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Abstract
In this paper we review some of the previous work done by the earlier authors (Singh
et al. in J. Inequal. Appl. 2017:101, 2017; Lal and Shireen in Bull. Math. Anal. Appl.
5(4):1–13, 2013), etc., on error approximation of a function g in the generalized
Zygmund space and resolve the issue of these works. We also determine the best
error approximation of the functions g and g′, where g′ is a derived function of a
2π -periodic function g, in the generalized Zygmund class X (η)

z , z ≥ 1, using
matrix-Cesàro (TCδ ) means of its Fourier series and its derived Fourier series,
respectively. Theorem 2.1 of the present paper generalizes eight earlier results, which
become its particular cases. Thus, the results of (Dhakal in Int. Math. Forum
5(35):1729–1735, 2010; Dhakal in Int. J. Eng. Technol. 2(3):1–15, 2013; Nigam in Surv.
Math. Appl. 5:113–122, 2010; Nigam in Commun. Appl. Anal. 14(4):607–614, 2010;
Nigam and Sharma in Kyungpook Math. J. 50:545–556, 2010; Nigam and Sharma in
Int. J. Pure Appl. Math. 70(6):775–784, 2011; Kushwaha and Dhakal in Nepal J. Sci.
Technol. 14(2):117–122, 2013; Shrivastava et al. in IOSR J. Math. 10(1 Ver. I):39–41, 2014)
become particular cases of our Theorem 2.1. Several corollaries are also deduced from
our Theorem 2.1.
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1 Introduction
In the past few decades, researchers have been greatly interested in studying the error
estimation of functions in different function spaces using summability operators due to
their various applications in science and engineering. In this direction, several researchers
[11–21] have obtained results on error estimation of functions in different Lipschitz and
Hölder classes using different single summability operators. Taking a view point that a
product summability operator is more effective than the individual single summability
operator, researchers [5, 9, 21–24] have obtained the degree of approximation of functions
in different Lipschitz and Hölder classes by different product summability operators.

After reviewing the above mentioned work, we observe that all of the above works can-
not provide the best approximation of a function in the function spaces considered. This
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fact strongly motivated us to consider a more advanced class of functions, which can pro-
vide the best approximation of a function.

Therefore, in the present work, we establish a theorem on the best error approximation
of a function g in the generalized Zygmund class X(η)

z (z ≥ 1) by using the matrix-Cesàro
(TCδ) product operator of its Fourier series.

In the recent past, researchers have also been greatly interested in studying the derived
Fourier series by single or product means. In this direction, Chandra and Dikshit [25]
have studied |B| and |E, q| means of derived Fourier series. Lal and Nigam [26] have stud-
ied Karamata means of derived Fourier series. Lal and Yadav [27] have considered the
(N , p, q)(C, 1) product means of derived Fourier series. However, no one has studied the
degree of approximation of functions in any function space by using single or product
means of its derived Fourier series. This fact has also motivated us to pursue a study of
the degree of approximation of a function in a generalized Zygmund class by the matrix-
Cesàro (TCδ) method of its derived Fourier series. Therefore, in this paper, we also estab-
lish a theorem on the best error approximation of a function in the generalized Zygmund
class X(η)

z (z ≥ 1) by the matrix-Cesàro (TCδ) product of its derived Fourier series.
It is important to note that we have considered the TCδ product operator, which is the

most general product operator developed for matrix-Cesàro means.
A separate study of derived Fourier series in the present direction of work is justified,

due to its important applications in science and engineering.
In the last six years, investigators [1, 2] were working on the error estimation of a func-

tion in the X(η)
z (z ≥ 1) space using different summability operators.

In both works [1, 2], the second theorem has been proved by considering η(l)
lξ (l) as a non-

increasing function l, in addition to the condition that η(l)
ξ (l) is nondecreasing, which was

considered in their first theorems.
Since the modulus of continuity η is a subadditive function, η(l)

l is a nonincreasing func-
tion of l, and the second theorem in each of the above works follows from the first theorem
without any additional condition.

Let
∑∞

j=0 dj be an infinite series having jth partial sum sj =
∑j

ν=0 dν . Under usual assump-
tions on the function g , the Fourier series of g is given by

g(y) :=
1
2

a0 +
∞∑

j=1

(aj cos jy + bj sin jy) (1)

with the jth partial sums sj(g; y), and the conjugate Fourier series of g is given by

s̃(g; y) :=
∞∑

j=1

(aj sin jy – bj cos jy). (2)

The series

g ′(y) :=
∞∑

j=1

j(bj cos jy – aj sin jy), (3)

which is obtained by differentiating (1) term-by-term, is called the first derived Fourier
series of g(y) (Zygmund, [28]).
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Let T ≡ (aj,r) be an infinite triangular matrix satisfying the conditions of regularity [29],
i.e.,

j∑

r=0

aj,r = 1 as j → ∞;

each r ≥ 0 is such that aj,r = 0 as j → ∞; (4)

∃N > 0 ∀j ≥ 0 is such that
∞∑

r=0

|aj,r| < N .

The sequence-to-sequence transformation

tT
j :=

j∑

r=0

aj,rsr

=
j∑

r=0

aj,j–rsj–r

defines the sequence tT
j of triangular matrix means of the sequence {sj}, generated by the

sequence of coefficients (aj,r).
If tT

j → s as j → ∞, then the infinite series
∑∞

j=0 dj or the sequence {sj} is summable to
s by the triangular matrix (T) [28].

We write A0
j = sj =

∑j
v=0 dv, Aδ

j = Aδ–1
0 + Aδ–1

1 + · · · + Aδ–1
j , and Eδ

j for the value of Aδ
j when

a0 = 1 and aj = 0 for j > 0, i.e., when Aj = 1.
If

Cδ
j =

Aδ
j

Eδ
j

=
1

Eδ
j

j∑

r=0

Aδ–1
j–r → s as j → ∞,

where Aδ
j =

∑j
r=0

(j–r+δ–1
δ–1

)
and Eδ

j =
(j+δ

δ

)
, then we say that

∑∞
j=0 dj or the sequence {sj} is

summable to the sum s by Cδ (the Cesàro means of order δ) [30].
Superimposing the T-method on the Cδ method, TCδ is obtained. That is, the TCδ mean

of the sequence {sj} is given by

tTCδ

j :=
j∑

r=0

aj,j–rCδ
j

=
j∑

r=0

aj,j–r
1

Aδ
j

j∑

ν=0

Aδ–1
j–ν sν

=
j∑

r=0

aj,r

r∑

v=0

(r–v+δ–1
δ–1

)

(r+δ

δ

) sv.

If tTCδ

j → s as j → ∞, then {sj} is summable by the TCδ means to the limit s.
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Since the T and Cδ methods are regular, the TCδ method is also regular. This can be
shown as follows:

sj → s 	⇒ Cδ
j → s, as j → ∞, since the Cδ method is regular

	⇒ T
(
Cδ

j
)

= tTCδ

j → s, as j → ∞, since the T method is regular

	⇒ (
TCδ

)
method is regular.

Remark 1 The TCδ means reduces to:
(i) (H , 1

j+1 )Cδ or HCδ if aj,r = 1
(j–r+1) log(j+1) ;

(ii) (N , p, q)Cδ or Np,qCδ if aj,r = pj–rqr
Rj

, Rj =
∑j

r=0 prqj–r �= 0, where pj and qj have their
usual meanings;

(iii) (N , pj)Cδ or NpCδ if aj,r = pj–r
Pj

, Pj =
∑j

kr=0 pj �= 0, qj = 1 ∀j, where pj has its usual
meaning;

(iv) (Ñ , pj)Cδ or ÑpCδ if aj,r = pr
Pj

, qj = 1 ∀j, where qj has its usual meaning;
(v) (E, q)Cδ or EqCδ if aj,r = 1

(1+q)j

(j
r
)
qj–r ;

(vi) (E, 1)Cδ or E1Cδ if aj,r = 1
2j

(j
r
)
.

Remark 2 In view of Remark 1, TCδ (δ = 1) mean also reduces to HC1, Np,qC1, NpC1,
ÑpC1, EqC1, E1C1 means.

Example 1 Consider the series

1 – 10
j∑

v=1

(–9)v–1. (5)

Then {sj} of (5) is given by

sj = (–9)j.

Take

aj,r =
1
5j

(
j
r

)

4j–r .

Then

tT
j =

n∑

r=0

aj,r = aj,0s0 + aj,1s1 + · · · + aj,jsj

=
1
5j

[(
j
0

)

4j · 1 –
(

j
1

)

4j–1 · 9 +
(

j
2

)

4j–2 · 92 + · · · + (–1)n
(

n
n

)

4n–n · 9n
]

=
1
5j (4 – 9)j

= (–1)j.
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Here,

(–1)j =

⎧
⎨

⎩

1, j is even,

–1, j is odd.
(6)

We observe that (5) is not summable by C1 means.
If aj,r = 1

5j

(j
r
)
4j–r , then (5) is also not summable by T means. But (5) is summable by TC1

means as (6) is summable by C1 means. This shows the effectiveness of the product means
as compared to single means.

Let C2π denote the Banach space of all 2π-periodic and continuous functions defined
on [0, 2π ] under the supremum norm [28].

The jth order error approximation of a function g ∈ C2π is defined by Ej(g) := inftj ‖g – tj‖
where tj is a trigonometric polynomial of degree j [28].

If Ej(g) → 0 as j → ∞, the Ej(g) is said to be the best approximation of g [28].
The Lz space is given by

Lz[0, 2π ] :=
{

g : [0, 2π ] �→R :
∫ 2π

0

∣
∣g(y)

∣
∣z dy < ∞, z ≥ 1

}

.

The norm ‖ · ‖r is defined by

‖g‖z :=

⎧
⎨

⎩

{ 1
2π

∫ 2π

0 |g(y)|z dy} 1
z for 1 ≤ z < ∞,

ess sup0<y<2π |g(y)| for z = ∞.

Let η : [0, 2π ] �→ R be an arbitrary function with η(l) > 0 for 0 < l ≤ 2π and liml→0+ η(l) =
η(0) = 0. We define

X(η)
z :=

{

g ∈ Lz[0, 2π ] : 1 ≤ z < ∞, sup
l �=0

‖g(· + l) + g(· – l) – 2g(·)‖z

η(l)
< ∞

}

and

‖g‖(η)
z := ‖g‖z + sup

l �=0

‖g(· + l) + g(· – l) – 2g(·)‖z

η(l)
, z ≥ 1.

Clearly, ‖ · ‖(η)
z is a norm on X(η)

z .
Hence the Zygmund space (X(η)

z ) is a Banach space under the norm ‖ · ‖(η)
z . The com-

pleteness of Lz(z ≥ 1) implies the completeness of the space [28]. One can also refer to the
papers [31, 32] for more details on the Zygmund space.

Remark 3 Throughout the paper, η and ξ denote the second order moduli of continuity
such that η(l)

ξ (l) is positive and nondecreasing in l. Then

‖g‖(ξ )
z ≤ max

(

1,
η(2π )
ξ (2π )

)

‖g‖(η)
z < ∞.
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Thus,

X(η)
z ⊂ X(ξ )

z ⊂ Lz, z ≥ 1

(Zygmund, [28]).

Remark 4 Necessary and sufficient conditions for a function to be a modulus of continuity
of the first order were pointed out by Lebesgue [33] and Nikol’skii [34]. Any modulus of
continuity of the first order, η = η(g, ·), satisfies the following conditions:

(i) η(0) = 0;
(ii) the function η is continuous on [0, +∞);

(iii) the function η is nondecreasing on [0, +∞);
(iv) the function η is semiadditive, i.e., the inequality η(l1 + l2) ≤ η(l1) + η(l2) holds for

any l1 ≥ 0 and l2 ≥ 0.
Conversely, if a function η satisfies (i)–(iv), then it is the first-order modulus of

continuity of the function g(y) = η(|y|). Moreover, it can be easily seen that η is the
second order modulus of continuity of the function g(y) = η(|y|)

2 . If a function η

satisfies conditions (i)–(iii) and the function η(l)
l is nonincreasing on (0, +∞), then

the semiadditivity condition (iv) also holds, and so η is the modulus of continuity of
the first and second order for some continuous functions.

The second order modulus of continuity satisfies conditions (i)–(iii) and a further
condition, given as follows:

(v) the inequality η(jl) ≤ j2η(l) holds for any l ≥ 0 and j ∈N.
Geit [35] constructed a wide class of functions that are second-order moduli of

continuity of 2π -periodic functions. It can be easily shown that condition (v) for
nonnegative functions follows from the following condition:

(vi) the function η(l)
l2 is nonincreasing on (0, +∞).

Note 1 Readers may refer to the paper of Konyagin [36] in support of Remark 4. Readers
may also refer to the paper of Weiss and Zygmund [37], which dealt with conditions on the
second-order modulus of smoothness, sufficient to force absolute continuity of a function.
The technique employed in [37] is nearly identical to that of [38].

Remark 5 Therefore, in view of Remark 4 and Note 1, we drop the second theorem estab-
lished in the papers [1, 2], etc., where the condition that η(l)

lξ (l) is a nonincreasing function
of l, in addition to the condition of their first theorem, is used.

Remark 6
(i) If we take η(l) = lα then X(η) reduces to the Xα class.

(ii) By taking η(l) = lα , X(η)
z reduces to the Xα,z class.

(iii) If z → ∞ then the X(η)
z class reduces to the X(η) class.

(iv) If we take z → ∞ then the X(η)
z class becomes the Xα,z class.

(v) Let 0 ≤ β < α < 1. If η(l) = lα and ξ (l) = lα , then η(l)
ξ (l) is nondecreasing, while η(l)

lξ (l) is a
nonincreasing function of l.

We write

φ(y, l) = g(y + l) + g(y – l) – 2g(y),
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h(y, l) = g(y + l) – g(y – l) – 2lg ′(y),


(y, l) =
∫ l

0

∣
∣φ(u)

∣
∣du,

H(y, l) =
∫ l

0

∣
∣dh(u)

∣
∣,

�aj,r = aj,r – aj,r+1, 0 ≤ r ≤ j – 1,

KTCδ

j (l) =
1

2π

j∑

r=0

aj,j–r

r∑

v=0

(v+δ–1
δ–1

)

(
δ+r

r
)

sin(v + 1
2 )l

sin l
2

.

2 Theorems
Theorem 2.1 If g is a 2π -periodic function belonging to the class X(η)

z , z ≥ 1, then the best
error estimate of g by the TCδ method of its F.S. is given by

∥
∥tTCδ

j – g
∥
∥(ξ )

z = O
(

1 + logπ (j + 1)
logπ (j + 1)

∫ π

1
j+1

η(l)
lξ (l)

dl
)

,

where η(l) and ξ (l) are as defined in Remark 3, provided

j–1∑

r=0

|�aj,r| = O
(

1
j + 1

)

and (j + 1)aj,j = O(1).

Theorem 2.2 If g ′ is a 2π -periodic function belonging to the class X(η)
z , then the best error

estimate of g ′ by the TCδ method of its D.F.S. is given by

∥
∥tTCδ

j – g ′∥∥(ξ )
z = O

(

(j + 1)
η( 1

j+1 )

ξ ( 1
j+1 )

∫ π

0
dh(l)

)

,

where η(l) and ξ (l) are as defined in Remark 3, provided

j–1∑

r=0

|�aj,r| = O
(

1
j + 1

)

and (j + 1)aj,j = O(1).

3 Lemmas
Lemma 3.1 Under the conditions of regularity of matrix T ≡ (aj,r) for 0 < l < 1

j+1 ,

KTCδ

j (l) = O(j + 1).

Proof For 0 < l < 1
j+1 , sin l

2 ≥ l
π

, sin(jl) ≤ jl and δ > 1, we get

KTCδ

j (l) =
1

2π

j∑

r=0

aj,j–r

{ r∑

v=0

(v+δ–1
δ–1

)

(
δ+r

r
)

sin(v + 1
2 )l

sin l
2

}

≤ 1
2π

j∑

r=0

aj,j–r

{ r∑

v=0

(v + δ – 1)!
(δ – 1)!v!

δ!r!
(δ + r)!

(2v + 1) l
2

l
π

}
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=
1
4

j∑

r=0

aj,nj–r

{ r∑

v=0

(v + δ – 1)!
(δ – 1)!v!

δ!r!
(δ + r)!

(2v + 1)

}

=
1
4

j∑

r=0

aj,j–r

[
r!

(δ + 1) · · · (δ + r)δ!

r∑

v=0

(2v + 1)(v + δ – 1)!δ!
v!

]

=
1
4

j∑

r=0

aj,j–r

[
r!

(δ + 1) · · · (δ + r)

r∑

v=0

(2v + 1)δ(δ + 1) · · · (δ + v – 1)
v!

]

=
1
4

j∑

r=0

aj,j–r

[
r!

(δ + 1) · · · (δ + r)

{

1 + 3δ + · · · +
(2r + 1)δ(δ + 1) · · · (δ + r – 1)

r!

}]

≤ 1
4

j∑

r=0

aj,j–r

[
r!

(δ + 1) · · · (δ + r)

{

(r + 1)
(2r + 1)δ(δ + 1) · · · (δ + r – 1)

r!

}]

=
1
4

j∑

r=0

aj,j–r

[
(r + 1)(2r + 1)δ

(δ + r)

]

≤ 1
4

n∑

r=0

aj,j–r(2r + 1)δ

=
1
4

(2j + 1)δ
j∑

r=0

aj,j–r

= O(j + 1) since
j∑

r=0

aj,j–r = 1

= O(j + 1). �

Lemma 3.2 Under the conditions of regularity of matrix T ≡ (aj,r) for 1
j+1 ≤ l ≤ π ,

KTCδ

j = O
(

1
l

)

.

Proof For 1
j+1 ≤ l ≤ π , by applying Jordan’s lemma and the facts that sin l

2 ≥ l
π

, sin jl ≤ 1,
we get

KTCδ

j (l) =
1

2π

j∑

r=0

aj,j–r

{ r∑

v=0

(v+δ–1
δ–1

)

(r+δ

δ

)
sin(v + 1

2 )l
sin l

2

}

≤ 1
2π

j∑

r=0

aj,j–r

{ r∑

v=0

(v+δ–1
δ–1

)

(r+δ

δ

)
1
l
π

}

=
1
2l

j∑

r=0

aj,j–r

{ r∑

v=0

(v+δ–1
δ–1

)

(r+δ

δ

)

}

=
1
2l

j∑

r=0

aj,j–r

r∑

v=0

(v + δ – 1)!
v!(δ – 1)!

× δ!r!
(δ + r)!

=
1
2l

j∑

r=0

aj,j–r
r!

(δ + 1) · · · (δ + r)δ!

r∑

v=0

(v + δ – 1)!δ
v!
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=
1
2l

j∑

r=0

aj,j–r
r!

(δ + 1) · · · (δ + r)

r∑

v=0

δ(δ + 1) · · · (δ + v – 1)
v!

=
1
2l

j∑

r=0

aj,j–r
r!

(δ + 1) · · · (δ + r)

[

1 + δ +
δ(δ + 1)

2!
+ · · · +

δ(δ + 1) · · · (δ + r – 1)
r!

]

≤ 1
2l

j∑

r=0

aj,j–r
r!

(δ + 1) · · · (δ + r)

[

(r + 1) × δ(δ + 1) · · · (δ + r – 1)
r!

]

=
1
2l

j∑

r=0

aj,j–r
(r + 1)δ
(δ + r)

≤ O
(

1
l

) j∑

r=0

aj,j–r

= O
(

1
l

)

since
j∑

r=0

aj,nj–r = 1

= O
(

1
l

)

. �

Lemma 3.3 ([2], p. 8) If g ∈ X(η)
z then for 0 < l ≤ π ,

(i) ‖φ(·, l)‖z = O(η(l)).
(ii) If η(l) and ξ (l) are defined as in Remark 6, then

‖φ(· + u, l) + φ(· – u, l) – 2φ(·, l)‖z = O(ξ (|u|) η(l)
ξ (l) ).

Lemma 3.4 If g ′ ∈ Xη
z then for 0 < l ≤ π ,

(i) ‖h(·, l)‖z = O(η(l)).
(ii) If η(l) and ξ (l) are defined as in Remark 6, then

‖h(· + u, l) – h(· – u, l) – 2lh(·, l)‖z = O(ξ (|u|) η(l)
ξ (l) ).

Proof (i) We have

∣
∣h(y, l)

∣
∣ =

∣
∣g(y + l) – g(y – l) – 2lh′(y)

∣
∣.

Applying Minkowski’s inequality (Zygmund [28]), we have

∥
∥h(·, l)

∥
∥

z ≤ ∥
∥g(y + l) – g(y – l) – 2lg ′(y)

∥
∥

z

= O
(
η(l)

)
. �

Proof (ii) We have

∣
∣h(y + u, l) – h(y – u, l) – 2lh′(y, l)

∣
∣ ≤ ∣

∣g(y + u + l) – h(y + u – l) – 2lg ′(y + u)
∣
∣

+
∣
∣g(y – u + l) – g(y – u – l) – 2lg ′(y – u)

∣
∣

+ 2l
∣
∣g ′(y + l) – g ′(y – l) – 2lg ′′(y)

∣
∣.

Applying Minkowski’s inequality (Zygmund [28]), we have

∥
∥h(· + u, l) – h(· – u, l) – 2lh′(·, l)

∥
∥

z ≤ ∥
∥g(· + u + l) – g(· + u – l) – 2lg ′(· + u)

∥
∥

z
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+
∥
∥g(· – u + l) – g(· – u – l) – 2lg ′(· – u)

∥
∥

z

+ 2l
∥
∥g ′(· + l) – g ′(· – l) – 2lg ′′(·)∥∥z

= O
(
η(l)

)
.

Also,

∥
∥h(· + u, l) – h(· – u, l) – 2lh′(·, l)

∥
∥

z ≤ ∥
∥g(· + l + u) – g(· + l – u) – 2lg ′(· + l)

∥
∥

z

+
∥
∥g(· – l + u) – g(· – l – u) – 2lg ′(· – l)

∥
∥

z

+ 2l
∥
∥g ′(· + u) – g ′(· – u) – 2lg ′′(·)∥∥z

= O
(
η(u)

)
.

For a positive and nondecreasing function ξ (l) and for l ≤ |u|, we obtain

∥
∥h(· + u, l) – h(· – u, l) – 2lh′(·, l)

∥
∥

z = O
(
η(l)

)

= O
(

ξ (l)
(

η(l)
ξ (l)

))

= O
(

ξ
(|u|)

(
η(l)
ξ (l)

))

.

For a positive, nondecreasing function η(l)
ξ (l) and for l ≥ |u|, we have

η(l)
ξ (l)

≥ η(|u|)
ξ (|u|) .

Then

∥
∥h(· + u, l) – h(· – u, l) – 2lh′(·, l)

∥
∥

z = O
(
η
(|u|))

= O
(

η
(|u|)

(
η(l)
ξ (l)

))

. �

4 Proofs of the main theorems
4.1 Proof of Theorem 2.1

Proof Due to [39], sr(g; y) of (1) is given by

sr(g; y) – g(y) =
1

2π

∫ π

0
φ(y, l)

sin(r + 1
2 )l

sin l
2

dl, r = 0, 1, 2, . . . .

Then,

j∑

r=0

(r+δ–1
δ–1

)

(
δ+j
δ

)
[
sr(g; y) – g(y)

]
=

1
2π

∫ π

0
φ(y, l)

j∑

r=0

(r+δ–1
δ–1

)

(
δ+j
δ

)
sin(r + 1

2 )l
sin l

2
dl,

Cδ
j (y) – g(y) =

1
2π

∫ π

0
φ(y, l)

j∑

r=0

(r+δ–1
δ–1

)

(
δ+j
δ

)
sin(r + 1

2 )l
sin l

2
dl.
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Now,

tTCδ

j (y) – g(y) =
j∑

r=0

aj,j–r
{

Cδ
r (y) – g(y)

}

=
1

2π

∫ π

0
φ(y, l)

j∑

r=0

aj,j–r

r∑

v=0

(v+δ–1
δ–1

)

(
δ+r
δ

)
sin(v + 1

2 )l
sin l

2
dl

=
1

2π

∫ π

0
φ(y, l)

j∑

r=0

aj,j–r

r∑

v=0

(v+δ–1
δ–1

)

(
δ+r
δ

)
sin(v + 1

2 )l
sin l

2
dl

=
∫ π

0
φ(y, l)KTCδ

j (l) dl.

Let

Tj(y) = tTCδ

j (y) – g(y)

=
∫ π

0
φ(y, l)KTCδ

j (l) dl.

Then,

Tj(y + u) + Tj(y – u) – 2Tj(y) =
∫ π

0

{
φ(y + u, l) + φ(y – u, l) – 2φ(y, u)

}
KTCδ

j (l) dl.

Using the GMI [40], we get

∥
∥Tj(· + u) + Tj(· – u) – 2Tj(·)

∥
∥

z ≤
∫ π

0

∥
∥φ(· + u, l) + φ(· – u, l) – 2φ(·, l)

∥
∥

z

∣
∣KTCδ

j (l)
∣
∣dl

=
∫ 1

j+1

0

∥
∥φ(· + u, l) + φ(· – u, l) – 2φ(·, l)

∥
∥

z

∣
∣KTCδ

j (l)
∣
∣dl

+
∫ π

1
j+1

∥
∥φ(· + u, l) + φ(· – u, l) – 2φ(·, l)

∥
∥

z

∣
∣KTCδ

j (l)
∣
∣dl

= I1 + I2. (7)

Using Lemmas 3.1 and 3.3 (ii), we obtain

I1 =
∫ 1

j+1

0

∥
∥φ(· + u, l) + φ(· – u, l) – 2φ(·, l)

∥
∥

z

∣
∣KTCδ

j (l)
∣
∣dl

= O
(∫ 1

j+1

0
ξ
(|u|)η(l)

ξ (l)
(j + 1) dl

)

= O
(

(j + 1)ξ
(|u|)

∫ 1
j+1

0

η(l)
ξ (l)

dl
)

= O
(

(j + 1)ξ
(|u|)

η( 1
j+1 )

ξ ( 1
j+1 )

∫ 1
j+1

0
dl

)

= O
(

ξ
(|u|)

η( 1
j+1 )

ξ ( 1
j+1 )

)

. (8)
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Using Lemmas 3.2 and 3.3 (ii), we obtain

I2 =
∫ π

1
j+1

∥
∥φ(· + u, l) + φ(· – u, l) – 2φ(·, l)

∥
∥

z

∣
∣KTCδ

j (l)
∣
∣dl

= O
(∫ π

1
j+1

ξ
(|u|)η(l)

ξ (l)
1
l

dl
)

= O
(∫ π

1
j+1

ξ
(|u|) η(l)

lξ (l)
dl

)

. (9)

By (7), (8), and (9), we have

∥
∥Tj(· + u) + Tj(· – u) – 2Tj(·)

∥
∥

z = O
(

ξ
(|u|)

η( 1
j+1 )

ξ ( 1
j+1 )

)

+ O
(∫ π

1
j+1

ξ
(|u|) η(l)

lξ (l)
dl

)

.

Thus,

sup
u�=0

‖Tj(· + u) + Tj(· – u) – 2Tj(·)‖z

ξ (|u|) = O
(

η( 1
j+1 )

ξ ( 1
j+1 )

)

+ O
(∫ π

1
j+1

η(l)
lξ (l)

dl
)

. (10)

Using Lemmas 3.1, 3.2, and 3.3 (i), we obtain

∥
∥Tj(·)

∥
∥

z =
∥
∥tTCδ

j – g
∥
∥

z

≤
(∫ 1

j+1

0
+

∫ π

1
j+1

)
∥
∥φ(·, l)

∥
∥

z

∣
∣KTCδ

j (l)
∣
∣dl

=
∫ 1

j+1

0

∥
∥φ(·, l)

∥
∥

z

∣
∣
∣
∣K

TCδ

j (l) dl +
∫ π

1
j+1

∥
∥φ(·, l)

∥
∥

z

∣
∣
∣
∣K

TCδ

j (l) dl

= O
(

(j + 1)
∫ 1

j+1

0
η(l) dl

)

+ O
(∫ π

1
j+1

η(l)
l

dl
)

= O
(

η

(
1

j + 1

))

+ O
(∫ π

1
j+1

η(l)
l

dl
)

. (11)

We know that

∥
∥Tj(·)

∥
∥(ξ )

z =
∥
∥Tj(·)

∥
∥

z + sup
u�=0

‖Tj(· + u) + Tj(· – u) – 2Tj(·)‖z

ξ (|u|) .

Now, by (10) and (11), we have

∥
∥Tj(·)

∥
∥(ξ )

z = O
(

η

(
1

j + 1

))

+ O
(∫ π

1
j+1

η(l)
l

dl
)

+ O
(

η( 1
j+1 )

ξ ( 1
j+1 )

)

+ O
(∫ π

1
j+1

η(l)
lξ (l)

dl
)

.

Due to the monotonicity of the function ξ (l),

η(l) =
η(l)
ξ (l)

ξ (l) ≤ ξ (π )
η(l)
ξ (l)

= O
(

η(l)
ξ (l)

)

for 0 < l ≤ π .
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Hence

O
(

η

(
1

j + 1

))

= O
(

η( 1
j+1 )

ξ ( 1
j+1 )

)

for l =
1

j + 1
.

Again, due to the monotonicity of the function ξ (l),

∫ π

1
j+1

η(l)
lξ (l)

ξ (l) dl ≤ ξ (π )
∫ π

1
j+1

η(l)
lξ (l)

dl = O
(∫ π

1
j+1

η(l)
lξ (l)

dl
)

.

Thus

∥
∥Tj(·)

∥
∥(ξ )

z = O
(

η( 1
j+1 )

ξ ( 1
j+1 )

)

+ O
(∫ π

1
j+1

η(l)
lξ (l)

dl
)

. (12)

Using Remark 3, we have

∫ π

1
j+1

η(l)
lξ (l)

dl ≥
η( 1

j+1 )

ξ ( 1
j+1 )

∫ π

1
j+1

dl
l

≥ logπ (j + 1)
η( 1

j+1 )

ξ ( 1
j+1 )

,

which gives

η( 1
j+1 )

ξ ( 1
j+1 )

= O
[

∫ π
1

j+1

η(l)
lξ (l) dl

logπ (j + 1)

]

. (13)

By (12) and (13), we have

∥
∥Tj(·)

∥
∥(ξ )

z = O
[

∫ π
1

j+1

η(l)
lξ (l) dl

logπ (j + 1)

]

+ O
(∫ π

1
j+1

η(l)
lξ (l)

dl
)

.

Thus,

∥
∥tTCδ

j – g
∥
∥(ξ )

z = O
[

1 + logπ (j + 1)
logπ (j + 1)

{∫ π

1
j+1

η(l)
lξ (l)

dl
}]

. (14)
�

5 Proof of Theorem 2.2

Proof Let sr(y) denote the rth partial sum of the Fourier series (1) given by

sr(g; y) =
1
2

a0 +
∞∑

m=1

(am cos my + bm sin my).

This partial sum can be represented as a definite integral. We have

sr(g; y) =
1

2π

∫ 2π

0
g(u) du
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+
1
π

r∑

m=1

{

cos my
∫ 2π

0
g(u) cos mu du + sin my

∫ 2π

0
g(u) sin mu du

}

=
1

2π

∫ 2π

0

{
1
2

+
r∑

m=1

cos m(y – u)

}

g(u) du

=
1

2π

∫ 2π

0

sin(r + 1
2 )(y – u)

sin 1
2 (y – u)

g(u) du.

Putting u = y + l, this becomes

sr(g; y) =
1

2π

∫ 2π–y

–y

sin(r + 1
2 )l

sin l
2

f (y + l) dl,

since the integrand has the period 2π , and so takes the same values in (2π – y, 2π ) as in
(–y, 0).

sr(g; y) =
1

2π

∫ 2π

0

sin(r + 1
2 )l

sin l
2

f (y + l) dl,

which may also be written in the form

sr(g; y) =
1

2π

∫ π

0

sin(r + 1
2 )l

sin l
2

{
g(y + l) + g(y – l)

}
dl.

Denoting by sr(y) the sum of first r-terms of the derived Fourier series (3), we get

s′
r(g; y) =

1
2π

∫ π

0

{
g(y + l) + g(y – l)

}
{

d
dl

sin(r + 1
2 )l

sin l
2

}

(15)

	⇒ s′
r(g; y) =

1
2π

∫ π

0

sin(r + 1
2 )l

sin l
2

d
{

g(y + l) – g(y – l)
}

=
1

2π

∫ π

0

sin(r + 1
2 )l

sin l
2

dh(l) + g ′(y).

Hence

s′
r(y) – g ′(y) =

1
2π

∫ π

0

sin(r + 1
2 )l

sin l
2

dh(l). (16)

Then

j∑

r=0

(r+δ–1
δ–1

)

(
δ+j
δ

)
[
s′

r(g; y) – g ′(y)
]

=
1

2π

∫ π

0
h(y, l)

j∑

r=0

(r+δ–1
δ–1

)

(
δ+j
δ

)
sin(r + 1

2 )l
sin l

2
dh(l),

Cδ
j (y) – g ′(y) =

1
2π

∫ π

0
h(y, l)

j∑

r=0

(r+δ–1
δ–1

)

(
δ+j
δ

)
sin(r + 1

2 )l
sin l

2
dh(l).
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Now,

tTCδ

j (y) – g ′(y) =
j∑

r=0

aj,j–r
{

Cδ
r (y) – g ′(y)

}

=
1

2π

∫ π

0
h(y, l)

j∑

r=0

aj,j–r

r∑

v=0

(v+δ–1
δ–1

)

(r+δ

δ

)
sin(v + 1

2 )l
sin l

2
dh(l).

Let

T ′
j (y) = tTCδ

j (y) – g ′(y).

Then

T ′
j (y + u) + T ′

j (y – u) – 2lT ′
j (y) =

∫ π

0

(
h(y + u, l) + h(y – u, l) – 2lh′(y, l)

)
KTCδ

j (l) dh(l).

Using the GMI [40],

∥
∥T ′

j (· + u) + T ′
j (· – u) – 2lT ′

j (·)
∥
∥

z

≤
∫ π

0

∥
∥h(· + u, l) + h(· – u, l) – 2lh(·, l)

∥
∥

z

∣
∣KTCδ

j (l)
∣
∣dh(l)

=
∫ 1

j+1

0

(∥
∥h(· + u, l) + h(· – u, l) – 2lh(·, l)

∥
∥

z

∣
∣KTCδ

j (l)
∣
∣
)

dh(l)

+
∫ π

1
j+1

(∥
∥h(· + u, l) + h(· – u, l) – 2lh(·, l)

∥
∥

z

∣
∣KTCδ

j (l)
∣
∣
)

dh(l)

= I3 + I4. (17)

Using Lemmas 3.1 and 3.4 (ii), we obtain

I3 =
∫ 1

j+1

0

∥
∥h(· + u, l) + h(· – u, l) – 2lh(·, l)

∥
∥

z

∣
∣KTCδ

j (l)
∣
∣dh(l)

= O
(∫ 1

j+1

0
ξ
(|u|)η(l)

ξ (l)
(j + 1) dh(l)

)

= O
(

(j + 1)ξ
(|u|)

∫ 1
j+1

0

η(l)
ξ (l)

dh(l)
)

= O
(

(j + 1)ξ
(|u|)

η( 1
j+1 )

ξ ( 1
j+1 )

∫ 1
j+1

0
dh(l)

)

. (18)

Now, using Lemmas 3.2 and 3.4 (ii), we get

I4 =
∫ π

1
j+1

∥
∥h(· + u, l) + h(· – u, l) – 2lh(·, l)

∥
∥

z

∣
∣KTCδ

j (l)
∣
∣dh(l)
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= O
(∫ π

1
j+1

ξ
(|u|)η(l)

ξ (l)
1
l

dh(l)
)

= O
(∫ π

1
j+1

ξ
(|u|) η(l)

lξ (l)
dh(l)

)

. (19)

By (17), (18), and (19), we have

∥
∥T ′

j (· + u) + T ′
j (· – u) – 2lT ′

j (·)
∥
∥

z

= O
(

(j + 1)ξ
(|u|)

η( 1
j+1 )

ξ ( 1
j+1 )

)∫ 1
j+1

0
dh(l) + O

(∫ π

1
j+1

ξ
(|u|) η(l)

lξ (l)
dh(l)

)

. (20)

Thus,

sup
u�=0

‖T ′
j (· + u) + T ′

j (· – u) – 2lT ′
j (·)‖z

ξ (|u|)

= O
(

(j + 1)
η( 1

j+1 )

ξ ( 1
j+1 )

)∫ 1
j+1

0
dh(l) + O

(∫ π

1
j+1

η(l)
lξ (l)

dh(l)
)

. (21)

Using Lemmas 3.1, 3.2, and 3.4 (i), we obtain

∥
∥T ′

j (·)
∥
∥

z =
∥
∥tTCδ

j – g ′∥∥
z

≤
(∫ 1

j+1

0
+

∫ π

1
j+1

)
∥
∥h(·, l)

∥
∥

z

∣
∣KTCδ

j (l)
∣
∣dh(l)

=
∫ 1

j+1

0

∥
∥h(·, l)

∥
∥

z

∣
∣
∣
∣K

TCδ

j (l) dh(l) +
∫ π

1
j+1

∥
∥h(·, l)

∥
∥

z

∣
∣
∣
∣K

TCδ

j (l) dh(l)

= O
(

(j + 1)
∫ 1

j+1

0
η(l) dh(l)

)

+ O
(∫ π

1
j+1

η(l)
l

dh(l)
)

= O
(

(j + 1)η
(

1
j + 1

)∫ 1
j+1

0
dh(l)

)

+ O
(∫ π

1
j+1

η(l)
l

dh(l)
)

. (22)

By (21) and (22), we know that

∥
∥T ′

j (·)
∥
∥(ξ )

z =
∥
∥T ′

j (·)
∥
∥

z + sup
u�=0

‖T ′
j (· + u) + T ′

j (· – u) – 2lT ′
j (·)‖z

ξ (|u|) ,

∥
∥T ′

j (·)
∥
∥(ξ )

z = O
(

(j + 1)η
(

1
j + 1

)∫ 1
j+1

0
dh(l)

)

+ O
(∫ π

1
j+1

η(l)
l

dh(l)
)

+ O
(

(j + 1)
η( 1

j+1 )

ξ ( 1
j+1 )

∫ 1
j+1

0
dh(l)

)

+ O
(∫ π

1
j+1

η(l)
lξ (l)

dh(l)
)

.

Due to the monotonicity of the function ξ (l),

η(l) =
η(l)
ξ (l)

ξ (l) ≤ ξ (π )
η(l)
ξ (l)

= O
(

η(l)
ξ (l)

)

, 0 < l ≤ π .
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Hence for l = 1
j+1 ,

η

(
1

j + 1

)

= O
(

η( 1
j+1 )

ξ ( 1
j+1 )

)

.

Again, due to the monotonicity of the function ξ (l),

∫ π

1
j+1

η(l)
lξ (l)

ξ (l) dh(l) ≤ ξ (π )
∫ π

1
j+1

η(l)
lξ (l)

dh(l) = O
(∫ π

1
j+1

η(l)
lξ (l)

dh(l)
)

.

Thus,

∥
∥T ′

j (·)
∥
∥(ξ )

z = O
(

(j + 1)
η( 1

j+1 )

ξ ( 1
j+1 )

∫ 1
j+1

0
dh(l)

)

+ O
(∫ π

1
j+1

η(l)
lξ (l)

dh(l)
)

. (23)

Using Remark 3 and the second mean value theorem,

∫ π

1
j+1

η(l)
lξ (l)

dh(l) ≥ (j + 1)
η( 1

j+1 )

ξ ( 1
j+1 )

∫ π

1
j+1

dh(l). (24)

By (23) and (24), we have

∥
∥tTCδ

j · –g ′∥∥(ξ )
z = O

(

(j + 1)
η( 1

j+1 )

ξ ( 1
j+1 )

∫ 1
j+1

0
dh(l)

)

+ O
(

(j + 1)
η( 1

j+1 )

ξ ( 1
j+1 )

∫ π

1
j+1

dh(l)
)

= O
(

(j + 1)
η( 1

j+1 )

ξ ( 1
j+1 )

∫ π

0
dh(l)

)

. (25)
�

6 Corollaries
Corollary 6.1 Let g ∈ Xα,z, z ≥ 1, and 0 ≤ β < α ≤ 1. Then

Ej(g) =
∥
∥tTCδ

j – g
∥
∥(ξ )

z ‖(β),z =

⎧
⎪⎨

⎪⎩

O[ (1+logπ (j+1))(j+1)β–α

logπ (j+1) ], 0 ≤ β < α < 1,

O[ 1+logπ (j+1)
(j+1) logπ (j+1) ], β = 0,α = 1.

Proof Taking η(l) = lα , ξ (l) = lβ , 0 ≤ β < α < 1 in (14) gives

∥
∥tTCδ

j – g
∥
∥

(β),z = O
(

1 + logπ (j + 1)
logπ (j + 1)

∫ π

1
j+1

lα–β–1 dl
)

.

Now,

∥
∥tTCδ

j – g
∥
∥

(β),z =

⎧
⎪⎨

⎪⎩

O( 1+logπ (j+1)
logπ (j+1)

∫ π
1

j+1
lα–β–1 dl), 0 ≤ β < α < 1,

O( 1+π log(j+1)
logπ (j+1)

∫ π
1

j+1
dl), β = 0,α = 1.
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Therefore,

∥
∥tTCδ

j – g
∥
∥(ξ )

z ‖(β),z =

⎧
⎪⎨

⎪⎩

O[ (1+logπ (j+1))(j+1)β–α

logπ (j+1) ], 0 ≤ β < α < 1,

O[ 1+logπ (j+1)
(j+1) logπ (j+1) ], β = 0,α = 1. �

Corollary 6.2 Following Remark 1 (i), we obtain

∥
∥tHCδ

j – g
∥
∥(ξ )

z = O
(

1 + logπ (j + 1)
logπ (j + 1)

∫ π

1
j+1

η(l)
lξ (l)

dl
)

.

Corollary 6.3 Following Remark 1 (ii), we obtain

∥
∥tNp,qCδ

j – g
∥
∥(ξ )

z = O
(

1 + logπ (j + 1)
logπ (j + 1)

∫ π

1
j+1

η(l)
lξ (l)

dl
)

.

Corollary 6.4 Following Remark 1 (iii), we obtain

∥
∥tNpCδ

j – g
∥
∥(ξ )

z = O
(

1 + logπ (j + 1)
logπ (j + 1)

∫ π

1
j+1

η(l)
lξ (l)

dl
)

.

Corollary 6.5 Following Remark 1 (iv), we obtain

∥
∥tÑpCδ

j – g
∥
∥(ξ )

z = O
(

1 + logπ (j + 1)
logπ (j + 1)

∫ π

1
j+1

η(l)
lξ (l)

dl
)

.

Corollary 6.6 Following Remark 1 (v), we obtain

∥
∥tEqCδ

j – g
∥
∥(ξ )

z = O
(

1 + logπ (j + 1)
logπ (j + 1)

∫ π

1
j+1

η(l)
lξ (l)

dl
)

.

Corollary 6.7 Following Remark 1 (vi), we obtain

∥
∥tE1Cδ

j – g
∥
∥(ξ )

z = O
(

1 + logπ (j + 1)
logπ (j + 1)

∫ π

1
j+1

η(l)
lξ (l)

dl
)

.

Corollary 6.8 Following Remark 2, we obtain

∥
∥tTC1

j – g
∥
∥(ξ )

z = O
(

1 + logπ (j + 1)
logπ (j + 1)

∫ π

1
j+1

η(l)
lξ (l)

dl
)

.

Corollary 6.9 Let g ′ ∈ Xα,z, z ≥ 1, and 0 ≤ β < α ≤ 1. Then

∥
∥tTCδ

j – g ′∥∥
(β),z =

⎧
⎪⎨

⎪⎩

O((j + 1)β–α+1 ∫ π

0 ), 0 ≤ β < α < 1,

O(
∫ π

0 dh(l)), β = 0,α = 1.

Proof Taking η(l) = lα , ξ (l) = lβ , 0 ≤ β < α < 1 in (25) yields

∥
∥tTCδ

j – g ′∥∥
(β),z = O

(

(j + 1)β–α+1
∫ π

0
dh(l)

)

.
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Now,

∥
∥tTCδ

j – g ′∥∥
(β),z =

⎧
⎪⎨

⎪⎩

O((j + 1)β–α+1 ∫ π

0 ), 0 ≤ β < α < 1,

O(
∫ π

0 dh(l)), β = 0,α = 1. �

Corollary 6.10 Following Remark 1 (i), we obtain

∥
∥tHCδ

j – g ′∥∥(ξ )
z = O

(

(j + 1)
η( 1

j+1 )

ξ ( 1
j+1 )

∫ π

0
dh(l)

)

.

Corollary 6.11 Following Remark 1 (ii), we obtain

∥
∥tNp,qCδ

j – g ′∥∥(vξ )
z = O

(

(j + 1)
η( 1

j+1 )

ξ ( 1
j+1 )

∫ π

0
dh(l)

)

.

Corollary 6.12 Following Remark 1 (iii), we obtain

∥
∥tNpCδ

j – g ′∥∥(ξ )
z = O

(

(j + 1)
η( 1

j+1 )

ξ ( 1
j+1 )

∫ π

0
dh(l)

)

.

Corollary 6.13 Following Remark 1 (iv), we obtain

∥
∥tÑpCδ

j – g ′∥∥(vξ )
z = O

(

(j + 1)
η( 1

j+1 )

ξ ( 1
j+1 )

∫ π

0
dh(l)

)

.

Corollary 6.14 Following Remark 1 (v), we obtain

∥
∥tEqCδ

j – g ′∥∥(ξ )
z = O

(

(j + 1)
η( 1

j+1 )

ξ ( 1
j+1 )

∫ π

0
dh(l)

)

.

Corollary 6.15 Following Remark 1 (vi), we obtain

∥
∥tE1Cδ

j – g ′∥∥(ξ )
z = O

(

(j + 1)
η( 1

j+1 )

ξ ( 1
j+1 )

∫ π

0
dh(l)

)

.

Corollary 6.16 Following Remark 2, we obtain

∥
∥tTC1

j – g ′∥∥(ξ )
z = O

(

(j + 1)
η( 1

j+1 )

ξ ( 1
j+1 )

∫ π

0
dh(l)

)

.

Remark 7
(i) Corollary 6.1 can be further reduced using TC1 means in view of Remark 2.

(ii) Corollaries 6.2, 6.3, 6.4, 6.5, 6.6, 6.7 can be further reduced using HC1, Np,qC1,
NpC1, ÑC1, EqC1, and E1C1 means, respectively, in view of Remark 2.

(iii) Corollaries 6.10, 6.11, 6.12, 6.13, 6.14, 6.15 can be further reduced using HC1,
Np,qC1, NpC1, ÑpC1, EqC1, and E1C1 means, respectively, in view of Remark 2.
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Remark 8
(i) In our Theorem 2.1, if z → ∞, then the X(η)

z class becomes the X(η) class. Also
putting η(l) = lα and ζ (l) = lβ in our Theorem 2.1, the X(η) class turns into the Xα

class. Then for β = 0, the Xα class turns into the Lip(α) class.
(ii) In our Theorem 2.1, by putting η(l) = lα , ζ (l) = lβ in the X(η)

z class, the X(η)
z class

turns into the Xα,z class. Then for β = 0, the Xα,z class turns into the Lip(α, z) class.

Remark 9
(i) If ζ (l) = lα and z → ∞, then the Lip(ζ (l), z) class turns into the Lip(α) class and

thus, the results of [6, 8], and [10] reduce to those for the Lip(α) class.
(ii) If β = 0, ζ (l) = lα and z → ∞, then the W (Lz, ζ (l)) class turns into the Lip(α) class.

Thus, the results of [5] and [7] reduce to those for the Lip(α) class.

7 Particular cases
(i) Using Remark 8 (i), putting δ = 1 in our Theorem 2.1 yields the result of Dhakal [3].

(ii) Using Remark 8 (i), putting aj,r = pj–rqr
Rj

where Rj =
∑j

r=0 prqj–r �= 0 and δ = 1 in our
Theorem 2.1 gives the result of Dhakal [4].

(iii) Using Remark 8 (i) and (ii), putting aj,r = 1
2j

(j
r
)

and δ = 1 in our Theorem 2.1, in
view of Remark 9 (ii), the result of Nigam [5] follows.

(iv) Using Remark 8 (i), putting aj,r = 1
(1+q)j

(j
r
)
qj–r and δ = 1 in our Theorem 2.1, in

view of Remark 9 (i), the result of Nigam [6] follows.
(v) Using Remark 8 (i) and (ii), putting aj,r = pj–r

Pj
where Pj =

∑j
r=0 pr �= 0 and δ = 1 in

our Theorem 2.1, in view of Remark 9 (ii), the result of Nigam and Sharma [7]
follows.

(vi) Using Remark 8 (i), putting aj,r = 1
2j

(j
r
)

and δ = 1 in our Theorem 2.1, in view of
Remark 9 (i), the result of Nigam and Sharma [8] follows.

(vii) Using Remark 8 (ii), putting aj,r = pj–rqr
Rj

where Rj =
∑j

r=0 prqj–r �= 0 and δ = 1 in our
Theorem 2.1, the result of Kushwaha and Dhakal [9] follows.

(viii) Using Remark 8 (i), putting δ = 1 in our Theorem 2.1, in view of Remark 9 (i), the
result of Shrivastava, Rathore, and Shukla [10] follows.

8 Conclusion
In this paper, we have determined the best error approximation of the functions g and g ′,
where g ′ is a derived function of a 2π-periodic function g in the generalized Zygmund class
X(η)

z , z ≥ 1, using matrix-Cesàro (TCδ) means of its Fourier series and its derived Fourier
series, respectively. We have proved Theorem 2.1 which generalizes several earlier results,
and the results of [3–10] become particular cases of our Theorem 2.1. Several corollaries
are also deduced from our Theorem 2.1.
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