that h(ω1) takes the form

h(ω1) = c1ω
2
1 + c2ω

3
1 + O

(
ω4

1
)
.

Now equation (23) becomes

c1
(
ω2

1 + 2af ′(d)ω2
1
(
b(a – 1)ω1 + c1ω

2
1 + c2ω

3
1
)

+ aω2
1f ′(d)

(
b(a – 1)ω1 + c1ω

2
1 + c2ω

3
1
)2)

+ c2
(
ω3

1 + 3ω3
1af ′(d)

(
b(a – 1)ω1 + c1ω

2
1 + c2ω

3
1
)

+ 3aω3
1f ′(d)

(
b(a – 1)ω1 + c1ω

2
1 + c2ω

3
1
)2 + a3ω3

1
(
f ′(d)

)3(b(a – 1)ω1 + c1ω
2
1 + c2ω

3
1
)3)

+ abω2
1f ′(d)

(
b(a – 1) + c1ω1 + c2ω

2
1
)

= 0

or

ω2
1
(
c1 + ab2f ′(d)(a – 1)

)
+ ω3

1
(
c2 + c1abf ′(d)

)
+ O

(
ω4

1
)

= 0.

By equating the coefficients of the same powers with zero we get

c1 = –ab2f ′(d)(a – 1), c2 = a2b3(a – 1)
(
f ′(d)

)2.

Thus the central manifold is represented by the graph of the function

h(ω1) = –abf ′(d)(a – 1)ω2
1 + a2b3(a – 1)

(
f ′(d)

)2
ω3

1 + O
(
ω4

1
)
,
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and the map on the center manifold is given by

H(ω1) = ω1 – abf ′(d)(a – 1)ω2
1 + a2b3(a – 1)

(
f ′(d)

)2
ω3

1 + O
(
ω4

1
)
.

Note that ω̄1 = 0 is a fixed point of H(ω1) at which H ′(0) = 1 and H ′′(0) = –2abf ′(d)(a – 1) �=
0. This implies that the origin is unstable (semistable).

As a result of our discussion, we have the following theorem for the boundary equilib-
rium E0 = (0, d) of system (21).

Theorem 2 The boundary equilibrium E0 = (0, d) of system (21) is globally asymptotically
stable in R

2
+ if af (d) < 1, and E0 = (0, d) is globally attracting semistable in R

2
+ if af (d) = 1.

In contrast to the system with variable stocking, we see from Theorem 2 that the con-
stant release of the parasitoids into the host–parasitoid interaction drives the host (pest)
population to extinction.

Now we investigate the equilibrium E1 = (x̄, d). The Jacobian evaluated at E1 is

J(E1) =

(
1 x̄f ′(d)
0 –bx̄f ′(d)

)

.

The trace and determinant of the Jacobian are Tr(J(E1)) = 1 – bx̄f ′(d) and Det(J(E1)) =
–bx̄f ′(d). Since f ′(y) > 0, y > 0, we have Tr(J(E1)) > 0 and Det(J(E1)) > 0. We see that Tr(E1) =
1 + Det(J(E1)), which implies that E1 is nonhyperbolic. The eigenvalues of J(E1) are λ1 = 1
and λ2 = –bx̄f ′(d). To answer the question of whether E1 is locally asymptotically stable or
unstable(semistable), we use the center manifold theory.

Letting un = xn – x̄, vn = yn – d, we obtain the system

un+1 = (un + x̄)f (vn + d),

vn+1 = b(un + x̄)
(
1 – f (vn)

)
. (24)

The origin is a fixed point of system (24). Set

F(u, v) = (u + x̄)f (v + d) – x̄, G(u, v) = b(u + x̄)
(
1 – f (v + d)

)
.

The Taylor expansions of these two maps about the origin are

F(u, v) = u + x̄f ′(d)v + f ′(d)uv +
1
2

x̄f ′′(d)v2 + O3,

G(u, v) = –bx̄f ′(d)v – bf ′(d)uv –
1
2

bx̄f ′′(d)v2 + O3,

respectively. Now we have the map

(
u
v

)

�→
(

1 x̄f ′(d)
0 –bx̄f ′(d)

)(
u
v

)

+

(
f ′(d)uv + 1

2 x̄f ′′(d)v2 + O3

–bx̄f ′(d)uv – 1
2 f ′′(d)v2 + O3

)

.

The eigenvalues of the map linearized about the origin are

λ1 = 1, λ2 = –bx̄f ′(d).
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Therefore there is one-dimensional center manifold, and if –bx̄f ′(d) < 1, then there is a
one-dimensional stable manifold with the orbit structure determined by the orbit struc-
ture on the center manifold. The matrix associated with the linear approximation has
columns consisting of the eigenvectors associated with the eigenvalues λ1 and λ2, respec-
tively. It is given by

T =

(
1 x̄f ′(d)
0 –(1 + bx̄f ′(d)

)

with T–1 =

⎛

⎝
1 x̄f ′(d)

1+bx̄f ′(d)

0 – 1
1+bx̄f ′(d)

⎞

⎠ .

Thus letting

(
u
v

)

= T

(
ω1

ω2

)

,

the map becomes

T

(
ω1

ω2

)

�→
(

1 x̄f ′(d)
0 –bx̄f ′(d)

)

T

(
ω1

ω2

)

+

(
F1(ω1,ω2)
G1(ω1,ω2)

)

,

where

F1(ω1,ω2) = –f ′(d)
(
1 + bx̄f ′(d)

)
ω1ω2

+ x̄
(
1 + bx̄f ′(d)

)
(

(
f ′(d)

)2 +
1
2

f ′′(1 + bx̄f ′(d)
)
)

ω2
2 + O3,

G1(ω1,ω2) = bf ′(d)
(
1 + bx̄f ′(d)

)
ω1ω2

+ x̄
(
1 + bx̄f ′(d)

)(
b
(
f ′(d)

)2 –
1
2

f ′′(d)
(
1 + bx̄f ′(d)

))
ω2

2 + O3.

By applying T–1 we have

(
ω1

ω2

)

�→
(

1 0
0 –bx̄f ′(d)

)

T

(
ω1

ω2

)

+

(
F2(ω1,ω2)
G2(ω1,ω2)

)

,

where

(
F2(ω1,ω2)
G2(ω1,ω2)

)

= T–1

(
F1(ω1,ω2)
G1(ω1,ω2)

)

=

(
–f ′(d)ω1ω2 – x̄(f ′(d))2ω2

2 + O3

–bf ′(d)ω1ω2 – bx̄(f ′(d))2ω2
2 + O3

)

.

We seek a center manifold

Mc(0) =
{

(ω1,ω2) : ω2 = h(ω1), h(0) = h′(0) = 0
}

for ω1 sufficiently small. We assume that a center manifold has the form

h(ω1) = c1ω
2
1 + c2ω

3
2 + O

(
ω4

1
)
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and substitute it into the center manifold equation

h(ω1 + F2
(
ω1, h(ω1)

)
+ bx̄f ′(d)h(ω1) – G2

(
ω1, h(ω1)

)
= 0.

Now we have

c1
(
ω1 – f ′(d)

(
c1ω

3
1 + c2ω

4
1
)

– x̄
(
f ′(d)

)2(c1ω
2
1 + c2ω

3
1
)2)2

+ c2
(
ω1 – f ′(d)

(
c1ω

3
1 + c2ω

4
1
)

– x̄
(
f ′(d)

)2(c1ω
2
1 + c2ω

3
1
)2)3 + bx̄ff ′(d)

(
c1ω

2
1 + c2ω

3
1
)

+ bx̄f ′(d)
(
c1ω

3
1 + c2ω

4
1
)

+ bx̄
(
f ′(d)

)2(c1ω
2
1 + c2ω

3
1
)2 = 0

or

ω2
1
(
c1 + bx̄f ′(d)c1

)
+ ω3

1
(
c2 + c2bx̄f ′(d) + bx̄f ′(d)c1

)
+ O

(
ω4

1
)

= 0.

By equating the coefficients with the same degrees

c1 = 0, c2 = 0.

Thus the center manifold is given by the graph of

h(ω1) = 0 + O
(
ω4

1
)
,

and the map restricted to the center manifold is given by

ω1 �→ ω1 + O
(
ω4

1
)
,

whose each point is a fixed point.
When –bx̄f ′(d) > 1, there is an unstable manifold at E1 = (x̄, d).
Now we study the stability of the interior equilibrium E2(x̄, ȳ) = ( a(f –1( 1

a )–d)
b(a–1) , f –1( 1

a )) =
( a(ȳ–d)

b(a–1) , ȳ). The Jacobian evaluated at E2 is given by

J(E2) =

(
1 ax̄f ′(ȳ)

b(a–1)
a –bx̄f ′(ȳ)

)

.

Observe that Tr J(E2) = 1 – bx̄f ′(ȳ) > 0 and Det J(E2) = –abx̄f ′(ȳ) > 0.
By using linearized stability results we have the following lemma.

Lemma 9 For the interior equilibrium E2, the following holds:
(i) If –x̄f ′(ȳ) < 1

ab , then E2 is locally asymptotically stable.
(ii) If –x̄f ′(ȳ) > 1

ab , then E2 is a repeller.
(iii) If –x̄f ′(ȳ) = 1

ab , then E2 is nonhyperbolic with complex conjugate eigenvalues μ2, μ̄2

of modulus 1, where μ2 = a+1±i
√

(a–1)(3a+1)
2a .

To see how does a constant stocking affect the interior equilibrium, we consider x̄ as
a function of d. We have x̄(d) = a(f –1( 1

a )–d)
b(a–1) and ȳ(d) = f –1( 1

a ). Now x̄′(d) = – a
b(a–1) , which
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is less than zero since a > 1. This implies that the function x̄(d) decreases with respect
to d. This means that if a constant input of parasitoids increases, then the level of the host
population at interior equilibrium decreases. On the other hand, ȳ is constant and does
not depend on d.

2.3.1 Neimark–Sacker bifurcation
Now we verify analytically that the system undergoes a Neimark–Sacker bifurcation at the
positive equilibrium as parameter a is varied.

By using procedure given in [25] we find an explicit form of the limit curve near the
positive equilibrium point of (21). According to the procedure, by change of variable un =
xn – a(ȳ–d)

(a–1)b and vn = yn – ȳ we shift the equilibrium point E2(x̄, ȳ) = ( a(ȳ–d)
(a–1)b , ȳ) to the origin.

We have
⎧
⎨

⎩
un+1 = a( a(ȳ–d)

(a–1)b + un)f (vn + ȳ) – a(ȳ–d)
(a–1)b ,

vn+1 = b(1 – f (ȳ + vn))( a(ȳ–d)
(a–1)b + un) + d – ȳ.

(25)

Let F2 be the map associated with system (25), that is,

F2

(
u
v

)

=

(
af (ȳ + v)( a(ȳ–d)

(a–1)b + u) – a(ȳ–d)
(a–1)b

b(1 – f (ȳ + v))( a(ȳ–d)
(a–1)b + u) + d – ȳ

)

.

Now (0, 0) is a fixed point of the F2, and

JacF2 (0, 0) =

⎛

⎝
1 a2(ȳ–d)f ′(ȳ)

(a–1)b
(a–1)b

a
a(d–ȳ)f ′(ȳ)

a–1

⎞

⎠ .

The proof of the following lemma is totally analogous to that of Lemma 8.

Lemma 10 Let a0 > 1 be such that

f ′
(

f (–1)
(

1
a0

))
=

a0 – 1
a2

0(d – f (–1)( 1
a0

))
.

Then (0, 0) is an equilibrium point of the map F2. If μ2(a) and μ2(a) are the corresponding
eigenvalues of A2 = JacF2 (0, 0)|a=a0 , then

μ2(a0) =
1 + a0 + i

√
(a0 – 1)(3a0 + 1)
2a0

.

Furthermore:
(a) |μ2(a0)| = 1;
(b) μ2(a0)k �= 1 for k = 1, 2, 3, 4;
(c) d2 = d2(a0) = d

da |μ2(a)||a=a0 = 1
a0

– a2
0(d–ȳ)2f ′′(ȳ)

2(a0–1)2 ;
(d) The corresponding eigenvectors are

q2(a0) =
(

a0 + i
√

(a0 – 1)(3a0 + 1) – 1
2(a0 – 1)b

, 1
)T
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and

p2(a0) =
(

i(1 – a0)b√
(a0 – 1)(3a0 + 1)

,
2a0

1 + 3a0 – i
√

(a0 – 1)(3a0 + 1)

)
,

where A2q2(a0) = μq2(a0), p2(a0)A2 = μp2(a0), and p2(a0)q2(a0) = 1.

By the procedure described in [25] we compute K20 and K11. For a = a0, we have

F02

(
u
v

)

= A2

(
u
v

)

+ G02

(
u
v

)

,

where

G02

(
u
v

)

=

⎛

⎝
– a2

0v3f (3)(ȳ)(d–ȳ)
6(a0–1)b – a2

0v2(d–ȳ)f ′′(ȳ)
2(a0–1)b + 1

2 a0uv2f ′′(ȳ) + (a0–1)uv
a0(d–ȳ) + O((|u| + |v|)4)

(a0–1)buv
a2

0(ȳ–d) + v3f (3)(ȳ)(a0d–a0 ȳ)
6(a0–1) + v2(a0d–a0 ȳ)f ′′(ȳ)

2(a0–1) – 1
2 buv2f ′′(ȳ) + O((|u| + |v|)4)

⎞

⎠ .

If we take, as the basis of R2, �2 = (q2, q̄2), where q2 = q2(a0), then we can represent (u, v)
as

(
u
v

)

= �2

(
z
z̄

)

= (q2z + q̄2z̄).

Let

G02

(

�2

(
z
z̄

))

=
1
2
(
g20z2 + 2g11zz̄ + g02z̄2) + O

(|z|3).

By using package Mathematica we obtain

g20 =
∂2

∂z2 G02

(

�2

(
z
z̄

))∣∣
∣∣
∣
z=0

=

⎛

⎜
⎝

–a3
0(d–ȳ)2f ′′(ȳ)+(a0–1)(a0+i

√
(a0–1)(3a0+1)–1)

(a0–1)a0b(d–ȳ)
a3

0(d–ȳ)2f ′′(ȳ)+(a0–1)(–a0–i
√

(a0–1)(3a0+1)+1)
(a0–1)a2

0(d–ȳ)

⎞

⎟
⎠ ,

g11 =
∂2

∂z∂ z̄
G02

(

�2

(
z
z̄

))∣∣
∣∣∣
z=0

=

⎛

⎝
(a0–1)2–a3

0(d–ȳ)2f ′′(ȳ)
(a0–1)a0b(d–ȳ)

a0(d–ȳ)f ′′(ȳ)
a0–1 + a0–1

a2
0(ȳ–d)

⎞

⎠ .

Set

�3 = a3
0(d – ȳ)2f ′′(ȳ) + (a0 – 1)

(
1 – a0 – i

√
(a0 – 1)(3a0 + 1)

)

and

�4 = a0
(
a0 – i

√
(a0 – 1)(3a0 + 1) – 2

)
– i

√
(a0 – 1)(3a0 + 1) – 1.
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We obtain

K20 =
(
μ2I – A2

)–1g20 =

⎛

⎝
a0�3

(a0–1)2(2a0+1)b(d–Pȳ)

– (a0+1)(a0(2a0–1)–i
√

(a0–1)(3a0+1)–1)�3
(a0–1)2(2a0+1)�4(d–ȳ)

⎞

⎠ ,

K11 = (I – A2)–1g11 =

⎛

⎜
⎝

1–
a3

0(d–ȳ)2 f ′′(ȳ)
(a0–1)2

b(d–ȳ)
a2

0(ȳ–d)f ′′(ȳ)
a0–1 + a0–1

a0(d–ȳ)

⎞

⎟
⎠ .

By using K20, K11, and

g21 =
∂3

∂z2∂ z̄
G02

(

�2

(
z
z̄

)

+
1
2

K20z2 + K11zz̄

)∣
∣∣
∣∣
z=0

,

we obtain

α2(0) = α2(a0) =
1
2

Re(p2g21μ̄2) =
a2

0�2(a0, d)(d – ȳ)2 – 2(a0 – 1)3

4(a0 – 1)2a0(d – ȳ)2 ,

where

�2(a0, d) = (a0 – 1)a0f (3)(ȳ)(d – ȳ) + f ′′(ȳ)
(
–2a3

0(d – ȳ)2f ′′(ȳ) + 2a2
0 – 3a0 + 1

)
.

In summary, by using Lemma 10, we have shown the following theorem; see [29].

Theorem 3 Let b > 0 and d ≥ 0. Let a0 > 1 be a positive real number such that

f ′
(

f (–1)
(

1
a0

))
=

a0 – 1
a2

0(d – f (–1)( 1
a0

))
.

If d2(a0) �= 0 and α2(a0) �= 0, then system (21) passes through a Neimark–Sacker bifurcation
at the unique positive equilibrium point

E2(x̄, ȳ) =
(a0(f (–1)( 1

a0
) – d)

(a0 – 1)b
, f (–1)

(
1
a0

))

when the parameter a varies in a small neighborhood of a0.
If d2(a0) > 0 and α2(a0) < 0 (resp., α2(a0) > 0), then the Neimark–Sacker bifurcation of

model (21) at a = a0 is supercritical (resp., subcritical), and there exists a unique closed
invariant curve �(a), which is attracting (resp., repelling), and bifurcates from E2 for a > a0

(resp., a < a0).
If d2(a0) < 0 and α2(a0) < 0 (resp., α2(a0) > 0), then the Neimark–Sacker bifurcation of

model (21) at a = a0 is supercritical (resp., subcritical), and there exists a unique closed
invariant curve �(a), which is attracting (resp., repelling), and bifurcates from E2 for a < a0

(resp., a > a0).
Let a = a0 + δ. Then for small δ, the curve �(a) can be approximated by

(
u
v

)

≈ (x̄, ȳ) + 2ρ0 Re
(
q2eiθ ) + ρ2

0
(
Re

(
K20e2iθ ) + K11

)
, θ ∈ R,
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where

ρ0 =

√

–
d2(a0)
α2(a0)

δ.

2.4 Examples with numerical simulations
In this subsection, we consider the following examples of a host–parasitoid model function
f (y):

(S): f (y) = 1
1+ym , m > 0,

(HV ): f (y) = e–ym (Hassell and Varley, 1969, [11]),
(PP): f (y) = e–

√
1+y–1

m , m > 0 (Metz, Vaz Nunez 1977, [20]).
We analyze the interior equilibrium in each of the models with variable and constant
stocking.

Note that straightforward calculations show that the functions f (y) = (1 + y
m )–m with

m > 0 (May, 1978, [22]) and f (y) = β1e–y + β1e–by with β1 + β2 = 1, β1,β2, b > 0 (Hassell,
1984, [10]) also satisfy the conditions f (0) = 1, f (∞) = 0, and f ′(y) < 0. Thus the stability
results can also be applied to them.

Here we emphasize that we do not take the numerical values of the parameters from
some field studies. We choose them to illustrate the bifurcations and dynamics of the mod-
els and our findings.

2.5 Example 1: f (y) = 1
1+ym

In this example, we assume that the probability of escaping parasitism f (y) is given by
1

1+ym ; see [20]. The parameter m can be interpreted as the mutual interference factor be-
tween parasitoids if m < 1 and as the degree of cooperative hunting if m > 1. There is no
cooperation among (parasitoid) predators if m = 1.

Now the corresponding (S) model with proportional number of parasitoids released into
a parasitoid population is given by

xn+1 = a
xn

1 + ym
n

,

yn+1 = bxn

(
1 –

1
1 + ym

n

)
+ cyn.

(26)

Corollary 1 Let m, b > 0. If a > 1 and 0 < c < 1, then (26) has the unique equilibrium point

Ep =
(

a(1 – c)(a – 1) 1
m –1

b
, (a – 1)

1
m

)
,

and the following statements are true:
(i) If m < 1, then Ep is locally asymptotically stable.

(ii) If m > 1, then Ep is a repeller.
(iii) If m = 1, then Ep is nonhyperbolic.

If m = 1, then for all a > 1 and 0 < c < 1, we have α1 = 0. Thus the Neimark–Sacker
bifurcation does not occur in this case. We can see that on a logarithmic scale, map (26) is
area-preserving. So, it is possible to use KAM theory to investigate the stability property of
Ep [15]. Computer simulations suggest that when m < 1, all orbits converge to the interior
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Figure 1 Trajectories for a = 3.0, b = 1.12, c = 0.5. (a)m = 0.9, (b)m = 99, (c)m = 1.0, and (d)m = 1.01 for
model (26)

equilibrium Ep. On the other hand, when m > 1, all orbits tend to infinity. Hence, when the
host population intrinsic growth rate a is greater than 1 and the parasitoid attack clamping
parameter m > 1, computer simulations show that any solution that starts sufficiently far
away from the equilibrium goes to infinity. See Fig. 1. This observation suggests that the
considered model is not efficient for these parameter values because both populations go
to infinity, which is not the usual behavior in nature.

The corresponding (S) model with constant number of parasitoids released into a para-
sitoid population is

xn+1 = a
xn

1 + ym
n

,

yn+1 = bxn

(
1 –

1
1 + ym

n

)
+ d.

(27)

A straightforward calculation gives

d2 = d2(a0) =
1
2

d
(

m – 1
dm

)m+1

> 0
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and

α2 = α2(a0) = –
(m – 1)m+3(( dm

m–1 )m + 2)
4d2m((dm)m + (m – 1)m)

< 0,

where a0 = ( dm
m–1 )m + 1. The following corollary follows from the results proved in the pre-

vious sections.

Corollary 2 If a > 1, (a – 1) 1
m > d, and m, b, d > 0 then (27) has the unique equilibrium

point

E2 =
(

a((a – 1) 1
m – d)

(a – 1)b
, (a – 1)

1
m

)
,

and the following statements are true:
(i) If m ≤ 1 or (m > 1 and (m – 1)(a – 1) 1

m < dm), then E2 is locally asymptotically
stable.

(ii) If (m – 1)(a – 1) 1
m > dm, then E2 is a repeller.

(iii) If m > 1 and (m – 1)(a – 1) 1
m = dm, then E2 is nonhyperbolic with complex conjugate

eigenvalues of modulus 1. System (27) passes through a supercritical
Neimark–Sacker bifurcation at the unique positive equilibrium point E2 when the
parameter a varies in a small neighborhood of a0 = ( dm

m–1 )m + 1.

Figure 2 shows the trajectories of System (27) for some numerical values of the param-
eters.

2.6 Example 2: f (y) = e–ym
, m > 0

In this example, we assume that the probability of escaping parasitism f (y) is given by e–ym ;
see [20]. Now the corresponding (HV ) model with proportional number of parasitoids
released into a parasitoid population is

xn+1 = axne–ym
n ,

yn+1 = bxn
(
1 – e–ym

n
)

+ cyn.
(28)

A straightforward calculation gives

d1 = d1(a0) =
(1 – c)(a0 – 1 – ln(a0))

2(a0 – 1)a0 ln(a0)

and

α1 = α1(a0) = – ln– 2
m (a0)

(1 – c)((a2
0 – 1)c ln(a0) + (a0 – 1)2(1 – c) – a0(c + 1) ln2(a0))

4a2
0

,

where a0m ln(a0) = a0 – 1.
Let F(a) = a – 1 – ln(a), 0 < c < 1, and a > 1. Then we have F ′(a) = a–1

a > 0. Since F(1) = 0,
we obtain F(a0) > F(1) = 0. Hence a0 – 1 – ln(a0) > 0, which implies d1(a0) > 0. Let G(c) =
(a2

0 – 1)c ln(a0) + (a0 – 1)2(1 – c) – a0(c + 1) ln2(a0). We have G′(c) = (a0 – ln(a0) – 1)(1 – a0 +
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Figure 2 Trajectories (orange, black, and red) for b = 1.05, d = 0.05,m = 1.2, where a0 ≈ 1.2358,
d2(a0)≈ 0.353405, α2(a0) ≈ –1.20613, (x̄, ȳ) = (1.24783, 0.3), and a = 4.85, a = 4.92155, a = 4.99, a = 5.22 for
model (27) (supercritical Neimark–Sacker bifurcation)

a0 ln(a0)) and G(0) = (a0 – 1)2 – a0 ln2(a0). Let G1(a) = 1– a + a ln(a). From G′
1(a) = ln(a) > 0

and G1(1) = 0 we obtain G1(a0) = 1– a0 + a0 ln(a0) > G(1) = 0. Let G2(a) = (a – 1)2 – a ln2(a).
Then G′

2(a) = 2(a – 1) – ln(a)(ln(a) + 2) and G′′
2(a) = 2(a–log(a)–1)

a = 2F(a)
a > 0. This implies

G′
2(a) > G′

1(1) = 0 for all a > 1. Then we obtain G2(a0) = (a0 – 1)2 – a0 ln2(a0) > G2(1) = 0.
Since G′(c) = F(a0)G1(a0) > 0 and G(0) = G2(a0) > 0, we get G(c) > G(0) = 0 for all 0 < c < 1.
This implies α1(a0) < 0 for 0 < c < 1 and a0 > 1.

The following corollary follows from the results proved in the previous sections.

Corollary 3 Let m, b > 0. If a > 1 and 0 < c < 1, then (28) has the unique equilibrium point

Ep =
(

a(1 – c) m√ln(a)
(a – 1)b

, m
√

ln(a)
)

,

and the following statements are true:
(i) If am ln(a) < a – 1, then Ep is locally asymptotically stable.

(ii) If am ln(a) < a – 1, then Ep is a repeller.
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Figure 3 Trajectories (orange, black, and red) for b = 0.42, c = 0.71,m = 0.5, where a0 ≈ 4.92155,
d1(a0)≈ 0.0109747, α1(a0) ≈ –0.00434435, (x̄, ȳ) = (2.20072, 2.53964), and a = 4.85, a = 4.92155, a = 4.99,
a = 5.22 for model (28) (supercritical Neimark–Sacker bifurcation)

(iii) If am ln(a) = a – 1, then Ep is nonhyperbolic with complex conjugate eigenvalues of
modulus 1. System (28) passes through a supercritical Neimark–Sacker bifurcation
at the unique positive equilibrium point Ep when the parameter a varies in a small
neighborhood of a0 such that a0m ln(a0) = a0 – 1.

Figure 3 represents the trajectories of System (28) for some parameters’ numerical val-
ues.

The corresponding (HV ) model with constant number of parasitoids released into a
parasitoid population is

xn+1 = axne–ym
n ,

yn+1 = bxn
(
1 – e–ym

n
)

+ d.
(29)

A straightforward calculation gives

d2 = d2(a0) =
m ln(a0) + m – 1

2a0m ln(a0)
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and

α2 = α2(a0) = –
m log– 2

m (a0)(a0 ln(a0)(m ln(a0) + m – 1) + (a0 – 1)(1 – m))
4(a0 – 1)

,

where a0md = ln
1
m –1(a0)(a0m ln(a0) – a0 + 1), m > 0, and a0 > 1. Since d > 0, we obtain

a0m ln(a0) – a0 + 1 > 0. This implies m > a0–1
a0 ln(a0) . From

a0 – 1
a0 ln(a0)

–
1

ln(a0) + 1
=

a0 – ln(a0) – 1
a0(ln2(a0) + ln(a0))

> 0

we get m > a0–1
a0 ln(a0) > 1

ln(a0)+1 . We have m ln(a0) + m – 1 > 0. Hence d2(a0) > 0. From

a0 – 1
a0 ln(a0)

–
a0 + a0 ln(a0) – 1

a0 + a0 ln(a0)(ln(a0) + 1) – 1
=

(a0 – 1)2 – a0 ln2(a0)
a0 ln(a0)(a0 + a0 ln(a0)(ln(a0) + 1) – 1)

> 0,

since G2(a0) = (a0 – 1)2 – a0 ln2(a0) > 0, we obtain

m >
a0 + a0 ln(a0) – 1

a0 + a0 ln(a0)(ln(a0) + 1) – 1
⇔

a0 ln(a0)
(
m ln(a0) + m – 1

)
+ (a0 – 1)(1 – m) > 0.

This implies α2(a0) < 0. The following corollary follows from the results proved in the
previous sections.

Corollary 4 If a > 1, m√ln(a) > d, and m, b, d > 0 then (29) has the unique equilibrium point

E2 =
(

a( m√ln(a) – d)
(a – 1)b

, m
√

ln(a)
)

,

and the following statements are true:
(i) If m√ln(a)(am ln(a) – a + 1) < adm ln(a), then E2 is locally asymptotically stable.

(ii) If m√ln(a)(am ln(a) – a + 1) > adm ln(a), then E2 is a repeller.
(iii) If m√ln(a)(am ln(a) – a + 1) = adm ln(a), then E2 is nonhyperbolic with complex

conjugate eigenvalues of modulus 1. System (29) passes through a supercritical
Neimark–Sacker bifurcation at the unique positive equilibrium point E2 when the
parameter a varies in a small neighborhood of a0 such that
m√ln(a0)(a0m ln(a0) – a0 + 1) = adm ln(a0).

In Fig. 4, we show the trajectories of System (29) with constant releasement of para-
sitoids.

2.7 Example 3: f (y) = e
1–

√
y+1

m , m > 0
In this example, we assume that the probability of escaping parasitism f (y) is given by
e

1–
√

y+1
m ; see [20]. Here we emphasize that we will only provide the results for constant

stocking. In proportional stocking, using the software package Mathematica, we get very
complicated and long expressions, which we skip.
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Figure 4 Trajectories (orange, black, and red) for b = 0.28, d = 1.79,m = 1.05, where a0 ≈ 15.9885,
d2(a0)≈ 0.03181, α2(a0) ≈ –0.331443, (x̄, ȳ) = (3.24017, 2.6405), and (a) a = 15.0, (b) a = 15.9885, (c) a = 16.2,
(d) a = 16.92 for model (29) (supercritical Neimark–Sacker bifurcation)

Now the corresponding (PP) model with constant number of parasitoids released into
a parasitoid population is

xn+1 = axne
1–

√
yn+1

m ,

yn+1 = bxn
(
1 – e

1–
√

yn+1
m

)
+ d.

(30)

A straightforward calculation gives

d2 = d2(a0) =
m ln(a0) – m + 1

2(a0m ln(a0) + a0)

and

α2 = α2(a0) =
a0(m2 + m – 1) + a0m ln(a0)(m – m ln(a0) – 2) – m2

16(a0 – 1)m2(m ln(a0) + 1)4 ,
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Figure 5 Subcritical Neimark–Sacker bifurcation for b = 0.87,m = 2.76, d = 0.126317, where a0 = 2.8,
d2(a0)≈ 0.0502817, and α2(a0)≈ 0.0000434287. Trajectories (orange, blue, and black) for (a) a = 2.75,
(b) b = 2.8, and (c) a = 3.5 for model (30)

where m(a0m ln2(a0) + 2(a0 + m – a0m) ln(a0) + 2) = a0(d + 2m), m > 0, and a0 > 1. The
following corollary follows from the results proved in the previous sections.

Corollary 5 If a > 1, m2 ln2(a) + 2m ln(a) > d, and m, b, d > 0, then (30) has the unique
equilibrium point

E2 =
(

a(m2 ln2(a) + 2m ln(a) – d)
(a – 1)b

, m2 ln2(a) + 2m ln(a)
)

∈R
2
+,

and the following statements are true:
(i) If m(am ln2(a) + 2(a + m – am) ln(a) + 2) < a(d + 2m), then E2 is locally

asymptotically stable.
(ii) If m(am ln2(a) + 2(a + m – am) ln(a) + 2) > a(d + 2m), then E2 is a repeller.

(iii) If m(am ln2(a) + 2(a + m – am) ln(a) + 2) = a(d + 2m), then E2 is nonhyperbolic with
complex conjugate eigenvalues of modulus 1. System (30) passes through a
Neimark–Sacker bifurcation at the unique interior equilibrium point E2 when the
parameter a varies in a small neighborhood of a0 such that

m
(
a0m ln2(a0) + 2(a0 + m – a0m) ln(a0) + 2

)
= a0(d + 2m), m > 0, d > 0.

Numerical calculations show d2(a0) > 0. On the other hand, α2(a0) changes its sign,
which implies the presence of the so-called Chenciner bifurcation. Thus a supercritical
and subcritical Neimark–Sacker bifurcation can occur. If α2(a0) > 0, then by Theorem 1 a
repelling closed invariant curve appears surrounding the stable fixed point for a < a0. As
a increases, the repelling closed curve decreases in size and merges with the fixed point at
a = a0. When a > a0, the repelling closed invariant curve disappears completely, leaving a
repelling focus (subcritical Neimark–Sacker bifurcation). In this case the closed repelling
curve is generally the boundary of the stable fixed point basin of attraction. Figure 5 shows
the typical behavior of the solutions of model (30) if d2(a0) > 0 and α2(a0) > 0.

3 Conclusion
Successful biological control means that introduced natural enemies, often parasitoids,
can control the pests and suppress them to the level where it can no longer cause economic
damage [7, 24, 27, 28]. To address the effect of parasitoid release, we propose the class of
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host–parasitoid models with variable and constant release, which is a novelty of this paper.
We assume that the host population has a constant rate of increase, but we do not assume
any density dependence regulation other than parasitism acting on the host population.
The Neimark–Sacker bifurcation at the interior equilibrium of a class two-dimensional
discrete host–parasitoid interaction for a = b was analyzed in [20]. We compare the dy-
namics of these three systems. In contrast to the constant stocking system, systems with
no stocking and variable stocking have the extinction equilibrium, which can be globally
asymptotically stable (Lemmas 1 and 5). Thus, in these two cases, both populations go to
extinction. Neither of these two systems has a boundary equilibrium such that the host
population is extinct and the parasitoid population survives. The boundary equilibrium
exists in the system with constant stocking, which can be globally asymptotically stable
(Theorem 2). Hence adding the constant number of parasitoids into host–parasitoid in-
teraction drives the host population to extinction.

Moreover, the constant stocking eliminates the equilibrium for which the host popula-
tion survives and the parasitoid is extinct. The constant or variable stocking of the para-
sitoids can lower the host level in the unique coexisting equilibrium even if the host popu-
lation intrinsic growth rate is greater than one. The Neimark–Sacker bifurcation appears
in each of the investigated systems, and we compute the approximation of the invariant
closed curve. The stable closed curve corresponds to the period or quasiperiodic oscil-
lations between the host and parasitoid populations from biology viewpoint. For more
detail on this issue, see, for example, [5].

Finally, we apply the results to the several host–parasitoid models with variable and con-
stant stocking, where the function f is one of the well-known functions investigated in
[20]. In particular, in a simple (S) model with variable stocking when parasitoid clamping
parameter m = 1, we show that the Neimark–Sacker bifurcation does not occur. In this
case, it is possible to use KAM theory to address the stability of the interior equilibrium
point. Using the software package Mathematica, we provide numerical simulations that
show that the behavior of examples is similar to that of the considered model. Here we do
not take the parameter values from any study field, but we choose them to confirm our
theoretical results.
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