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Abstract
We give representations for solutions of time-fractional differential equations that
involve operators on Lebesgue spaces of sequences defined by discrete convolutions
involving kernels through the discrete Fourier transform. We consider finite difference
operators of first and second orders, which are generators of uniformly continuous
semigroups and cosine functions. We present the linear and algebraic structures (in
particular, factorization properties) and their norms and spectra in the Lebesgue
space of summable sequences. We identify fractional powers of these generators and
apply to them the subordination principle. We also give some applications and
consequences of our results.
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1 Introduction
In this work, we study the following semidiscrete Cauchy problem:

⎧
⎨

⎩

∂tu(n, t) = Bu(n, t) + g(n, t), n ∈ Z, t > 0,

u(n, 0) = ϕ(n), n ∈ Z,
(1.1)

where B is the convolution operator in the discrete variable, that is,

Bu(n, t) =
∑

j∈Z
b(n – j)u(j, t) (1.2)

with b belonging to the Banach algebra �1(Z). A typical example is the one-dimensional
discrete Laplacian �d , which can be obtained by taking b = δ–1 – 2δ0 + δ1, where δi(j)
denotes the Kronecker delta (or discrete Dirac measure). In such a case, equation (1.1)
corresponds to the nonhomogeneous semidiscrete diffusion equation (also known as the
semidiscrete heat equation or the lattice diffusion equation).

The analytical study of such equations has received an increasing interest in the last
decade, mainly due to many their applications in diverse areas of knowledge. For instance,
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in probability theory, the value u(n, t) in (1.1) with B = �d describes the probability that a
continuous-time symmetric random walk on Z visits a point n at time t; see [25, Sect. 4].
In chemistry, (1.1) describes the flow of a chemical in an infinite system of tanks arranged
in a row, where each two neighbors are connected by pipes [42, Sect. 3], and in transport
theory, (1.1) describes the dynamics of an infinite chain of cars, each being coupled to its
two neighbors. The value u(n; t) is the displacement of car n at time t from its equilibrium
position; see [24, Example 1]. From an analytical point of view, quite recently, Slavik [43]
studied the asymptotic behavior of solutions of (1.1) when B = �d , showing that a bounded
solution approaches the average of the initial values if the average exists. Note that choos-
ing b = δ–1 – δ0 in (1.2), we obtain the forward difference operator B = �, and hence (1.2)
corresponds to the semidiscrete transport equation, studied recently by Abadias et al. [1].

It is interesting that in [22] and [37] the authors studied the fundamental solutions of
(1.1) and the second-order semidiscrete equation

⎧
⎨

⎩

∂ttu(n, t) = Bu(n, t) + g(n, t), n ∈ Z, t > 0,

u(n, 0) = ϕ(n), ut(n, 0) = φ(n), n ∈ Z,
(1.3)

when B = –(–�d)α is the discrete fractional Laplacian. Particularly, in [37] the authors
combined operator theory techniques with the properties of the Bessel functions to de-
velop a theory of analytic semigroups and cosine operators generated by �d and –(–�d)α .
Also note that the fractional forward difference operator B = –(–�)α was studied in [1],
where the maximum and comparison principles in the context of harmonic analysis are
proved.

However, to our knowledge, to date, there is no attempt to investigate the fundamental
solutions of the general equation (1.1) in a unified way. Our goal in this paper is to propose
a solution to this problem.

Our key observation concerning this issue is that the discrete fractional Laplacian can be
obtained from (1.2) by allowing the fractional powers of b to be an element of the Banach
algebra �1(Z). This original approach, which we provide in this paper, allows us to obtain
new insights by introducing a completely new method to analyze both qualitative behavior
and fundamental solutions of (1.1) in a unified way.

More generally, to provide simultaneously in our analysis the subdiffusive and superdi-
fussive cases associated with equations (1.1) and (1.3), in this paper, we include a repre-
sentation of the fundamental solutions for the following semidiscrete equations:

⎧
⎨

⎩

D
β
t u(n, t) = Bu(n, t) + g(n, t), n ∈ Z, t > 0,

u(n, 0) = ϕ(n), n ∈ Z,
(1.4)

in case 0 < β ≤ 1 and
⎧
⎨

⎩

D
β
t u(n, t) = Bu(n, t) + g(n, t), n ∈ Z, t > 0,

u(n, 0) = ϕ(n), ut(n, 0) = φ(n), n ∈ Z,
(1.5)

in case 1 < β ≤ 2. In both cases, B is the convolution operator Bf (n) := (b ∗ f )(n) on �p(Z),
p ∈ [1,∞], b ∈ �1(Z), and β ∈ (0, 2]. The symbol Dβ

t denotes the Caputo fractional deriva-
tive of order β > 0.
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We observe that although the present study considers only the cases 0 < β ≤ 2 because
they are the most common in applications (that is, subdiffusion and superdiffusion) to-
gether with the fractional Caputo derivative, our method is general enough to consider a
larger order β and other nonlocal operators in time. For example, in Sect. 6.4, we consider
the new Caputo–Fabrizio fractional derivative of order α ∈ (0, 1) and give a representation
of the solutions for the corresponding equation (1.4).

This paper is organized as follows. In Sect. 2, we consider the Banach algebra frame-
work to state our main results, which we will present in the forthcoming sections. In
particular, we introduce generalized Mittag-Leffer functions on the Banach algebra �1(Z)
and collect some basic properties. Our main result is Theorem 2.6 concerning the in-
variance for convolution operators defined on �p(Z) for 1 ≤ p ≤ ∞. Section 3 is devoted
to four finite difference operators: backward and forward difference operators, the one-
dimensional discrete Laplacian, and an operator that originates in connection with crystal
lattices [16]. Then we explicitly describe their associated groups and cosine operators by
means of Bessel functions and highlight their main spectral properties. Section 4 begins
with three concrete examples of application of the results in the previous section: the dis-
crete Nagumo equation, transport equations, and a new interesting second-order discrete
equation, which we call the De Juhasz equation, appearing in the seminal Bateman’s paper
[16] in connection with surges in springs and connected systems of springs. Then we state
the general fundamental solutions for (1.4)–(1.5), first, in the setting of Banach algebras
(Theorem 5.1) and then for convolution operators (Corollary 5.5). In Sect. 7, we give ex-
plicit representations of generalized Mittag-Leffer functions in each case of the fractional
powers of the four finite difference operators considered previously (Theorem 7.1). This
result, combined with the general fundamental solutions considered in Theorem 5.1 and
Corollary 5.5, gives not only explicit representations of each of the four difference opera-
tors considered in this paper – which can be considered as examples – but also an efficient
method to obtain representations of solutions in many other cases. Besides, as a byproduct
of our treatment, we obtain new Weiestrass formulae, which highlight the role of Bessel
functions for finite difference operators, and a subordination principle, which connects
the Wright and Bessel functions. For convenience of the reader, we finish this research
with an appendix on useful properties of some special functions needed in this paper.

Notation. T = {eiθ : θ ∈ [–π ,π )} is the one-dimensional torus. The Dirac measures δ0

and δn are δn(j) = 0 if n �= j and δn(n) = 1 for n, j ∈ Z. Given a Banach space X, X ′ is the dual
of X, and B(X) is the set of linear bounded operators on X; given A ∈ B(X), we A′ ∈ B(X ′)
is the adjoint of the operator A. We denote by χI the indicator function of a set I (i.e.,
χI(n) = 1 if n ∈ I and χI(n) = 0 if n /∈ I). Furthermore, In and Jn are the Bessel functions.
The usual set numbers N, N0 = N∪{0}, Z, R, and C are used. Furthermore,  is the gamma
function, �β is the Wright function (Sect. A.1), Eα,β is the Mittag-Leffler function, In and
Jn are the Bessel functions (Sect. A.2), and the stable Lévy distribution is denoted by ft,α

(Sect. A.3).

2 A Banach algebra framework
Given 1 ≤ p ≤ ∞, we recall that the Banach spaces (�p(Z),‖ · ‖p) are formed by biinfinite
sequences f = (f (n))n∈Z ⊂C such that

‖f ‖p :=

( ∞∑

n=–∞

∣
∣f (n)

∣
∣p

) 1
p

< ∞, 1 ≤ p < ∞,
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‖f ‖∞ := sup
n∈Z

∣
∣f (n)

∣
∣ < ∞.

We recall the natural embeddings �1(Z) ↪→ �p(Z) ↪→ �∞(Z) for 1 ≤ p ≤ ∞ and that the
dual of �p(Z) is identified with �p′ (Z), where 1

p + 1
p′ = 1 for 1 < p < ∞ and p = 1 if p′ = ∞.

In the case of f ∈ �1(Z) and g ∈ �p(Z), we define

(f ∗ g)(n) :=
∞∑

j=–∞
f (n – j)g(j), n ∈ Z.

From Young’s inequality it follows that f ∗ g ∈ �p(Z). Note that (�1(Z),∗) is a commutative
Banach algebra with identity δ0 := χ{0}. We observe that δ1 ∗δ1 = δ2 and, in general, δn ∗δm =
δn+m for n, m ∈ Z.

The Gelfand transform associated with (�1(Z),∗) is the discrete Fourier transform F :
�1(Z) → C(T) (or Fourier series), where

f̂ (θ ) := F (f )
(
eiθ ) :=

∑

n∈Z
f (n)einθ , θ ∈ T.

We recall that the spectrum of f , denoted σ�1(Z)(f ), is defined by

σ�1(Z)(f ) :=
{
λ ∈C : (λδ0 – f )–1 ∈ �1(Z)

}
.

In what follows, we consider the general theory of commutative Banach algebras as a
framework. We collect the results that will be of our interest in the following theorem.

Theorem 2.1 The following properties hold:
(i) The spectrum Spec(�1(Z)) is compact and, consequently, homeomorphic to the unit

complex circle T := {z ∈ C : |z| = 1}.
(ii) σ�1(Z)(f ) ⊂ {z ∈C; |z| < ‖f ‖1}, and

(λδ0 – f )–1 =
∑

n≥0

λ–n–1f n, ‖f ‖1 < |λ|. (2.1)

(iii) The algebra �1(Z) is a semisimple regular Banach algebra, and the discrete Fourier
transform F is injective.

(iv) F (f ∗ g) = F (f )F (g), and

σ�1(Z)(f ) = F (f )(T), f ∈ �1(Z). (2.2)

Proof The first claim follows from the fact that the algebra �1(Z) has an identity; see, for
example, [35], and the second one can be found in [35, p. 116]. The proof of (ii) is straight-
forward. From [35, Theorem 4.7.4] it follows that �1(Z) is semisimple and F is injective.
By [35, Corolary 7.2.3] �1(Z) is a regular Banach algebra. Statement (iv) is taken from [35,
Theorem 3.4.1.]. �

We observe that the range of the Gelfand transform is the Wiener algebra A(T), the
pointwise algebra of absolutely convergent Fourier series, that is, F(eiθ ) =

∑
n∈Z f (n)eiθn,

(θ ∈ T) with f ∈ �1(Z). For F ∈A(T), we also write F(z) =
∑

n∈Z f (n)zn for |z| ≤ 1.
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The inverse discrete Fourier transform is given by the expressions

F–1(F)(n) =
1

2π

∫ π

–π

F
(
eiθ )e–inθ dθ =

1
2π i

∫

|z|=1
F(z)

dz
zn+1 , n ∈ Z,

for F ∈A(T) (and for other functions in larger sets).
The classical formulation of Wiener’s lemma characterizes the functions F ∈ A(T) that

are invertible in A(T) as follows. For F ∈ A(T) where F(eiθ ) =
∑

n∈Z f (n)eiθn for θ ∈ T,
F(eiθ ) �= 0 for all θ ∈ T if and only if 1/F ∈ A(T), that is, (1/F)(eiθ ) =

∑
n∈Z g(n)eiθn with

(g(n))n∈Z ∈ �1(Z); in this case, f ∗ g = δ0 [32, Theorem 5.5].
Recall the definition of the classical Mittag-Leffler function (see (A.3)). We now intro-

duce the following definition.

Definition 2.2 For α,β > 0, we define the vector-valued Mittag-Leffler function Eα,β :
�1(Z) → �1(Z), by

Eα,β (a) :=
∞∑

j=0

aj

(αj + β)
, a ∈ �1(Z).

Note that

E1,1(a) =
∞∑

j=0

aj

j!
= ea; E2,1(a) =

∞∑

j=0

aj

(2j)!
.

The set exp(�1(Z)) := {ea; a ∈ �1(Z)} is the connected component of δ0 in the set of regular
elements in �1(Z) [35, Theorem 6.4.1].

We follow the usual terminology in semigroup theory: the element a is called the gen-
erator of the entire group (eza)z∈C; the cosine and sine functions are defined as Cos(z, a) :=
E2,1(z2a) and Sin(z, a) := zE2,2(z2a). We have

Sin(z, a) =
∫

[0,z]
Cos(s, a) ds, z ∈C,

for a ∈ �1(Z); see [10, Sects. 3.1 and 3.14]. Moreover, the Laplace transform of an entire
group or a cosine function is connected with the resolvent of its generator as follows:

(λ – a)–1 =
∫ ∞

0
e–λseas ds, λ > ‖a‖1,

λ
(
λ2 – a

)–1 =
∫ ∞

0
e–λs Cos(s, a) ds, λ >

√‖a‖1; (2.3)

see, for example, [10, p. 213].

Example 2.3 For α,β > 0, we have

Eα,β (zδ0) = Eα,β (z)δ0; Eα,β (zδ1) =
∞∑

j=0

zjδj

(αj + β)
.

In particular, ezδ1 =
∑∞

j=0
zjδj

j! and Cos(z, δ1) =
∑∞

j=0
z2jδj
(2j)! are generated by δ1.
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Considering generalized versions of the Mittag-Leffler function, as well as of other hy-
pergeometric series, as presented, for example, in [3–5], more examples can be easily de-
rived.

In the next proposition, we collect some basic properties of these vector-valued Mittag-
Leffler functions. As usual, we consider Bochner vector-valued integration in the Banach
space �1(Z); see, for example, [41, Sect. 1.2]. For the definition of the Wright function �γ ,
see the Appendix, formula (A.1).

Proposition 2.4 For α,β > 0 and a ∈ �1(Z), we have:
(i) ‖Eα,β(a)‖1 ≤ Eα,β (‖a‖1).

(ii) F (Eα,β(a)) = Eα,β (F (a)); in particular, F (eaz) = ezF (a) and
F (Cos(z, a)) = Cos(F (z), a) for z ∈C.

(iii) σ�1(Z)(Eα,β (a)) = Eα,β (σ�1(Z)(a)).
(iv) The following Laplace transform formula holds:

∫ ∞

0
e–λttαk+β–1E(k)

α,β
(
tαa

)
dt = k!λα–β

((
λα – a

)–1)(k+1), (λ) > ‖a‖1/α
1 , (2.4)

for k ∈N∪ {0}.
(v) For 0 < γ < 1, Eγ ,1(a) =

∫ ∞
0 �γ (t)eta dt.

Proof Proofs of parts (i) and (ii) are straightforward. Part (iii) is the spectral mapping theo-
rem shown in [35, Theorem 6.2.1]. Since the algebra �1(Z) is semisimple (see Theorem 2.1),
formulae in (iv) and (v) are direct consequences of the scalar identities [39, formula (180),
p. 21]. �

Given a ∈ �1(Z), the modified Mittag-Leffler function Sα,β : (0,∞) → �1(Z), which we
define by

Sα,β (t, a) := tβ–1Eα,β
(
tαa

)
, t > 0, (2.5)

is a (gα , gβ )-regularized resolvent family generated by a in the algebra �1(Z). For the defini-
tion of (gα , gβ )-regularized resolvent families and more detail in the general case of linear
and bounded operators in a Banach space, we refer the reader to [2, Sect. 4] and the survey
[36].

We introduce the functions

ψα,β (t, s) := tβ–1
∞∑

n=0

(–st–α)n

n!(–αn + β)
, s, t > 0,

for 0 < α < 1 and β > 0. Note that ψα,1–α(s, t) = t–α�α(stα) for 0 < α < 1.
A direct consequence of [2, Theorem 12] is the following subordination theorem.

Theorem 2.5 Let 0 < η1, 0 < η2, and a ∈ �1(Z), and let Sη1,η2 be defined in (2.5). Then

Sαη1,αη2+β (t, a) =
∫ ∞

0
ψα,β (t, s)Sη1,η2 (s, a) ds, t > 0,

for 0 < α < 1 and β ≥ 0.
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Note that in the case of η1 = 2, η2 = 1, and α = β = 1
2 in Theorem 2.5, we obtain the

well-known relation between cosine and semigroup operators generated by a, known as
the Weierstrass formula:

eat =
1√
π t

∫ ∞

0
e– s2

4t Cos(s, a) ds, t > 0, (2.6)

for a ∈ �1(Z); see, for example, [10, Theorem 3.14.17].
A nice application of the classical Wiener lemma is the invariance of spectrum for con-

volution operators defined on �p(Z) for 1 ≤ p ≤ ∞. This issue is contained in the following
theorem that is the key abstract result in this paper.

Theorem 2.6 For a ∈ �1(Z), we define

A(b)(n) := (a ∗ b)(n), n ∈ Z, b ∈ �p(Z). (2.7)

Then A ∈ B(�p(Z)) for all 1 ≤ p ≤ ∞. Moreover, ‖A‖ = ‖a‖1, and for all 1 ≤ p ≤ ∞, we
have the following identities:

σB(�p(Z))(A) = σ�1(Z)(a) = F (a)(T). (2.8)

For all a ∈ �1(Z), we have that eza is an entire group in �p(Z) with generator a, and for all
1 ≤ p ≤ ∞, we have the following identities:

σB(�p(Z))
(
eza) = σ�1(Z)

(
eza) = ezF (a)(T), z ∈ C. (2.9)

Proof From Young’s inequality it follows that A ∈ B(�p(Z)). Since the algebra �p(Z) has the
identity δ0, the property of the norm follows. For identities (2.8), we refer to [32, Corol-
lary 5.20]. Finally, for the spectral mapping theorem (2.9), we use (2.8) and [35, Theo-
rem 6.2.1]. �

The element a in the theorem is also called the symbol of the operator A.

Remark 2.7 It is also straightforward to check that the adjoint operator of A is again a
convolution operator given by A′(g)(n) := (ã ∗ g)(n), where

ã(n) = a(–n), n ∈ Z.

3 Some finite difference operators in �1(Z)
An important case of finite difference operators is given by sequences in the set

cc(Z) :=
{

a ∈ �1(Z) : ∃m ∈ Z+ : a(n) = 0,∀|n| > m)
}

.

In such a case, the discrete Fourier transform of a ∈ cc(Z) is the trigonometric polynomial

F (a)
(
eiθ ) =

m∑

j=–m

a(j)eijθ . (3.1)
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It is interesting to observe that if
∑m

j=–m a(j) = 0, then 0 ∈ σ�1(Z)(a). This immediately fol-
lows from (2.8).

In this paper, we concentrate our study on the operators that appear in the seminal paper
of Bateman [16].

Definition 3.1 For f ∈ �p(Z) with 1 ≤ p ≤ ∞, we define the following operators:
(1) –�f (n) := f (n) – f (n + 1) = ((δ0 – δ–1) ∗ f )(n);
(2) ∇f (n) := f (n) – f (n – 1) = ((δ0 – δ1) ∗ f )(n);
(3) �df (n) := f (n + 1) – 2f (n) + f (n – 1) = ((δ–1 – 2δ0 + δ1) ∗ f )(n); and
(4) �ddf (n) := f (n + 2) – 2f (n) + f (n – 2) = ((δ–2 – 2δ0 + δ2) ∗ f )(n)

for n ∈ Z.

We remark that when considering the above-defined operators in the context of numer-
ical analysis, the operators –� and ∇ are related to the Euler scheme of approximation,
and the operator �d corresponds to the second-order central difference approximation
for the second-order derivative. The operator �dd appears in Bateman’s paper [16, p. 506]
in connection with the equations of Born and Karman on crystal lattices in vibration.

3.1 The operator –�
The forward difference operator �f (n) := f (n + 1) – f (n) is a classical operator used in
approximation theory and in the theory of difference equations. Considering it as an op-
erator from �p(Z) to �p(Z), our main result is as follows.

Theorem 3.2 The operator –�f = a ∗ f , where a := δ0 – δ–1, possesses the following prop-
erties:

(1) The norm is given by ‖�‖ = 2;
(2) The Fourier transform is F (a)(z) = 1 – z, |z| = 1;
(3) For all 1 ≤ p ≤ ∞, the spectrum is given by σB(�p(Z))(–�) = {z ∈ T : |z – 1| = 1};
(4) For |λ + 1| > 1,

(λδ0 + a)–1 =
∑

j≥0

δ–j

(1 + λ)j+1 .

(5) The associated group is e–za(n) = e–z z–n

(–n)!χ–N0 (n), z ∈C, n ∈ Z, and its generator is
–a.

(6) The norm of the group is given by ‖e–ta‖1 = 1, t > 0;
(7) The associated cosine function is Cos(z, –a)(n) =

√
π

(–n)! (
z
2 )–n+ 1

2 J–n– 1
2

(z)χ–N0 (n) for
z ∈ C and n ∈ Z.

Proof (1) The Minkowski inequality shows that ‖�‖ ≤ 2. Then observe that δ0 ∈ �p(Z)
with ‖δ0‖p = 1 satisfies ‖�δ0‖p = 2, proving the claim. (2) Follows immediately from the
definition of the discrete Fourier transform. (3) Follows from formula (2.8) in Theorem 2.6
and (2).

To prove (4), we apply (2.1) to get

(λδ0 + a)–1 =
(
(λ + 1)δ0 – δ–1

)–1 =
∑

j≥0

δ–j

(1 + λ)j+1
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for |λ + 1| > 1. We show (5) directly:

e–za(n) =
(
ezδ–1 ∗ e–zδ0

)
(n) =

(
ezδ–1 ∗ e–zδ0

)
(n) = e–z z–n

(–n)!
χ–N0 (n)

for z ∈ C and n ∈ Z. The norm ‖e–ta‖1 = 1 for t > 0 is straightforward from (5). Finally, to
show (7), we apply the Laplace transform and formula (A.10) to get

√
π

(–n)!

∫ ∞

0
e–λt

(
t
2

)–n+ 1
2

J–n– 1
2

(t) dt =
λ

(λ2 + 1)–n+1 , λ > 1,

for n ≤ 0. By (4) we have that

λ

(λ2 + 1)–n+1 = λ
(
λ2 + a

)–1(n), n ≤ 0,

and we apply (2.3) to conclude the claimed equality and identify the generator of the cosine
function with –a. �

We remark that groups generated by � are treated in [1, Sect. 2] and cosine functions
in [16, Introduction].

3.2 The operator ∇
This operator corresponds to the classical backward difference operator.

Theorem 3.3 The operator ∇f = a ∗ f , where a := δ0 – δ1, possesses the following proper-
ties:

(1) ‖∇‖ = 2;
(2) F (a)(z) = 1 – 1

z ;
(3) For all 1 ≤ p ≤ ∞, we have σB(�p(Z))(∇) = {z ∈ T : |z – 1| = 1};
(4) For |λ + 1| > 1,

(λδ0 + a)–1 =
∑

j≥0

δj

(1 + λ)j+1 .

(5) e–za(n) = e–z zn

n! χN0 (n), z ∈C, n ∈ Z;
(6) ‖e–ta‖1 = 1, t > 0;
(7) Cos(z, –a) =

√
π

n! ( z
2 )n+ 1

2 Jn– 1
2

(z)χN0 (n), z ∈C, n ∈ Z.

Proof The proofs of statements (1), (2), (3), and (4) follow the lines of Theorem 3.2. For
statement (5), we have

e–za(n) =
(
ezδ1 ∗ e–zδ0

)
(n) = e–z zn

n!
χN0 (n)

for z ∈ C and n ∈ Z. Claim (6) follows from (5). Finally, we check (7) as follows. We apply
Laplace transform and formula (A.10) to get

√
π

n!

∫ ∞

0
e–λt

(
t
2

)n+ 1
2

Jn– 1
2

(t) dt =
λ

(λ2 + 1)n+1 , λ > 1,
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for n ≥ 0. Then we can apply (4), (2.3), and the uniqueness of the Laplace transform to
conclude (7). �

We remark that groups generated by –∇ are treated in [1, Sect. 2] and cosine functions
in [16, Introduction].

We observe that when considering the Fourier transform in the context of signal pro-
cessing, the conversion from continuous-time systems to discrete-time systems is done
through the Euler transformation 1 – 1

z . In such a context, it is important to remark that
z–1 represents a delay in time.

3.3 The operator �d

Theorem 3.4 The operator �df = a ∗ f , where a := δ–1 – 2δ0 + δ1, possesses the following
properties:

(1) ‖�d‖ = 4;
(2) F (a)(z) = z + 1

z – 2;
(3) For all 1 ≤ p ≤ ∞, we have σB(�p(Z))(�d) = [–4, 0];
(4) The group eza(n) = e–2zIn(2z), z ∈C, n ∈ Z, and its generator is a;
(5) ‖eta‖1 = 1, t > 0;
(6) For λ ∈C \ [–4, 0],

(λ – a)–1(n) = 2–n ((λ + 2) –
√

λ2 + 4λ)n
√

λ2 + 4λ
, n ∈ Z;

(7) Cos(z, a) = J2n(2z), z ∈C, n ∈ Z.

Proof Statements (1) and (2) follow as in the previous theorems. To prove (3), observe that

σB(�p(Z))(�d) =
{

z ∈C : z = w +
1
w

– 2, |w| = 1
}

=
{

z ∈C : z = 2
((w) – 1

)
, |w| = 1

}

=
{

z ∈C : z = 2
(
cos(θ ) – 1

)
, θ ∈ [0, 2π )

}
= [–4, 0].

To show (4), we proceed as in the previous theorems, obtaining

eza(n) =
((

ezδ1 ∗ ezδ–1
) ∗ e–2zδ0

)
(n) = e–2z(ezδ1 ∗ ezδ–1

)
(n)

= e–2z
∞∑

j=–∞

zn–j

(n – j)!
χN0 (n – j)

z–j

(–j)!
χ–N0 (j)

= e–2z
∞∑

j=0

zn+j

(n + j)!
zj

j!
= e–2zIn(2z),

where we have used (A.7) in the last identity. To prove (5), we use (4) and Appendix A.2(4).
To prove (6), we apply the Laplace transform and formula (A.8) to get

(λ – a)–1(n) =
∫ ∞

0
e–λteta(n) dt =

∫ ∞

0
e–(λ+2)tIn(2t) dt = 2–n ((λ + 2) –

√
λ2 + 4λ)n

√
λ2 + 4λ

for λ > 0 and n ∈ Z. By the principle of analytic continuation we can extend the equality
to the set λ ∈ C \ [–4, 0]. Finally, to show (7), we apply again the Laplace transform and
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formula (A.9) to get

∫ ∞

0
e–λtJ2n(2t) dt = 2–2n (

√
λ2 + 4 – λ)2n
√

λ2 + 4
= 2–n (λ2 + 2 – λ

√
λ2 + 4)n

√
λ2 + 4

= λ
(
λ2 – a

)–1(n),

where we have applied (6) for λ > 0 and n ∈ Z. �

We observe that groups generated by the discrete Laplacian �d are treated in [21, Sect. 2]
and cosine functions in [37, Theorem 1.2]. Here we have presented a complete and al-
ternative approach using the framework of Banach algebras combined with the Laplace
transform method.

3.4 The operator �dd

Theorem 3.5 The operator �ddf = a ∗ f , where a := δ–2 – 2δ0 + δ2, possesses the following
properties:

(1) ‖�dd‖ = 4;
(2) F (a)(z) = (z – 1

z )2;
(3) For all 1 ≤ p ≤ ∞, we have σB(�p(Z))(�dd) = [–4, 0];
(4) eza(n) = e–2zI n

2
(2z)χ2Z(n), z ∈C, n ∈ Z;

(5) ‖e–ta‖1 = 1, t > 0;
(6) For λ ∈C \ [–4, 0],

(λ – a)–1(n) = 2– n
2

((λ + 2) –
√

λ2 + 4λ) n
2√

λ2 + 4λ
χ2Z(n), n ∈ Z;

(7) Cos(z, –a)(n) = Jn(2z)χ2Z(n), z ∈ C, n ∈ Z.

Proof En view of the previous theorems, (1) and (2) are straightforward. To prove (3),
observe that

σB(�p(Z))(�dd) =
{

z ∈C : z = –4 sin2 θ , θ ∈ [0, 2π )
}

= [–4, 0].

We show (4): To show (4), we apply the discrete Fourier transform and Theorem 3.4 ((2)
and (4)) to get

F
(
e–2tI n

2
(2t)χ2Z(n)

)
(z) =

∑

j∈Z
e–2tIj(2t)

(
z2)j = F

(
et�d

)(
z2) = et(z– 1

z )2 = F
(
eta)(z)

for z ∈ T, and we conclude equality (4) by the uniqueness of the discrete Fourier transform.
The equality in (5) is a consequence of (4) and Appendix A.2(4). The proofs of (6) and (7)
are similar to those of (6) and (7) in Theorem 3.4. �

Some simple computations show linear, algebraic, and dual relations between the oper-
ators defined previously, which are presented in the following result.

Proposition 3.6 The discrete operators –�, ∇ , �d , and �dd possess the following proper-
ties:
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(i) We have the equalities

–�d = (∇ – �) = –�∇ ;

(ii) For 1 ≤ p < ∞, we have the following identities on �p(Z):

(–�)′ = ∇ ; (∇)′ = –�;

(�d)′ = �d; (�dd)′ = �dd.

Proof The proofs are straightforward and left to the reader. �

In the next theorem, we present a decomposition for the Bessel function, which seems
to be new. For simplicity, for n ∈ Z and z ∈C, we define

gz,–(n) :=
zn

n!
χN0 (n), gz,+(n) :=

z–n

(–n)!
χ–N0 (n).

Theorem 3.7 The Bessel function In admits a factorization via convolution given by

In(2z) = (gz,+ ∗ gz,–)(n), n ∈ Z, z ∈C.

Proof We apply (4) in Theorem 3.4, Proposition 3.6(i), and Theorems 3.2 and 3.3(5), to
get

e–2zIn(2z) = e�dz(n) = e–z(–�)e–t∇ (n) = e–2z(gz,+ ∗ gz,–)(n)

for n ∈ Z and z ∈C. �

4 Fractional powers of generators of uniformly bounded semigroups in �1(Z)
As we have commented in the introduction, to define fractional powers in a Banach algebra
(and in operator theory) is, in general, a difficult task. Not every element in �1(Z) has
fractional powers. For example, δ1 does not have square root in �1(Z). In contrast, there
may be a continuous function f ∈ C(T) such that (f (z))2 = z for z ∈ T.

When σ�1(Z)(a) ⊂C
+ and α ∈R, we may consider the function Fα(z) = zα , which is holo-

morphic in a neighborhood of σ�1(Z)(a). By the analytic functional calculus, the element

Fα(a) =
1

2π i

∫

γ

Fα(z)
z – a

dz,

(where γ is a spectral contour lying in an open set O containing the spectrum of a) exists
in the Banach algebra �1(Z), and F (Fα(a)) = (F (a))α [35, Lemma 6.1.2]. Then Fα(a) is a
fractional power of a of order α, and we write Fα(a) = aα . Note that there exists a classic
way to define fractional powers of generators of uniformly bounded semigroups in Banach
spaces; see, for example, [47, p. 260–264] and [33, Example 3.4.6-7].

As the next definition shows, we may follow a general methodology to treat fractional
powers of elements in �1(Z), analogously to the case of operators in Banach spaces; see
[47, p. 265].
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Definition 4.1 Let 0 < α < 1, and let a ∈ �1(Z) be such that (eta)t≥0 is a uniformly bounded
semigroup, that is, sups>0 ‖eas‖1 < ∞. Then we write by (–a)α the fractional power of a
given by the following integral representation:

(–a)α :=
1

(–α)

∫ ∞

0

esa – δ0

s1+α
ds.

Remark 4.2 In fact, Definition 4.1 is an analogous formula in �1(Z) of the well-known
equality

zα =
1

(–α)

∫ ∞

0

e–zt – 1
t1+α

dt, z > 0.

As an immediate consequence of this definition, we have that for 0 < α < 1,

F
(
(–a)α

)
=

(
–F (a)

)α , σ
(
(–a)α

)
=

(
σ (–a)

)α , (4.1)

where we have applied (2.8).

It is well known that the uniformly bounded semigroup (e–t(–a)α )t≥0 is subordinated to
(eta)t≥0 (principle of Lévy subordination) by the formula

e–t(–a)α =
∫ ∞

0
ft,α(s)eas ds =

∞∑

j=0

(–t)j

j!
(–a)jα , t ≥ 0; (4.2)

see, for example, [47, Theorem 1, p. 263]. Note that

F
(
e–t(–a)α )

= e–t(–F (a))α .

Now we present the fractional powers of the four elements in �1(Z) given in Defini-
tion 3.1. For a ∈ �1(Z), note that A ∈ B(�p(Z)), where A(f ) := a ∗ f for f ∈ �p(Z) and 1 ≤
p ≤ ∞. In the case that the fractional power aα ∈ �1(Z) for α > 0, we have Aα ∈ B(�p(Z)),
where Aα(f ) := aα ∗ f for f ∈ �p(Z) and 1 ≤ p ≤ ∞.

4.1 The operators (–�)α and (∇)α

We define the sequence

kα(j) :=
(α + n)
(α)n!

= (–1)n
(

–α

n

)

, n ∈N0,

for α ∈ C\{0, –1, –2, . . .}; see [27, Sect. 2] and references therein. The sequence kα satisfies
the following identity [27, Proposition 3.1]:

∞∑

j=0

kα(j)zj =
1

(1 – z)α
, z ∈C, |z| ≤ 1, z �= 1. (4.3)
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The sequence kα has been deeply investigated in several references; see, for example, [49,
Vol. I, p. 77], where Aα–1

n = kα(n). For 0 < α < 1, note that k–α(0) = 1 and

∞∑

j=0

k–α(j) = 0,
∞∑

j=1

k–α(j) = –1;

see also [1, Sect. 2], where the notation �α ≡ k–α is employed. For j large enough, k–α(j)
is of constant sign [49, Theorem 1.17] for α > 0; in particular, for 0 < α < 1, k–α(j) < 0 for
j ∈ N.

Since –�(f ) := (δ0 – δ–1) ∗ f and ∇(f ) := (δ0 – δ1) ∗ f for f ∈ �p(Z), we denote

Kα
+ := (δ0 – δ–1)α , Kα

– := (δ0 – δ1)α . (4.4)

We have the following result concerning properties of the kernels Kα
+ and Kα

– .

Theorem 4.3 For all 0 < α < 1, we have

F
(
Kα

+
)
(z) =

(

1 –
1
z

)α

and F
(
Kα

–
)
(z) = (1 – z)α (4.5)

for z ∈ T and

Kα
+ =

∞∑

j=0

k–α(j)δ–j, Kα
– =

∞∑

j=0

k–α(j)δj. (4.6)

In particular, σ (Kα
+ ) = σ (Kα

– ) = {(1 – eiθ )α | θ ∈ [–π ,π )}. Moreover,

∥
∥Kα

+
∥
∥

1 =
∥
∥Kα

–
∥
∥

1 = 2

for 0 < α < 1.

Proof Using the first identity in (4.1), we obtain

F
(
Kα

+
)
(z) =

[
F (K+)

]α(z) =

[ ∞∑

j=0

(δ0 – δ–1)(j)zj

]α

=
(

1 –
1
z

)α

,

proving the first identity in (4.5). On the other hand, note that [
∑∞

j=0 k–α(j)δ–j](n) =
k–α(–n). Therefore, taking into account (4.3), we obtain

F
([ ∞∑

j=0

k–α(j)δ–j

])

(z) = F
(
k–α(–·))(z) =

(

1 –
1
z

)α

.

Then by the uniqueness of the Fourier transform we conclude the first identity in (4.6). The
proof of the second identities in (4.5) and (4.6) is analogous. The property of the spectrum
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follows from the second identity in (4.1). Finally, we have that

∥
∥Kα

+
∥
∥

1 =
∞∑

j=0

∣
∣k–α(j)

∣
∣ = 1 –

∞∑

j=1

k–α(j) = 2,

and we conclude the proof. �

Now we consider the groups generated by the fractional powers Kα
+ and Kα

– as elements
of the Banach algebra �1(Z).

Theorem 4.4 For 0 < α < 1 and z ∈C, we have

ezKα
+ = ezδ0 +

∞∑

j=1

( ∞∑

n=1

zn

n!
k–αn(j)

)

δ–j,

ezKα
– = ezδ0 +

∞∑

j=1

( ∞∑

n=1

zn

n!
k–αn(j)

)

δj.

In particular, for z ∈ C and w ∈ T, we have

F
(
ezKα

+
)
(w) = ez(1– 1

w )α , F
(
ezKα

–
)
(w) = ez(1–w)α ,

and σ (ezKα
+ ) = σ (ezKα

– ) = {ez(1–eiθ )α | θ ∈ [–π ,π )}.
Moreover, the semigroups (e–tKα

+ )t≥0 and (e–tKα
– )t≥0 are uniformly bounded, and

e–t +
∞∑

j=1

∣
∣
∣
∣
∣

∞∑

n=1

(–t)n

n!
k–αn(j)

∣
∣
∣
∣
∣
≤ 1, t > 0.

Proof Note that

ezKα
+ = δ0 +

∞∑

n=1

zn

n!
(δ0 – δ–1)nα = δ0 +

∞∑

n=1

zn

n!

∞∑

j=0

k–αn(j)δ–j

= ezδ0 +
∞∑

j=1

( ∞∑

n=1

zn

n!
k–αn(j)

)

δ–j

for z ∈C.
In the case 0 < α < 1, since –(δ0 – δ–1) and –(δ0 – δ1) generate uniformly bounded semi-

groups, the fractional powers –Kα
+ and –Kα

– also generate uniformly bounded semigroups.
Then

e–t +
∞∑

j=1

∣
∣
∣
∣
∣

∞∑

n=1

(–t)n

n!
k–αn(j)

∣
∣
∣
∣
∣

=
∥
∥e–tKα

+
∥
∥

1

≤
∫ ∞

0
ft,α(s)

∥
∥e–(δ0–δ–1)s∥∥

1 ds ≤
∫ ∞

0
ft,α(s) ds = 1

for t ≥ 0, where we have applied [47, Proposition 3, p. 262]. �
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Now we apply the Lévy subordination principle (4.2) to a = δ–1 – δ0 or a = δ1 – δ0 and
by Theorem 4.4 obtain the following result. Note that this formula is also obtained from
(A.12).

Corollary 4.5 Let 0 < α < 1, and let fs,α be the Lévy stable process defined by (A.11). Then

∞∑

j=1

k–αj(n)
(–t)j

j!
=

∫ ∞

0
ft,α(s)

e–ssn

n!
ds, t > 0, n ≥ 1.

In particular, when α = 1
2 , we have

∞∑

j=1

k
–j
2 (n)

(–t)j

j!
=

∫ ∞

0

t√
4πs3

e
–t2
4s e–ssn ds, n ≥ 1.

4.2 The operator (–�d)α

The operator (–�d)α for 0 < α ≤ 1, called the fractional discrete Laplacian, has been deeply
treated in [22, 23, 26, 37]. In [37, Sect. 3] the sequence (–δ–1 + 2δ0 – δ1)α is denoted by Kα

d .
To follow the notation in that paper, we write

Kα
d (n) :=

1
2π

∫ π

–π

(
4 sin2(θ/2)

)αe–inθ dθ =
(–1)n(2α + 1)

(1 + α + n)(1 + α – n)

for n ∈ Z and α > 0 [37, Formula (22)]. In the case 1 + α + n ∈ –N0, Kα
d (n) = 0. Then

|Kα
d (n)| ∼ (2α+1)

π
|n|–2α–1 as n → ±∞.

We summarize the main properties of the kernel Kα
d in the following result.

Theorem 4.6 For 0 < α < 1, we have

F
(
Kα

d
)
(z) =

(

2 –
(

z +
1
z

))α

=
(

4 sin2
(

θ

2

))α

, z = eiθ ∈ T, (4.7)

and

Kα
d = Kα

+ ∗ Kα
– . (4.8)

In particular,

Kα
d =

∞∑

j=0

(
k–α

– ∗ k–α
)
(j)δj, (4.9)

where k–α
– (n) := k–α(–n). Moreover, σ (Kα

d ) = [0, 4α], and

∥
∥Kα

d
∥
∥

1 = 2
(1 + 2α)
(1 + α)2 .

Proof Identity (4.7) follows from (4.1). To show (4.8), we apply the discrete Fourier trans-
form to obtain that

F
(
Kα

+ ∗ Kα
–
)
(z) =

(

1 –
1
z

)α

(1 – z)α =
(

2 –
(

z +
1
z

))α

= F
(
Kα

d
)
(z)
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for z ∈ T. Since the discrete Fourier transform is one-to-one, we obtain the equality. To
prove (4.9), we note that the right-hand side evaluated at n ∈ Z is equal to (k–α

– ∗ kα)(n),
and we have

(
k–α

– ∗ kα
)
(n) =

n∑

j=0

k–α
(
–(n – j)

)
k–α(j) =

n∑

j=0

Kα
+ (n – j)Kα

– (j) =
(
Kα

+ ∗ Kα
–
)
(n),

and the result follows from (4.8). The spectrum is given in [37, Theorem 1.3 (iii)], and the
norm of Kα is calculated in [37, Lemma 3.2]. �

An interesting consequence is the following corollary, which seems to be a new formula
for binomials of noninteger entries.

Corollary 4.7 Let α ∈ (0, 1) and n ∈ N0. We have the following equality:

(
2α

α + n

)

=
∞∑

j=0

(
α

j + n

)(
α

j

)

.

Proof The combinatorial equality is a straightforward consequence of the explicit expres-
sion of the kernel convolutions Kα

+ , Kα
– , and Kα

d . �

The following result collects the main results on the fractional discrete semigroup. For
other results, see also [37].

Theorem 4.8 For any 0 < α < 1, we have that the fractional discrete semigroup generated
by –Kα

d is given by

e–zKα
d (n) = (–1)n

∞∑

k=1

(–1)k zk

k!
(2kα + 1)

(1 + kα + n)(1 + kα – n)
+ δ0(n)

for n ∈ Z and z ∈C. Moreover:
(i) The discrete Fourier transform of e–zKα

d is given by

F
(
e–zKα

d
)(

eiθ ) = e–z(4 sin2( θ
2 ))α , θ ∈ [–π ,π ), z ∈C.

(ii) e–tKα
d (n) ≥ 0, and ‖e–tKα

d ‖1 = 1 for n ∈ Z and t ≥ 0, that is, it is a Markovian
semigroup.

(iii) σ (e–zKα
d ) = {e–z(4 sin2( θ

2 ))α : θ ∈ [–π ,π )}.

Proof The fractional discrete semigroup generated by –Kα
d is given in [37, Theorem 1.3].

There the entire group (e–zKα
d )z∈C is written as Lα

z . Statement (i) follows from Proposi-
tion 2.4(ii) combined with (4.7) in Theorem 4.6. The proof of (ii) is contained in [37, The-
orem 1.3(v)]. Finally, to prove (iii), we use (2.9) in Theorem 2.6 and (4.7) in Theorem 4.6. �

We also apply the Lévy subordination principle (4.2) to the semigroup generated by a =
δ–1 – 2δ0 + δ1 to obtain the following result.
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Corollary 4.9 Let 0 < α < 1, and let fs,α be the Lévy stable process defined by (A.11). For
n ∈ Z and 0 < t < 1, we have

∞∑

j=0

Kαj
d (n)

(–t)j

j!
=

∫ ∞

0
ft,α(s)e–2sIn(2s) ds;

in particular, for α = 1
2 ,

∞∑

j=0

K
j
2

d (n)
(–t)j

j!
=

∫ ∞

0

t√
4πs3

e
–t2
4s e–2sIn(2s) ds.

4.3 The operator (–�dd)α

Since the element (δ2 – 2δ0 + δ–2) generates a uniformly bounded C0-semigroup, we con-
sider the fractional power (δ2 –2δ0 +δ–2)α for 0 < α < 1. For simplicity, we write Kα

dd instead
of (δ2 – 2δ0 + δ–2)α .

Theorem 4.10 Let 0 < α < 1.
(i) We have

Kα
dd(n) =

(2α + 1)
(1 + α + n

2 )(1 + α – n
2 )

cos

(
n
2
π

)

, n ∈ Z.

(ii) Kα
dd(2n) = Kα

d (n) and Kα
dd(2n – 1) = 0 for n ∈ Z.

(iii) ‖Kα
dd‖1 = 2 (1+2α)

(1+α)2 .
(iv) F (Kα

dd)(eiθ ) = (4 sin2(θ ))α for θ ∈ [–π ,π ), and σ (Kα
dd) = [0, 4α].

Proof (i) For n ∈ Z, we have that

Kα
dd(n) =

1
2π

∫ π

–π

(
4 sin2(θ )

)αe–inθ dθ =
4α

π

∫ π

0
sin2α(θ ) cos(nθ ) dθ

=
(2α + 1)

(1 + α + n
2 )(1 + α – n

2 )
cos

(
n
2
π

)

,

where we have applied [31, Formula 3.631 (8)]. Parts (ii), (iii), and (iv) are straightforward
from part (i). �

Now we consider the entire group (e–zKα
dd )z∈C generated by –Kα

dd .

Theorem 4.11 For 0 < α < 1, we have:
(i) e–zKα

dd (n) = cos( n
2 π )

∑∞
k=1(–1)k zk

k!
(2kα+1)

(1+kα+ n
2 )(1+kα– n

2 ) + δ0(n), n ∈ Z.

(ii) e–zKα
dd (2n) = e–zKα

d (n) and e–zKα
dd (2n – 1) = 0 for n ∈ Z.

(iii) e–tKα
dd (n) ≥ 0 and ‖e–tKα

dd‖1 = 1 for n ∈ Z and t ≥ 0, that is, it is a Markovian
semigroup.

(iv) F (e–zKα
dd )(eiθ ) = e–z(4 sin2(θ ))α for θ ∈ [–π ,π ), and

σ
(
e–zKα

dd
)

= σ
(
e–zKα

dd
)

=
{

e–zuα | u ∈ [0, 4]
}

.
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Proof By [47, Theorem 1, p. 263] we have that

e–tKα
dd (n) =

∫ ∞

0
ft,α(s)e–2sI n

2
(2s) dsχ2Z(n) = e–tKα

d

(
n
2

)

χ2Z(n),

and we conclude equalities (i) and (ii). Parts (iii) and (iv) are proved from similar properties
of e–zKα

d . �

Remark 4.12 The spectrum of the discrete fractional Laplacian –(–�d)α is determined by
σ (–(–�d)α) = [–4α , 0], recovering the result of Lizama and Roncal [37], Theorem 1.3(iii).
A similar result is obtained for the operator –(–�dd)α given by σ (–(–�dd)α) = [–4α , 0]. For
the discrete fractional difference operators –� and ∇ , we have σ ((–�)α) = [–(1+eiT)α] and
σ (∇α) = [–(1 + eiT)α], respectively.

5 Fundamental solutions for semidiscrete evolution equations
In this section, we consider the operator Bf (n) := (b ∗ f )(n) with b ∈ �1(Z), f ∈ �p(Z), p ∈
[1,∞], and n ∈ Z. Our objective is obtaining a fundamental representation of solutions
for the following semidiscrete fractional evolution equation:

⎧
⎨

⎩

D
β
t u(n, t) = Bu(n, t) + g(n, t), n ∈ Z, t > 0,

u(n, 0) = ϕ(n), ut(n, 0) = φ(n), n ∈ Z,

where β ∈ (0, 2]. For a sufficiently regular function v, we denote by D
β
t the Caputo deriva-

tive of order β given by

D
β
t v(t) =

1
(1 – β)

∫ t

0
(t – s)–βv′(s) ds =

(
g1–β ∗ v′)(t), t > 0,

for 0 < β < 1 and

D
β
t v(t) =

1
(2 – β)

∫ t

0
(t – s)1–βv′′(s) ds =

(
g2–β ∗ v′′)(t), t > 0,

for 1 < β < 2. For β = 1 and β = 2, we consider the usual first- and second-order derivatives.
Note that

lim
β→1–

D
β
t v(t) = v′(t), lim

β→2–
D

β
t v(t) = v′′(t), t > 0;

however,

lim
β→0+

D
β
t v(t) = v(t) – v(0), lim

β→1+
D

β
t v(t) = v′(t) – v′(0), t > 0; (5.1)

see, for example, [17, 30].
To begin with, we consider the semidiscrete Cauchy problem (1.1) given in the intro-

duction,
⎧
⎨

⎩

∂tu(n, t) = Bu(n, t) + g(n, t), n ∈ Z, t > 0,

u(n, 0) = ϕ(n), n ∈ Z,
(5.2)
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and its fundamental solution, which is obviously given by Duhamel’s formula

u(n, t) = eBtϕ(n) +
∫ t

0
eB(t–s)g(n, s) ds, n ∈ Z, t ≥ 0.

Analogously, in the case of the second-order semidiscrete Cauchy problem

⎧
⎪⎪⎨

⎪⎪⎩

∂ttu(n, t) = Bu(n, t) + g(n, t), n ∈ Z, t > 0,

u(n, 0) = ϕ(n), n ∈ Z,

u(n, 0) = ψ(n), n ∈ Z,

(5.3)

we have that the fundamental solution is given by D’Alembert formula

u(n, t) = Cos(t, B)ϕ(n) + Sin(t, B)ψ(n) +
∫ t

0
Sin(t – s, B)f (s) ds,

where Cos(t, B) and Sin(t, B) are generated by B.
We now consider fractional in time generalizations. Given 0 < β ≤ 1, we first consider

the equation

⎧
⎨

⎩

D
β
t u(n, t) = Bu(n, t) + g(n, t), n ∈ Z, t > 0,

u(n, 0) = ϕ(n), n ∈ Z.
(5.4)

We recall that Eα,β (b) (with b ∈ �1(Z)) is the vector-valued Mittag-Leffler function given
in Definition 2.2. The main result is the following theorem.

Theorem 5.1 Let ϕ,φ ∈ �p(Z), and let g : Z×R+ →C be such that for each t ∈ R+, g(·, t) ∈
�p(Z), and sups∈[0,t] ‖g(·, s)‖p < ∞ with 1 ≤ p ≤ ∞.

(i) For 0 < β < 1, the function

u(n, t) =
(
Eβ ,1

(
tβb

) ∗ ϕ
)
(n)

+
∫ t

0
(t – s)β–1(Eβ ,β

(
(t – s)βb

) ∗ g(·, s)
)
(n) ds, n ∈ Z,

is the unique solution of the initial value problem (5.4). Moreover, u(·, t) belong to
�p(Z) for t > 0.

(ii) For 1 < β < 2, the function

u(n, t) =
(
Eβ ,1

(
tβb

) ∗ ϕ
)
(n) + t

(
Eβ ,2

(
tβb

) ∗ φ
)
(n)

+
∫ t

0
(t – s)β–1(Eβ ,β

(
(t – s)βb

) ∗ g(·, s)
)
(n) ds, n ∈ Z,

is the unique solution of the initial value problem (1.5). Moreover, u(·, t) belong to
�p(Z) for t > 0.

Proof Since the algebra �1(Z) is semisimple (see Theorem 2.1), the formulae in (i) and (ii)
are direct consequences of the scalar identities, which in case 0 < α < 1 can be found in
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[36, Sect. 3.3, formula (8)] combined with [36, Sect. 1.2]. The case 1 < α < 2 follows from
[36, Sect. 3.3, formula (11)]. See also the references therein. �

Remark 5.2 Now we consider the behavior of the solution as β tends to the integer param-
eter, that is, β = 1, 2. For simplicity, we consider the homogeneous case g = 0. As β → 1–,
the solution of equation (1.4) converges to semigroup family operators E1,1(tb), and as
β → 2–, the solution of equation (1.5),

u(·, t) = Eβ ,1
(
tβb

) ∗ ϕ + tEβ ,2
(
tβb

) ∗ φ, t > 0,

converges to unique mild solution of second-order Cauchy problem, that is, the sum of a
cosine function and a sine function generated by b; see [10, Corollary 3.14.8].

However, as in the scalar case, as β → 1+, the solution of equation (1.5) converges to

u(·, t) = E1,1(bt) + tE1,2(tb), t > 0.

Note that this function is a solution of the following first-order modified Cauchy problem:

⎧
⎨

⎩

v′(n, t) = Bv(n, t) + φ(n), n ∈ Z, t > 0,

v(n, 0) = ϕ(n), n ∈ Z,

for φ,ϕ ∈ �p(Z). This fact is in accordance with the interpolation property of the Caputo
fractional derivative; see (5.1).

The fundamental solutions uβ ,1 for systems (1.4) and (1.5) are obtained by requiring
that the initial value ψ and the initial velocity φ be the sequences ψ = δ0 and φ = 0. In
the case 1 < β ≤ 2 (including the wave equation), a second fundamental solution uβ ,2 is
given by ψ = 0 and φ = δ0; see [26, Remark 3.2]. A consequence of Theorems 5.1 and
2.5 is the following subordination theorem for fundamental solutions, which extends [26,
Corollary 3.5].

Corollary 5.3 Let uβ ,1 and uβ ,2 be the fundamental solutions of problems (1.4) and (1.5),
and let �α be the Wright function defined by (A.1).

(i) Let 0 < β < 1. Then

uβ ,1(n, t) =
∫ ∞

0
�β (τ )u1,1

(
n, τ tβ

)
dτ , n ∈ Z, t > 0.

(ii) Let 1 < β < 2. Then

uβ ,1(n, t) =
∫ ∞

0
�β

2
(τ )u2,1

(
n, τ t

β
2
)

dτ ,

uβ ,2(n, t) =
∫ t

0

(t – u)
–β
2

(1 – β

2 )

∫ ∞

0
�β

2
(τ )u2,2

(
n, τu

β
2
)

dτ du

for n ∈ Z and t > 0.
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Remark 5.4 The Wright function � 1
3

can be expressed in terms of the Airy function Ai(z),
that is,

� 1
3

(z) = 3
2
3 Ai

(
z

3 1
3

)

, z ∈C;

see, for example, [28]. A integral representation of the Airy function is given by the im-
proper Riemann integral:

Ai(x) =
1
π

∫ ∞

0
cos

(
t3

3
+ xt

)

dt, x ∈R.

This function appears in several applied problems, in particular, in the Schrödinger equa-
tion of quantum physics and in optics (study of caustics); see more details in [44]. By Corol-
lary 5.3(i) we conclude that

E 1
3 ,1

(
t

1
3 b

)
(n) = 3

2
3

∫ ∞

0
Ai

(
τ

3 1
3

)

eτ t
1
3 b(n) dτ , n ∈ Z, t > 0,

for b ∈ �1(Z).

The particular case of Theorem 5.1 with B = –(–A)α , where A is the infinitesimal gener-
ator of an uniformly bounded C0-semigroup in B(�p(Z)), has received a special attention.
In [34, Theorem 3.3] and [26, Theorem 3.1] the time/space fractional evolution equa-
tions (1.4) and (1.5) of orders 0 < β ≤ 1 and 1 < β ≤ 2, respectively, are solved, where
B = –(–�d)α , and �d is the discrete Laplacian operator. Both proofs are based on the ex-
plicit expressions of vector-valued Mittag-Leffler functions Eβ ,1(–tβKα

d ), Eβ ,2(–tβKα
d ), and

Eβ ,β(–tβKα
d ). As a consequence of the results in Sect. 4, we can easily give a general version,

which extends both results.

Corollary 5.5 Let ϕ,φ ∈ �p(Z), and let g : Z × R+ → C be such that for each t ∈ R+,
g(·, t) ∈ �p(Z) and sups∈[0,t] ‖g(·, s)‖p < ∞ with 1 ≤ p ≤ ∞. For a ∈ �1(Z) generating a uni-
formly continuous semigroup in �1(Z), we write (–a)α for the fractional powers given in
Definition 4.1 and B(f ) := –(–a)α ∗ f for f ∈ �p(Z) and 0 < α < 1. Then the same represen-
tation of the fundamental solutions given in Theorem 5.1 with b = –(–a)α holds.

6 Applications
We study some concrete examples that appear in various applied fields.

6.1 The discrete Nagumo equation
Let us consider the linear part of the discrete Nagumo equation, which can be written as
follows:

⎧
⎨

⎩

∂tu(n, t) = �du(n, t) – ku(n, t), n ∈ Z, t > 0,

u(n, 0) = ϕ(n), n ∈ Z,
(6.1)

where 0 < k < 1/2. The discrete Nagumo equation is used as a model for the spread of
genetic traits and for the propagation of nerve pulses in a nerve axon, neglecting recovery;
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see [48] and references therein. Using Theorem 3.4(3), we obtain

σ
(
et(�d–kI)) = etσ (�d–kI) =

{
ets : t ≥ 0, –4 – k ≤ s ≤ –k

}
.

This implies that the unique solution of equation (6.1) is uniformly asymptotically stable,
that is,

u(n, t) = et(�d–kI)ϕ(n) → 0 as t → ∞.

Moreover, using Theorem 3.4(4) and the semigroup property, we can obtain the following
representation of the fundamental solution:

u(n, t) = e–tkIet�dϕ(n) :=
(
e–tkI ∗ et�d ∗ ϕ

)
(n) =

n∑

j=0

(
e–tkI ∗ et�d

)
(n – j)ϕ(j)

= e–2t
n∑

j=0

n–j∑

l=0

(–kt)l

l!
In–j–l(2t)ϕ(j).

Since σ (–(–�d)α) = [–4α , 0] (see Remark 4.12), we have that the same asymptotic behavior
also holds for the fundamental solution of the fractional Laplacian version for the discrete
Nagumo equation [37, Sect. 7]:

⎧
⎨

⎩

∂tu(n, t) = –(–�d)αu(n, t) – ku(n, t), n ∈ Z, t > 0,

u(n, 0) = ϕ(n), n ∈ Z.

6.2 The semidiscrete transport equation associated with the r-difference
operator

Let us consider the semidiscrete transport equation

⎧
⎨

⎩

∂tu(n, t) = r�u(n, t), n ∈ Z, t > 0,

u(n, 0) = ϕ(n), n ∈ Z,
(6.2)

where r > 0, and r� is the r-forward difference operator defined by r�f (n) := f (n + 1) –
rf (n); see [7, Sect. 5.5]. Observe that r� = � + (1 – r)I , where I is the identity operator.
Then by perturbation semigroup theory the unique solution of (6.2) has the form u(n, t) =
et(�+(1–r)I)ϕ(n), n ∈ Z. By the spectral mapping (2.9) in Theorem 2.6 we obtain that

σ
(
et(�+(1–r)I)) = etσ (�+(1–r)I)).

Hence by Theorem 3.2(3) we deduce that σ (� + (1 – r)I) = {z ∈ T : |z + r| = 1}. Therefore
for any r > 1, we have that the upper bound of the spectrum of B = � + (1 – r)I is negative,
that is,

ωσ

(
� + (1 – r)I

)
:= sup

{z : z ∈ σ
(
� + (1 – r)I

)}
< 0,
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and, consequently, we obtain that for any r > 1, the unique solution of equation (6.2) is
uniformly asymptotically stable, that is,

∥
∥er�tϕ

∥
∥ → 0 as t → ∞,

uniformly with respect to ‖ϕ‖ ≤ 1. Of course, this result can be also directly deduced from
Theorem 3.2(5). Analogously, using the fact that

(
r – eit) > 0 implies ((

r – eit)α)
> 0

for any 0 < α < 1 and r > 1, we can deduce from Theorem 4.4 that the same property of
asymptotic stability remains true for the unique solution of the fractional semidiscrete
transport equation

⎧
⎨

⎩

∂tu(n, t) = –(–r�)αu(n, t), n ∈ Z, t > 0,

u(n, 0) = ϕ(n), n ∈ Z.
(6.3)

6.3 The De Juhasz equation
We consider the following semidiscrete equation:

⎧
⎪⎪⎨

⎪⎪⎩

∂ttu(n, t) = �du(n, t) – 2ku(n, t), n ∈ Z, t > 0,

u(n, 0) = ϕ(n), n ∈ Z,

ut(n, 0) = ψ(n), n ∈ Z,

(6.4)

where k > 0. This equation can be found in the seminal paper of Bateman [16] in con-
nection with surges in springs and connected systems of springs. We call it the De Juhasz
equation because, according Bateman’s paper, De Juhasz deduced for the first time the
modeling of such equation in mechanical theory. Following Bateman’s paper, this semidis-
crete equation is obtained when the concentrated masses on a light string are mounted on
springs arranged either along a straight line or on the circumference of a circle or helix [16,
Sect. 5, formula (5.1)]. Applying Theorem 3.4 and considering the operator B = �d – 2kI ,
we obtain

σ (�d – 2kI) = [–4 – 2k, –2k],

and therefore

σ
(
Cos(t, B)

)
=

{
cos(t

√
s) : s ∈ [2k, 4 + 2k]

}
.

In particular, this implies that on the Hilbert space �2(Z), we have ‖Cos(t)‖ ≤ 1, and, con-
sequently, the unique solution of (6.4) when ψ ≡ 0 must be bounded. This extends the
previous result of Bateman [16, Sect. 5], who studied (6.4) with the initial conditions ψ ≡ 0
and ϕ(n) = δ0(n).
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6.4 The Caputo–Fabrizio derivative
We recall that given a sufficiently regular function u and 0 < α < 1, the Caputo–Fabrizio
derivative of order α is defined as [19]

CF Dαu(t) =
1

1 – α

∫ t

0
e

–α
1–α (t–s)u′(s) ds.

Note that the Caputo–Fabrizio derivative has been very recently used to propose a new
mathematical modeling of human liver [12], HIV [13], parallel RCL circuits [8], the Rubella
disease model [14], epidemic childhood diseases [11], and COVID-19 [15]. However, with
the exception of the implicit solution for the linear model in the scalar case, proposed by
Losada and Nieto in [38], so far no explicit formulas have been proposed for the solution
of the fractional Cauchy problem in the context of Banach algebras.

We consider the equation

⎧
⎨

⎩

CF Dα
t u(n, t) = Bu(n, t) + g(n, t), n ∈ Z, t ≥ 0,

u(n, 0) = ϕ(n), n ∈ Z,
(6.5)

where we recall that Bf (n) := (b ∗ f )(n) with b ∈ �1(Z), f ∈ �p(Z), p ∈ [1,∞], and n ∈ Z.
Since B is bounded, assuming that 1

1–α
∈ ρ(B), we obtain the following representation for

the solution of (6.5):

u(n, t) = T(t)ϕ(n) +
∫ t

0
T(t – s)h(n, s) ds, n ∈ Z, t > 0, (6.6)

where

T(t) := e
α

1–α (1–(1–α)B)–1te– α
1–α t , t ≥ 0, (6.7)

and

h(n, t) :=
(
I – (1 – α)B

)–1[(1 – α)gt(n, t) + αg(n, t)
]
. (6.8)

Indeed, since B is bounded, from [38, Proposition 2] and taking into account [38, formula
(8) and the explicit formula for M(α) given in Remark p. 89] we know that the unique
solution of problem (6.5) is given by the unique solution of the problem

ut(n, t) = αB
(
I – (1 – α)B

)–1u(n, t)

+
(
I – (1 – α)B

)–1[(1 – α)gt(n, t) + αg(n, t)
]

(note that there is a small but important misprint in [38, p. 90, l. 16], where we must read
σ̃ ′(t) instead of σ̃ (t)). Using the identity

(1 – α)B
(
1 – (1 – α)B

)–1 =
(
I – (1 – α)B

)–1 – I,
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we obtain

ut(n, t) =
[

α

1 – α

(
I – (1 – α)B

)–1 –
α

1 – α

]

u(n, t)

+
(
I – (1 – α)B

)–1[(1 – α)gt(n, t) + αg(n, t)
]
,

and hence (6.6) follows by using the classical Duhamel formula.
In terms of Banach algebras, this result reads as follows. The proof is similar to that of

Theorem 5.1 and is therefore omitted.

Theorem 6.1 Let ϕ ∈ �p(Z), and let g : Z×R+ → C be such that for each t ∈ R+, g(·, t) ∈
�p(Z), t → g(t, n) is differentiable and sups∈[0,t] ‖g(·, s)‖p < ∞ with 1 ≤ p ≤ ∞. For 0 < α < 1,
assume that (1 – α)‖b‖1 < 1. Then the function

u(n, t) =
(
eαb∗(δ0–(1–α)b)–1t ∗ ϕ

)
(n)

+
∫ t

0

(
eαb∗(δ0–(1–α)b)–1(t–s) ∗ h(·, s)

)
(n) ds, n ∈ Z,

is the unique solution of the initial value problem (6.5), where

h(n, t) =
(
δ0 – (1 – α)b

)–1 ∗ [
(1 – α)gt(n, t) + αg(n, t)

]
.

Moreover, u(·, t) belong to �p(Z) for t > 0.

Remark 6.2 Note that Theorems 3.2 and 3.3 say that for the discrete operators –� and
∇ , the condition (1 – α)‖b‖1 < 1 implies 1/2 < α < 1, whereas Theorems 3.4 and 3.5 tell us
that for the operators �d and �dd , we must have 3/4 < α < 1.

7 Applications to special functions
In this section, we present some new formulae obtained as applications of the results
proved in this paper. We give expressions of generalized Mittag-Leffler functions for con-
crete fractional powers. We also interpret some known formulas in terms of the Weier-
strass subordination formula. Finally, the application of subordination principle to Wright
function of some concrete difference operators allows us to obtain some new integral for-
mulae for Bessel and Wright functions.

7.1 Generalized Mittag-Leffler functions for fractional powers
As we have seen in Theorem 5.1, combinations of vector-valued Mittag-Leffler functions
in �1(Z) give the solutions of fractional evolution equations (1.4) and (1.5) with b ∈ �1(Z).
In the case of fractional powers of elements in �1(Z), that is, b = –(–a)α , we present Corol-
lary 5.5. Taking into account Sects. 4.1, 4.2, and 4.3, we can give some particular represen-
tations of the associated Mittag-Leffers functions.

Theorem 7.1 The generalized Mittag-Leffler functions Eγ ,β for Kα
+ , Kα

– , Kα
d , and Kα

dd with
γ ,β > 0 and 0 < α < 1 are given as follows:

(i) Eγ ,β(–tγ Kα
+ )(n) =

∑∞
j=0(–1)j tγ j

(γ j+β) k–αj(–n)χ–N0 (n);

(ii) Eγ ,β(–tγ Kα
– )(n) =

∑∞
j=0(–1)j tγ j

(γ j+β) k–αj(n)χN0 (n);
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(iii) Eγ ,β(–tγ Kα
d )(n) = (–1)n ∑∞

j=0
(–1)jtγ j

(γ j+β)
(2αj+1)

(αj+n+1)(αj–n+1) ;

(iv) Eγ ,β(–tγ Kα
dd)(n) = cos( n

2 π )
∑∞

j=0
(–1)jtγ j

(γ j+β)
(2αj+1)

(αj+ n
2 +1)(αj– n

2 +1) .

7.2 Weierstrass formula
A relation between cosine functions and semigroups generated by an element a ∈ �1(Z)
is established by the Weierstrass formula in (2.6). Now we apply this formula to concrete
finite difference operators.

(1) For a = δ–1 – δ0 or a = δ1 – δ0, we obtain that

1√
t

∫ ∞

0
e– s2

4t

(
s
2

)n+ 1
2

Jn– 1
2

(s) ds = tne–t , n ∈N0, t > 0.

This formula is a particular case of the general formula

∫ ∞

0
e–p2t2

tν+1Jν(at) dt =
aν

(2p2)ν+1 e
– a2

4p2 , p ∈R, a > 0,

for (ν) > –1, [45, Sect. 13.3, formula (4)].
(2) For a = δ–1 – 2δ0 + δ1 or a = δ–2 – 2δ0 + δ2, we have that

1√
π t

∫ ∞

0
e– s2

4t J2n(2s) ds = e–2tIn(2t), n ∈ Z, t ∈R.

As it is commented in [37, Remark 3], this formula is a particular case of the general
equality

∫ ∞

0
e–pt2

Jν(at) dt =
1
2

√
π

p
e– a2

8p I ν
2

(
a2

8p

)

, p > 0, a > 0,

for (ν) > –1 [45, Sect. 13.3, formula (5)].

7.3 Subordination principle on Wright function
In this subsection, we apply Corollary 5.3 to finite difference operators. We obtain some
known formulae, but others seem to be new; see (7.1), (7.2), and (7.3). They give some
interesting new connections between the Wright and Bessel functions.

Take a = δ–1 – δ0 or a = δ1 – δ0 in Corollary 5.3.
(i) For 0 < β < 1, t ∈C, and n ∈ N0, we have

E(n)
β ,1(t) =

∞∑

j=0

(j + n)!
j!

tj

(β(j + n) + 1)
=

∫ ∞

0
�β (τ )eτ tτ n dτ .

For n = 0, we obtain formula (A.4) and for t = 0, formula (A.2). For β = 1
3 , we obtain

the following integral formula for the Airy function:

E(n)
1
3 ,1

(t) =
∞∑

j=0

(j + n)!
j!

tj

( j+n
3 + 1)

=
∫ ∞

0
3

2
3 Ai

(
τ

3 1
3

)

eτ tτ n dτ

for n ∈N0 and t ∈C. For t = 0, we get [44, formula (3.83)].
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(ii) For 1 < β < 2, t ∈C, and n ∈ N0, we have

(2t)n– 1
2

∞∑

j=0

(–1)j(j + n)!
j!

t2j

(β(j + n) + 1)
=

√
π

2

∫ ∞

0
�β

2
(τ )τ n+ 1

2 Jn– 1
2

(τ t) dτ . (7.1)

In the cases n = 0 and n = 1, we obtain formulae (A.5).
Now take a = δ–1 – 2δ0 + δ1 or a = δ–2 – 2δ0 + δ2.
(i) For 0 < β < 1, t ∈C, and n ∈ N0, we have

∞∑

j=0

(–1)j
(

2(j + n)
j

)
tj+n

(β(j + n) + 1)
=

∫ ∞

0
�β (τ )e–2τ tIn(2τ t) dτ . (7.2)

In particular, when β = 1
3 , we get the integral formula for the Airy function:

∞∑

j=0

(–1)j
(

2(j + n)
j

)
tj+n

( j+n
3 + 1)

=
∫ ∞

0
3

2
3 Ai

(
τ

3 1
3

)

e–2τ tIn(2τ t) dτ

for t ∈C and n ∈N0.
(ii) For 1 < β < 2, t ∈C, and n ∈ N0, we have

∞∑

j=0

(–1)j
(

2(j + n)
j

)
t2(j+n)

(β(j + n) + 1)
=

∫ ∞

0
�β

2
(τ )J2n(2τ t) dτ . (7.3)

8 Conclusions
In this paper, we investigated in an unified way fundamental solutions of the semidiscrete
Cauchy problems (1.4)–(1.5) using the theory of Banach algebras, which, as we show in this
paper, have considerable advantages compared to direct approaches since spectral prop-
erties and explicit representations can be easily available. We analyzed the backward and
forward difference operators and the one-dimensional discrete Laplacian, a new operator,
which originates in connection with crystal lattices. We have explicitly described their
associated groups and cosine functions of operators. We have presented important appli-
cations to the discrete Nagumo, transport, and De Juhasz equations, which we present in
this paper for the first time. We have obtained an explicit representation of the solution in
Banach algebras for the fractional Cauchy problem with the new Caputo–Fabrizio frac-
tional derivative. We have determined fundamental solutions for (1.4)–(1.5) in the setting
of Banach algebras and as convolution operators. As a byproduct, we have obtained new
Weierstrass formulas and a subordination principle.

Appendix: Useful properties of some special functions
In this section, we present some special functions and give some known results needed in
the paper.

A.1 Wright function �γ

The entire Wright function is given by

�α(z) :=
∞∑

n=0

(–z)n

n!(–αn + 1 – α)
=

1
2π i

∫

γ

μα–1eμ–zμα
dμ, 0 < α < 1, (A.1)
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where γ is a contour that starts and ends at –∞ and encircles the origin once counter-
clockwise; see, for example, [28, formula (28)]. These functions were initially studied by
Wright [46] in connection with the asymptotic theory of partitions. For 0 < α < 1, we have
the following properties:

(i) �α(t) ≥ 0 for t > 0.
(ii)

∫ ∞
0 �α(t) dt = 1.

It follows that �α is a probability density function onR+. In fact, the Wright function has
been used for models in stochastic processes; see, for example, [28, 29]. In a general sense,
as α → 1–, we may interpret that �α → δ1, where δ1 is the Delta measure concentrated in
t = 1 ([28]).

The following formula is known for the moments of the Wright function:

∫ ∞

0
xp�α(x) dx =

(p + 1)
(αp + 1)

, 0 < α < 1, p > –1; (A.2)

see [28].
The Mittag-Leffler function is a complex function depending on two complex parame-

ters α and β . When the real part of α is strictly positive, it may be defined by the series

Eα,β (z) :=
∞∑

j=0

zj

(αj + β)
, (A.3)

where  is the gamma function. When β = 1, it is abbreviated as Eα(z) = Eα,1(z).
An interesting fact is the following relationship between the Wright function and the

Mittag-Leffler functions:

Eα,1(z) =
∫ ∞

0
ezt�α(t) dt, 0 < α < 1, z ∈C. (A.4)

For z ∈C and 0 < α < 1, we also have

E2α,1
(
–z2) =

∫ ∞

0
cos(zt)�α(t) dt,

zE2α,1+α

(
–z2) =

∫ ∞

0
sin(zt)�α(t) dt; (A.5)

see [30, formula 2.29]. For more detail on the Wright functions, we refer to [28–30, 39, 40,
46] and the references therein.

A.2 Bessel functions Jν and Iν
For ν ∈R, let Jν denote the Bessel function defined by

Jν(x) =
∞∑

n=0

(–1)n

(n + ν + 1)n!

(
x
2

)2n+ν

, x ≥ 0. (A.6)

The modified Bessel functions of the first kind are defined by

Iν(x) =
∞∑

n=0

1
(n + ν + 1)n!

(
x
2

)2n+ν

. (A.7)
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Furthermore, from the definition of Jν(x) and Iν(x) it is clear that |Jν(x)| ≤ Iν(x), ν ∈
R+.

Directly from definition (A.7) we have that In(x) ≥ 0, n ∈ Z, x ≥ 0. We recall some prop-
erties of the Bessel functions, the generating function, symmetry, and the Gegenbauer
addition formula (see [31, formula 8.511], [9]):

(1)
∑

n∈Z Jn(x)zn = e
x
2 (z– 1

z ), z ∈C \ {0}, x ∈C.
(2) Jn(–x) = J–n(x) = (–1)nJn(x).
(3) Jn(x + y) =

∑
k∈Z Jn–k(x)Jk(y).

(4)
∑

n∈Z In(x)zn = e
x
2 (z+ 1

z ), z ∈C \ {0}, x ∈C.
(5) I–n(x) = In(x) = (–1)nIn(–x).
(6) In(x + y) =

∑
k∈Z In–k(x)Ik(y).

Note that

J 1
2

(z) =
√

2
πz

sin(z), J –1
2

(z) =
√

2
πz

cos(z)

[31, formula 8.464].
For ν > –1 and β ,α > 0, we have

∫ ∞

0
e–αtIν(βt) dt =

β–ν(α –
√

α2 – β2)ν
√

α2 – β2
, (A.8)

∫ ∞

0
e–αtJν(βt) dt =

β–ν(
√

α2 + β2 – α)ν
√

α2 + β2
; (A.9)

see, for example, [31, formula 6.611].
For ν > –1 and β ,α > 0,

∫ ∞

0
e–αtJν(βt)tν+1 dt =

(2α)(2β)ν(ν + 3
2 )

√
π (α2 + β2)ν+ 3

2
; (A.10)

see, for example, [31, formula 6.623(2)]. For more information on extended forms of the
Bessel function, among others, and their connections with elementary functions, see [6]
and [20].

A.3 Stable Lévy distribution ft,α

The so-called stable Lévy distribution is defined for 0 < α < 1 by

ft,α(s) :=
1

2π i

∫ σ+i∞

σ–i∞
ezs–tzα

dz, σ > 0, t > 0, s ≥ 0, (A.11)

where the branch of zα is taken so that (zα) > 0 for (z) > 0. We remark that there is no
analytical representation for the Lévy distribution, except in the case α = 1

2 . An explicit
representation is given by

ft, 1
2

(s) =
t√

4πs3
e

–t2
4s , t, s > 0.

These functions were introduced by Bochner [18] in the study of certain stochastic pro-
cesses. Yosida [47] used them systematically in the study of semigroups generated by frac-
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tional powers of uniformly bounded C0-semigroups of linear operators. The Lévy func-
tions are the density functions associated with the stable Lévy processes in the rotational
invariant case and are related to the fractional Brownian motion. The following properties
hold:

(i) For t > 0 and a > 0,

∫ ∞

0
e–λaft,α(λ) dλ = e–taα

. (A.12)

(ii) ft,α(λ) ≥ 0, λ > 0, t > 0.
(iii)

∫ ∞
0 ft,α(λ) dλ = 1, t > 0.

(iv) ft+s,α(λ) =
∫ λ

0 ft,α(λ – μ)fs,α(μ) dμ, λ > 0, t, s > 0.
(v)

∫ ∞
0 eλzfλ,α(t) dλ = tα–1Eα,α(ztα), z ∈C, t > 0.

See, for example, [47, p. 260–262]. For the interesting property (v), we refer to [2, Theo-
rem 3.2(iii)].
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