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Abstract
We study the oscillation of a first-order linear delay differential equation. A new
technique is developed and used to obtain new oscillatory criteria for differential
equation with non-monotone delay. Some of these results can improve many
previous works. An example is introduced to illustrate the effectiveness and
applicability of our results.
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1 Introduction
Consider the first-order linear delay differential equation

x′(t) + p(t)x
(
τ (t)

)
= 0, t ≥ t0, (1)

where p, τ ∈ C([t0,∞), [0,∞)), τ (t) ≤ t, such that limt→∞ τ (t) = ∞.
By a solution of Eq. (1) we mean a continuous function x(t) on [t∗, t0], t∗ = inft≥t0 τ (t),

continuously differentiable on [t0,∞), which satisfies Eq. (1) for all t ∈ (t0,∞). As is cus-
tomary, any solution x(t) of Eq. (1) is called oscillatory if it has arbitrarily large zeros; oth-
erwise it is called non-oscillatory. Equation (1) is said to be oscillatory if all its solutions
are oscillatory; otherwise it is called non-oscillatory.

Throughout this work, we assume that the function δ(t) is non-decreasing, continuous,
and such that τ (t) ≤ δ(t) ≤ t for all t ≥ t1 and some t1 ≥ t0, and δn(t) stands for the n-fold
composition of δ(t). Let

ψ(t) = sup
s≤t

τ (s), t ≥ t0, (2)

and

c(v) =
1 – v –

√
1 – 2v – v2

2
, 0 ≤ v ≤ 1

e
.
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Also, the notation λ(ξ ) refers to the smaller real root of the transcendental equation
λ = eλξ . Finally, let

k∗ = lim inf
t→∞

∫ t

δ(t)
p(s) ds.

The work of Myshkis [27] can be considered as the first systematic study for the oscil-
lation character of the class of the delay differential equations. Recently, these equations
have attracted the interest of several researchers, see [1–31]. A huge number of sufficient
conditions for the oscillation of Eq. (1) have been obtained. For example, the criteria

L := lim sup
t→∞

∫ t

τ (t)
p(u) du > 1, where τ (t) is non-decreasing, (3)

k := lim inf
t→∞

∫ t

τ (t)
p(u) du >

1
e

, (4)

were derived respectively in [26] and [23]. In fact, the threshold 1
e is of great importance

for the oscillation problem of Eq. (1). Since, according to [23], if

∫ t

τ (t)
p(u) du ≤ 1

e
,

then there exists a non-oscillatory solution of Eq. (1). Indeed, the oscillation problem of
Eq. (1) is completely solved when the coefficient and the delay functions are constants p
and τ , respectively. In this case all solutions are oscillatory if and only if pτ > 1

e ; but in
the non-autonomous case, the situation is totally different. There is a gap between 1

e and
1, when the limit limt→∞

∫ t
τ (t) p(u) du does not exist. Many works have been done to fill

this gap in the case of nondecreasing delays, L ≤ 1 and 0 ≤ k ≤ 1
e , see [22, 28] and the

references therein. The assumption that the delay is nondecreasing plays a major role in
these works. Koplatadze and Kvinikadze [24] showed that many oscillatory criteria can be
generalized to equations with non-monotone delay, using a nondecreasing function ψ(t)
that is defined as in (2). Since then, several mathematicians have developed and introduced
many techniques to study the oscillatory behaviour of these equations. In the following,
we show some of these results:

Koplatadze and Kvinikadze [24] improved condition (3) and introduced the sufficient
condition

lim sup
t→∞

∫ t

ψ(t)
p(s)e

∫ ψ(t)
ψ(s) p(u)�n(u) du ds > 1 – c(k), (5)

where

�1(t) = 0, �n(t) = e
∫ t
τ (t) p(s)�n–1(s) ds, n = 2, 3, . . . , for t ≥ t0.

Braverman and Karpuz [4] improved (5) with n = 2, and obtained

lim sup
t→∞

∫ t

ψ(t)
p(s)e

∫ ψ(t)
τ (s) p(u) du ds > 1. (6)
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Stavroulakis [29] improved the preceding condition and established

lim sup
t→∞

∫ t

ψ(t)
p(s)e

∫ ψ(t)
τ (s) p(u) du ds > 1 –

1 – k –
√

1 – 2k – k2

2
. (7)

Infante et al. [21] improved (5) with n = 3, and (6), and proved that Eq. (1) is oscillatory
if

lim sup
t→∞

∫ t

δ(t)
p(s)e

∫ δ(t)
τ (s) p(u)e

∫ u
τ (u) p(v) dv

du ds > 1, (8)

or

lim sup
ε→0+

(
lim sup

t→∞

∫ t

δ(t)
p(s)e(λ(k)–ε)

∫ δ(t)
τ (s) p(u) du ds

)
> 1. (9)

El-Morshedy and Attia [17] showed that Eq. (1) is oscillatory, if for some n ∈ N,

lim sup
t→∞

(∫ t

δ(t)
Bn(s) ds + c

(
k∗)e

∫ t
δ(t)

∑n–1
i=0 Bi(s) ds

)
> 1, (10)

where

B0(t) = p(t), B1(t) = B0(t)
∫ t

τ (t)
B0(s)e

∫ t
τ (s) B0(u) du ds,

and

Bn(t) = Bn–1(t)
∫ t

δ(t)
Bn–1(s)e

∫ t
δ(s) Bn–1(u) du ds, n = 2, 3, . . . .

In a series of papers, Chatzarakis et al. obtained many oscillatory results for Eq. (1), see
[5–15]. For example, Chatzarakis [5] improved (5) with n = 3, and (6), and obtained the
oscillatory condition

lim sup
t→∞

∫ t

h(t)
p(s)e

∫ h(t)
τ (s) p(u)Mn(u) du ds > 1 – c(k), (11)

where

Mn(t) = p(t)
[

1 +
∫ t

τ (t)
p(s)e

∫ δ(t)
τ (s) Mn–1(u) du ds

]
, M0(t) = p(t).

Bereketoglu et al. [3] improved (11), and proved that Eq. (1) oscillates if there exists
n ∈N such that

lim sup
t→∞

∫ t

δ(t)
p(s)e

∫ δ(t)
τ (s) Pn(u) du ds >

⎧
⎨

⎩
1 or

1 – c(k∗),
(12)

where

P0(t) = p(t)
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Pn(t) = p(t)
[

1 +
∫ t

δ(t)
p(s)e

∫ t
τ (s) Pn–1(u) du ds

]
, n = 1, 2, . . . .

Very recently, Attia, El-Morshedy and Stavroulakis [2] improved (9) and (12), and intro-
duced the following criterion:

lim sup
t→∞

∫ t

δ(t)
p(s)e

∫ δ(t)
τ (s) p(u)Rm,n(u) du ds > 1 – c

(
k∗), (13)

for some n, m ∈N, where

Rm,n(t) = 1 +
∫ t

τ (t)
p(s)e

∫ t
τ (s) p(u)Dm–1,n(u) du ds,

Di,j(t) = e
∫ t
τ (t) p(s)Di,j–1(s) ds, i = 1, 2, . . . , m – 1, j = 1, 2, . . . , n,

and

D0,0(t) =
(
λ
(
k∗) – ε

)(
1 +

(
λ
(
k∗) – ε

)∫ δ(t)

τ (t)
p(s) ds

)
, ε ∈ (

0,λ
(
k∗)),

D0,r(t) = e
∫ t
τ (t) p(s)D0,r–1(s) ds, r = 1, 2, . . . , n,

Di,0(t) = Ri,n(t), i = 1, 2, . . . , m – 1.

2 Results
Let x(t) be an eventually positive solution of Eq. (1). Then

x′(t) + p(t)x
(
δ(t)

) ≤ 0, t ≥ t1. (14)

Therefore the following lemmas are applicable to x(t).

Lemma 2.1 ([19, Lemma 2.1.2]) Let 0 < k ≤ 1
e . Then

lim inf
t→∞

x(δ(t))
x(t)

≥ λ
(
k∗). (15)

Lemma 2.2 ([31]) Let k ≤ 1
e . Then

lim inf
t→∞

x(t)
x(δ(t))

≥ c
(
k∗). (16)

In the sequel, we define the sequences {Qn(t)}∞n=0 and {βn(t)}∞n=1 as follows:

Q0(t) =

⎧
⎨

⎩
1, k∗ = 0,

λ(k∗) – ε, k∗ > 0, ε ∈ (0,λ(k∗)),

β1(t) =
∫ t

δ(t)
p(s1)e

∫ δ(t)
τ (s1) p(v)Q0(v) dv ds1, Q1(t) =

1
1 – β1(t)

,

β2(t) =
∫ t

δ(t)
p(s1) ds1 + Q1

(
δ(t)

)∫ t

δ(t)
p(s1)

∫ δ(t)

τ (s1)
p(s2)e

∫ δ2(t)
τ (s2) p(v)Q1(v) dv ds2 ds1,
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Q2(t) =
1

1 – β2(t)
,

and

βn(t) =
∫ t

δ(t)
p(s1) ds1 + Qn–1

(
δ(t)

)∫ t

δ(t)
p(s1)

∫ δ(t)

τ (s1)
p(s2) ds2 ds1 + · · ·

+
n–1∏

i=2

(
Qn–1

(
δi–1(t)

))∫ t

δ(t)
p(s1)

∫ δ(t)

τ (s1)
p(s2) . . .

∫ δn–2(t)

τ (sn–2)
p(sn–1) dsn–1 · · ·ds1

+
n∏

i=2

(
Qn–1

(
δi–1(t)

))

×
∫ t

δ(t)
p(s1)

∫ δ(t)

τ (s1)
p(s2) . . .

∫ δn–1(t)

τ (sn–1)
p(sn)e

∫ δn(t)
τ (sn) p(v)Qn–1(v) dv dsn · · ·ds1,

Qn(t) =
1

1 – βn(t)
, n = 3, 4, . . . .

The following lemma is essential in order to obtain the main results.

Lemma 2.3 Let n ∈ {0, 1, 2, . . . } and k ≤ 1
e . Then βn < 1, and

x(τ (t))
x(t)

≥ Qn(t) for all sufficiently large t,

where x(t) is a positive solution of Eq. (1).

Proof Since x(t) is a positive solution of Eq. (1), then x(t) is eventually non-increasing for
all sufficiently large t. Therefore

x′(t) + p(t)x
(
δ(t)

) ≤ 0.

If k∗ > 0, then Lemma 2.1 implies, for sufficiently small ε > 0, that

x(τ (t))
x(t)

≥ x(δ(t))
x(t)

≥ λ
(
k∗) – ε.

This inequality and the non-increasing nature of x(t) lead to

x(δ(t))
x(t)

≥ Q0(t). (17)

On the other hand, dividing Eq. (1) by x(t), integrating from s to t, s ≤ t, we get

x(s) = x(t)e
∫ t

s p(u) x(τ (u))
x(u) du. (18)

Integrating Eq. (1) from δ(t) to t, we obtain

x(t) – x
(
δ(t)

)
+

∫ t

δ(t)
p(s1)x

(
τ (s1)

)
ds1 = 0. (19)
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Since τ (s1) ≤ δ(t) for s1 ≤ t, (18) and (19) give

x(t) – x
(
δ(t)

)
+ x

(
δ(t)

)∫ t

δ(t)
p(s1)e

∫ δ(t)
τ (s1) p(u) x(τ (u))

x(u) du ds1 = 0. (20)

This equation and (17) lead to

x(t) – x
(
δ(t)

)
+ x

(
δ(t)

)∫ t

δ(t)
p(s1)e

∫ δ(t)
τ (s1) p(u)Q0(u) du ds1 ≤ 0.

Consequently,

x(τ (t))
x(t)

≥ x(δ(t))
x(t)

≥ 1
1 – β1(t)

= Q1(t). (21)

Again, integrating Eq. (1) form τ (s1) to δ(t), s1 ≤ t, we obtain

x
(
τ (s1)

)
= x

(
δ(t)

)
+

∫ δ(t)

τ (s1)
p(s2)x

(
τ (s2)

)
ds2.

Substituting into (19), we have

x(t) – x
(
δ(t)

)
+ x

(
δ(t)

)∫ t

δ(t)
p(s1) ds1 +

∫ t

δ(t)
p(s1)

∫ δ(t)

τ (s1)
p(s2)x

(
τ (s2)

)
ds2 ds1 = 0.

From this and (18), we obtain

x(t) – x
(
δ(t)

)
+ x

(
δ(t)

)∫ t

δ(t)
p(s1) ds1

+ x
(
δ2(t)

)∫ t

δ(t)
p(s1)

∫ δ(t)

τ (s1)
p(s2)e

∫ δ2(t)
τ (s2) p(v) x(τ (v))

x(v) dv ds2 ds1 = 0.

Therefore, it follows from (21) that

x(t) – x
(
δ(t)

)
+ x

(
δ(t)

)∫ t

δ(t)
p(s1) ds1

+ x
(
δ(t)

)
Q1

(
δ(t)

)∫ t

δ(t)
p(s1)

∫ δ(t)

τ (s1)
p(s2)e

∫ δ2(t)
τ (s2) p(v)Q1(v) dv ds2 ds1 ≤ 0.

Therefore

x(δ(t))
x(t)

≥ 1
1 – β2(t)

= Q2(t).

By simple induction, we get

x
(
δ(t)

)
= x(t) + x

(
δ(t)

)∫ t

δ(t)
p(s1) ds1 + x

(
δ2(t)

)∫ t

δ(t)
p(s1)

∫ δ(t)

τ (s1)
p(s2) ds2 ds1 + · · ·

+ x
(
δn–1(t)

)∫ t

δ(t)
p(s1)

∫ δ(t)

τ (s1)
p(s2) . . .

∫ δn–2(t)

τ (sn–2)
p(sn–1) dsn–1 · · ·ds1 (22)
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+ x
(
δn(t)

)∫ t

δ(t)
p(s1)

∫ δ(t)

τ (s1)
p(s2) . . .

∫ δn–1(t)

τ (sn–1)
p(sn)e

∫ δn(t)
τ (sn) p(v) x(τ (v))

x(v) dv dsn · · ·ds1 = 0,

for n = 3, 4, . . . . Since

x
(
δi(t)

)
=

x(δi(t))
x(δi–1(t))

· · · x(δ2(t))
x(δ(t))

x
(
δ(t)

)
, i = 3, 4, . . . , n,

we get

x
(
δi(t)

)
= x

(
δ(t)

) i∏

j=2

Qn–1
(
δj–1(t)

)
, i = 3, 4, . . . , n.

Substituting into (22), we obtain

x(δ(t))
x(t)

≥ 1
1 – βn(t)

= Qn(t), n = 3, 4, . . . . �

Theorem 2.1 Let n ∈ {0, 1, 2, . . . }. If βi ≥ 1, i = 1, 2, . . . , n, or

lim sup
t→∞

∫ t

δ(t)
p(s)e

∫ δ(t)
τ (s) p(u)Qn(u) du ds > 1 – c

(
k∗), (23)

then Eq. (1) is oscillatory.

Proof Assume that Eq. (1) has a non-oscillatory solution x(t). Without loss of generality,
let x(t) be an eventually positive solution. By using (20), we obtain

x(t) – x
(
δ(t)

)
+ x

(
δ(t)

)∫ t

δ(t)
p(s1)e

∫ δ(t)
τ (s1) p(u) x(τ (u))

x(u) du ds1 = 0.

Using Lemma 2.2, it follows that

∫ t

δ(t)
p(s1)e

∫ δ(t)
τ (s1) p(u)Qn(u) du ds1 ≤ 1 –

x(t)
x(δ(t))

.

From this and Lemma 2.2, we obtain

lim sup
t→∞

∫ t

δ(t)
p(s1)e

∫ δ(t)
τ (s1) p(u)Qn(u) du ds1 ≤ 1 – c

(
k∗).

This contradicts (23). �

Theorem 2.2 Assume that n ∈ {0, 1, 2, . . . } and δ(t) is a strictly increasing for t ≥ t1. If
βi ≥ 1, i = 1, 2, . . . , n, or

lim sup
t→∞

(∫ δ–1(t)
t p(s1)

∫ t
τ (s1) p(s2) ds2 ds1

1 –
∫ δ–1(t)

t p(s1) ds1

+
∫ t

δ(t)
p(s1)e

∫ δ(t)
τ (s1) p(u)Qn(u) du ds1

)
> 1, (24)

then Eq. (1) is oscillatory.
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Proof Assume that there exists a positive solution x(t) of Eq. (1). From the proof of The-
orem 2.1, we see that

x(t)
x(δ(t))

+
∫ t

δ(t)
p(s1)e

∫ δ(t)
τ (s1) p(u)Qn(u) du ds1 ≤ 1. (25)

Integrating Eq. (1) from t to δ–1(t), we have

x
(
δ–1(t)

)
– x(t) +

∫ δ–1(t)

t
p(s1)x

(
τ (s1)

)
ds1 = 0. (26)

Since t ≥ τ (s1) for δ–1(t) ≥ s1, one has

x
(
τ (s1)

)
= x(t) +

∫ t

τ (s1)
p(s2)x

(
τ (s2)

)
ds2.

From this, (26) and the non-increasing nature of x(t), we have

x
(
δ–1(t)

)
– x(t) + x(t)

∫ δ–1(t)

t
p(s1) ds1 + x

(
δ(t)

)∫ δ–1(t)

t
p(s1)

∫ t

τ (s1)
p(s2) ds2 ds1 ≤ 0,

which in turn leads to

x(t)
x(δ(t)

≥
∫ δ–1(t)

t p(s1)
∫ t
τ (s1) p(s2) ds2 ds1

1 –
∫ δ–1(t)

t p(s1) ds1

.

By substituting into (25), we have

∫ δ–1(t)
t p(s1)

∫ t
τ (s1) p(s2) ds2 ds1

1 –
∫ δ–1(t)

t p(s1) ds1

+
∫ t

δ(t)
p(s1)e

∫ δ(t)
τ (s1) p(u)Qn(u) du ds1 ≤ 1.

Taking the upper limits of both sides as t goes to ∞, we obtain a contradiction with (24). �

Theorem 2.3 Let n ∈ {0, 1, 2, . . . }. If βi ≥ 1, i = 1, 2, . . . , n, or

lim sup
t→∞

∫ t

δ(t)

p(s1)e
∫ δ(s1)
τ (s1) p(u)Qn(u) du

1 –
∫ δ(t)
δ(s1) p(s2)e

∫ δ(s1)
τ (s2) p(u)Qn(u) du ds2

ds1 > 1 – c
(
k∗). (27)

then Eq. (1) is oscillatory.

Proof As before, let x(t) be a positive solution of Eq. (1). Then

x(t) – x
(
δ(t)

)
+

∫ t

δ(t)
p(s1)x

(
τ (s1)

)
ds1 = 0. (28)

By using (17), from the proof of Theorem 2.3, we have

x(t) – x
(
δ(t)

)
+

∫ t

δ(t)
p(s1)x

(
δ(s1)

)
e
∫ δ(s1)
τ (s1) p(u) x(τ (u))

x(u) du ds1 = 0. (29)
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Integrating Eq. (1) form δ(s1) to δ(t), s1 ≤ t, we get

x
(
δ(t)

)
– x

(
δ(s1)

)
+

∫ δ(t)

δ(s1)
p(s2)x(τ (s2) ds2 = 0. (30)

Since τ (s2) ≤ δ(s1) for s2 ≤ s1, it follows from (17) and (30) that

x
(
δ(t)

)
– x

(
δ(s1)

)
+ x

(
δ(s1)

)∫ δ(t)

δ(s1)
p(s2)e

∫ δ(s1)
τ (s2) p(u) x(τ (u))

x(u) du ds2 = 0,

that is,

x
(
δ(s1)

)
=

x(δ(t))

1 –
∫ δ(t)
δ(s1) p(s2)e

∫ δ(s1)
τ (s2) p(u) x(τ (u))

x(u) du ds2

.

From this, (29) and Lemma 2.3, we have

∫ t

δ(t)

p(s1)e
∫ δ(s1)
τ (s1) p(u)Qn(u) du

1 –
∫ δ(t)
δ(s1) p(s2)e

∫ δ(s1)
τ (s2) p(u)Qn(u) du ds2

ds1 ≤ 1 –
x(t)

x(δ(t))
.

This, together with Lemma 2.2, implies that

lim sup
t→∞

∫ t

δ(t)

p(s1)e
∫ δ(s1)
τ (s1) p(u)Qn(u) du

1 –
∫ δ(t)
δ(s1) p(s2)e

∫ δ(s1)
τ (s2) p(u)Qn(u) du ds2

ds1 ≤ 1 – c
(
k∗).

This is a contradiction. �

The proof of the following result is the same as those of Theorems 2.1 and 2.2, and hence
it will be omitted.

Theorem 2.4 Let n ∈ {0, 1, 2, . . . } and δ(t) be strictly increasing for t ≥ t1. If βi ≥ 1, i =
1, 2, . . . , n, or

lim sup
t→∞

(∫ δ–1(t)
t p(s1)

∫ t
τ (s1) p(s2) ds2 ds1

1 –
∫ δ–1(t)

t p(s1) ds1

+
∫ t

δ(t)

p(s1)e
∫ δ(s1)
τ (s1) p(u)Qn(u) du

1 –
∫ δ(t)
δ(s1) p(s2)e

∫ δ(s1)
τ (s2) p(u)Qn(u) du ds2

ds1

)

> 1. (31)

then Eq. (1) is oscillatory.

Remark 2.1
• The criterion (23) improves conditions (5) with n = 2, (6), (7), and (9) when k = 0.
• Lemma 2.3 can be used to improve and generalize the oscillation results of [30,

Lemma 2.1], [16, Theorem 2.6] and [18, Lemma 2.5].

Example 2.1 Consider the first order delay differential equation

x′(t) + p(t)x
(
τ (t)

)
= 0, t ≥ 2, (32)
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where

τ (t) = t – 1 – ζ cos2
(

νπ (2t + 1)
2

)
, ν = 10, 000, ζ = 0.0001,

and

p(t) :=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0, t ∈ [ξi,μi],

γ (t – μi), t ∈ [μi,μi + 1],

γ , t ∈ [μi + 1,μi + 9],
γ (t–ξi+1)
μi+9–ξi+1

, t ∈ [μi + 9, ξi+1],

where i,μi ∈ N, γ = 0.4195, ξ1 ≥ 0, μi > 1 + ξi, and ξi+1 > μi + 9 such that limi→∞ ξi = ∞.
Since

0 ≤ lim inf
t→∞

∫ t

τ (t)
p(s) ds ≤ lim

i→∞

∫ μi

τ (μi)
p(s) ds = lim

i→∞

∫ μi

μi–1
p(s) ds = 0,

one has k = k∗ = 0, and it follows that conditions (4), (9) and (13) fail to apply. Let δ(t) = t –1
and

I(t) =

∫ δ–1(t)
t p(s1)

∫ t
τ (s1) p(s2) ds2 ds1

1 –
∫ δ–1(t)

t p(s1) ds1

+
∫ t

δ(t)
p(s1)e

∫ δ(t)
τ (s1) p(u)Q2(u) du ds1.

Since

I(μi + 8) ≥
∫ μi+9
μi+8 p(s1)

∫ μi+8
s1–1 p(s2) ds2 ds1

1 –
∫ μi+9
μi+8 p(s1) ds1

+
∫ μi+8

μi+7
p(s1)e

∫ μi+7
s1–1 p(u)Q2(u) du ds1.

Then

Q2(u) =
1

1 – β2(u)
, μi + 6 ≤ u ≤ μi + 7,

and

β2(u) ≥
∫ u

u–1
p(s1) ds1 + Q1(u – 1)

∫ u

u–1
p(s1)

∫ u–1

s1–1
p(s2)e

∫ u–2
s2–1 p(v)Q1(v) dv ds2 ds1,

where μi + 3 ≤ v ≤ μi + 5, also

Q1(v) =
1

1 – β1(v)

and

β1(v) ≥
∫ v

v–1
p(s1)e

∫ v–1
s1–1 p(r)Q0(r) dr ds1, μi + 1 ≤ r ≤ μi + 4.

Then

β1(v) ≥
∫ v

v–1
γ eγ (v–s1) = eγ – 1 and Q1(v) ≥ 1

2 – eγ
,
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also

Q2(u) ≥ A
A – eγ A + 1

, A =
1

2 – eγ
.

Therefore I(μi + 8) > 1.0002. As a consequence, lim supt→∞ I(t) > 1, and hence Theo-
rem 2.2 implies that Eq. (32) is oscillatory. However, if we assume that δ(t) = ψ(t) (which
is defined as in (2)), then

t – 1 – ζ ≤ τ (t) ≤ δ(t) ≤ t – 1.

Consequently,
∫ t
τ (t) p(s) ds ≤ (1 + ζ )γ . Then, �8(t) < 3.363136, and it follows that

lim sup
t→∞

∫ t

δ(t)
p(s)e

∫ δ(t)
τ (s) p(u)�8(u) du ds ≤ lim sup

t→∞

∫ t

t–1–ζ

γ e
∫ t–1

s–1–ζ γ�8(u) du ds < 1.

Therefore, none of conditions (5) with n = 8 or (6)–(8) hold. Also, since

lim sup
t→∞

(∫ t

δ(t)
B2(s) ds + c

(
k∗)e

∫ t
δ(t)

∑1
r=0 Br (s) ds

)
≤ lim sup

t→∞

∫ t

t–1–ζ

B2(s) ds < 0.18315 < 1,

condition (10) with n = 2 fails to apply. Finally,

lim sup
t→∞

∫ t

δ(t)
p(s)e

∫ δ(t)
τ (s) P3(u) du ds < lim sup

t→∞

∫ t

t–1–ζ

γ e1.2115
∫ t–1

s–1–ζ γ du ds < 0.817 < 1,

hence, condition (12) with n = 3 is not satisfied.

3 Conclusion
In this work, we obtained new oscillatory criteria for Eq. (1), using improved lower bounds
for the quantity x(τ (u))

x(t) , where x(t) is any positive solution of Eq. (1). Some of the obtained
results improve many previous works. Finally, we introduced an example to demonstrate
the simplicity and efficiency of some of our results, especially when k = 0.
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