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Abstract
The problem of asymptotic stability and extended dissipativity analysis for the
generalized neural networks with interval discrete and distributed time-varying
delays is investigated. Based on a suitable Lyapunov–Krasovskii functional (LKF), an
improved Wirtinger single integral inequality, a novel triple integral inequality, and
convex combination technique, the new asymptotic stability and extended
dissipativity criteria are achieved for the generalized neural networks with interval
discrete and distributed time-varying delays. By the above methods, the less
conservative asymptotic stability criteria are obtained for a special case of the
generalized neural networks. By using the Matlab LMI toolbox, the derived new
asymptotic stability and extended dissipativity criteria are expressed in terms of linear
matrix inequalities (LMIs) that cover H∞, L2–L∞, passivity, and dissipativity
performance by setting parameters in the general performance index. Finally, we
show numerical examples which are less conservative than other examples in the
literature. Moreover, we present numerical examples for asymptotic stability and
extended dissipativity performance of the generalized neural networks, including a
special case of the generalized neural networks.

Keywords: Generalized neural networks; Extended dissipativity analysis; Asymptotic
stability; Interval discrete and distributed time-varying delays

1 Introduction
In the numerous science and engineering fields, neural networks (NNs) have been stud-
ied extensively in recent years due to the wide range of their applications such as in signal
processing, fault diagnosis, pattern recognition, associative memory, reproducing moving
pictures, optimization problems, and industrial automation [1–5]. Theoretical stability
analysis of the equilibrium is initially performed to make the above applications possible.
To obtain the model for theoretical analysis, the important factors that affect the system
are examined, and one important factor is the time delay. It is well known that the time
delay always occurs in real world situations, and it causes oscillation, instability, and poor
performance of the system. Furthermore, the time delay in neural networks is caused by
the finite speed of information processing and the communication time of neurons. There-
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fore, many researchers are interested in investigating the stability or performance of the
neural networks with time delay. The problem of stability or performance analysis for
neural networks with constant, discrete, and distributed time-varying delays has received
much attention [6–10].

In addition, neural networks can be classified into two types, local-field neural networks
(LFNNs) and static neural networks (SNNs), based on the different neuron states. Many
studies have separated the stability or performance of LFNNs and SNNs. For example,
Zeng et al. [11] investigated the stability and dissipativity problem of static neural networks
with interval time-varying delay. In [6], the stability for local-field neural networks with
time-varying interval was investigated and stability criteria were improved by using some
new techniques. Moreover, in 2011 for the first time, Zhang and Han [12] combined them
into a unified system model, called generalized neural networks (GNNs), which covers
both SNNs and LFNNs models, using certain assumptions. And later the GNNs with time
delay model have been extensively used for stability or performance analyses [13–18].

On the other hand, the performance of neural networks has been analyzed by a variety of
techniques, which often have input and output relationships, and they play an important
role in science and engineering applications. For example, Du et al. [19] studied the prob-
lem of robust reliable H∞ control for neural networks with mixed time delays based on the
LMI technique and the Lyapunov stability theory. In [20], the problem of finite-time non-
fragile passivity control for neural networks with time-varying delay is investigated based
on a new Lyapunov–Krasovskii function with tripple and quadruple integral terms and
utilizing Wirtinger-type inequality technique. Passivity performance analysis for neural
networks is examined in [21–24]. In [25], the issue of L2–L∞ state estimation design for
delayed neural networks (NNs) is considered via quadratic-type generalized free-matrix-
based integral inequality. The problem of dissipative analysis for aircraft flight control sys-
tems and uncertain discrete-time neural networks is addressed in [26, 27]. It is well known
that the concept of dissipativity was first studied by Willems [28]. Also, many researchers
have studied the dissipativity theory, since it does not only cover H∞ and passivity perfor-
mance, but is also advisable to be used in a convenient control structure in engineering
applications such as chemical process control [29] and power converters [30]. Dissipativity
theory is widely studied in neural networks because it provides a fundamental framework
for the analysis and design problems of control systems, and it can keep the system inter-
nally stable. Recently, many researchers have studied the dissipativity for stochastic fuzzy
neural networks, static neural networks, stochastic Markovian switching CVNNs, and so
on [11, 31, 32]. However, the analysis of dissipativity does not relate to L2–L∞ perfor-
mance. To fill this gap, Zhang et al. [33] created a new general performance index, called
an extended dissipativity performance index, which links all of these performance indexes.
Therefore, many problems have been studied to analyze extended dissipativity for neural
networks with time delays, and the results have been reported in [34–36]. Moreover, the
extended dissipative analysis was studied for the GNNs with interval time-varying delay
signals [37]. It is interesting to study the extended dissipativity performance for GNNs
with interval discrete and distributed time-varying delays, which has not been studied,
yet.

The problem of asymptotic stability and extended dissipativity analysis for the general-
ized neural networks with interval discrete and distributed time-varying delays is investi-
gated in this paper. The main contributions of this research are as follows:
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• We construct more general systems named the generalized neural networks that cover
both SNNs and LFNNs. Moreover, the interval discrete and distributed time-varying de-
lays are not necessarily differentiable functions, the lower bound of the delays is not re-
stricted to be 0, the activation functions are different, and the output contains terms of
the state vector with interval discrete time-varying delay and the disturbance.

• We create a suitable Lyapunov–Krasovskii functional (LKF) for application in asymp-
totic stability and extended dissipativity analysis of the GNNs with new inequalities.

• For the first time, we use a novel triple integral inequality and an improved Wirtinger
single integral inequality with convex combination technique for estimation to obtain the
upper bound of the interval discrete time-varying delay that is better than in other refer-
ences.

• We obtain new asymptotic stability and extended dissipativity criteria that cover H∞,
L2–L∞, passivity, and dissipativity performance by setting parameters in the general per-
formance index.

This paper is structured in five sections as follows. In Sect. 2, the generalized neural
networks model is formulated, and some definitions, lemmas, and assumptions are intro-
duced. In Sect. 3, we show the asymptotic stability and extended dissipativity criteria for
the generalized neural networks and a special case of the generalized neural networks. Nu-
merical examples are shown in Sect. 4 to demonstrate the effectiveness of asymptotic sta-
bility and extended dissipativity performance for the generalized neural networks, includ-
ing a special case of the generalized neural networks. Finally, conclusions are addressed in
Sect. 5.

2 Network model and preliminaries
Notations Throughout this paper, R and R

+ represent the set of real numbers and the
set of nonnegative real numbers, respectively; Rn and R

n×r denote the n-dimensional Eu-
clidean space and the set of n×r real matrices, respectively; I is the identity matrix with ap-
propriate dimensions; C([–�, 0],Rn) represents the space of all continuous vector-valued
functions mapping [–�, 0] into R

n, where � ∈R
+; L2[0,∞) denotes the space of functions

φ : R+ → R
n with the norm ‖φ‖L2 = [

∫ ∞
0 |φ(θ )|2 dθ ] 1

2 ; PT is the transpose of the matrix
P; P = PT denotes that the matrix P is a symmetric matrix; P > (≥)0 means that the sym-
metric matrix P is positive (semi-positive) definite; P < (≤)0 denotes that the symmetric
matrix P is negative (semi-negative) definite; Sym{P} represents P + PT ; ei represents the
unit column vector having 1 on its ith row and zeros elsewhere.

Consider the following generalized neural networks model with both interval discrete
and distributed time-varying delays:

ẇ(t) = –Cw(t) + B0f
(
Ww(t)

)
+ B1g

(
Ww

(
t – δ(t)

))

+ B2

∫ t–σ1(t)

t–σ2(t)
h
(
Ww(s)

)
ds + B3u(t), (1)

z(t) = D1w(t) + D2w
(
t – δ(t)

)
+ D3u(t),

w(t) = φ(t), ∀t ∈ [–�, 0],

where w(t) = [w1(t), w2(t), . . . , wn(t)]T ∈ R
n is the neuron state vector; z(t) ∈ R

n is the out-
put vector; u(t) ∈ R

n is the deterministic disturbance input which belongs to L2[0,∞);
f (·), g(·), h(·) ∈ R

n are the neuron activation functions; C = diag{c1, c2, . . . , cn} is a positive
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diagonal matrix; B0, B1, B2, and W are connection weight matrices; B3, D1, D2, and D3

are given real matrices; φ(t) ∈ C[[–�, 0],Rn] is the initial function. The variables δ(t) and
σi(t) (i = 1, 2) denote the interval discrete and distributed time-varying delays that satisfy
0 ≤ δ1 ≤ δ(t) ≤ δ2, 0 ≤ σ1 ≤ σ1(t) ≤ σ2(t) ≤ σ2 where δ1, δ2, σ1, σ2, � = max{δ2,σ2} are
known real constants.

The neuron activation functions f (·), g(·), and h(·) satisfy the following conditions:
(A1) The neuron activation function f is continuous and there exist constants F–

i and F+
i

such that

F–
i ≤ fi(α1) – fi(α2)

α1 – α2
≤ F+

i

for all α1 	= α2; we also let F̃i = max{|F–
i |, |F+

i |}, where f (·) = [f1(·), f2(·), . . . , fn(·)]T and
for any i ∈ {1, 2, . . . , n}, fi(0) = 0.

(A2) The neuron activation function g is continuous and there exist constants G–
i and

G+
i such that

G–
i ≤ gi(α1) – gi(α2)

α1 – α2
≤ G+

i

for all α1 	= α2; and we let G̃i = max{|G–
i |, |G+

i |}, where g(·) = [g1(·), g2(·), . . . , gn(·)]T

and for any i ∈ {1, 2, . . . , n}, gi(0) = 0.
(A3) The neuron activation function h is continuous and there exist constants H–

i and
H+

i such that

H–
i ≤ hi(α1) – hi(α2)

α1 – α2
≤ H+

i

for all α1 	= α2; and we let H̃i = max{|H–
i |, |H+

i |}, where h(·) = [h1(·), h2(·), . . . , hn(·)]T

and for any i ∈ {1, 2, . . . , n}, hi(0) = 0.

Remark 1 The NNs model (1) provides a general form of delay NNs model, which covers
both LFNNs and SNNs. It can be simply reduced to each of them by setting B0, B1, B2,
and W . That is, if we set W = I , the NNs model (1) leads to the following model, namely
LFNNs:

ẇ(t) = –Cw(t) + B0f
(
w(t)

)
+ B1g

(
w

(
t – δ(t)

))
+ B2

∫ t–σ1(t)

t–σ2(t)
h
(
w(s)

)
ds

+ B3u(t),

z(t) = D1w(t) + D2w
(
t – δ(t)

)
+ D3u(t).

In the same way, if we set B0 = B1 = B2 = I , the NNs model (1) is changed to the following
model, namely SNNs:

ẇ(t) = –Cw(t) + f
(
Ww(t)

)
+ g

(
Ww

(
t – δ(t)

))
+

∫ t–σ1(t)

t–σ2(t)
h
(
Ww(s)

)
ds

+ B3u(t),

z(t) = D1w(t) + D2w
(
t – δ(t)

)
+ D3u(t).
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Before moving to the main results, we introduce the definitions, lemmas, and assump-
tions which are necessary to state the new criteria.

Assumption (H1) ([34]) For given real symmetric matrices �1 ≤ 0, �3,�4 ≥ 0, and a real
matrix �2, the following conditions are satisfied:

(1) ‖D3‖ · ‖�4‖ = 0;
(2) (‖�1‖ + ‖�2‖) · ‖�4‖ = 0;
(3) DT

3 �1D3 + DT
3 �2 + �T

2 D3 + �3 > 0.

Definition 2.1 ([34]) For given matrices �1, �2, �3, and �4 satisfying Assumption (H1),
system (1) is said to be extended dissipative, if, under the zero initial condition, there exists
a scalar λ such that the following inequality holds for any tf ≥ 0 and all u(t) ∈L2[0,∞):

∫ tf

0
J(s) ds ≥ sup

0≤t≤tf

zT (t)�4z(t) + λ, (2)

where

J(s) = zT (s)�1z(s) + 2zT (s)�2u(s) + uT (s)�3u(s). (3)

Remark 2 The inequality (2) implies that the new performance measure is more general
by allowing to set the weighting matrices �i, i = 1, 2, 3, 4, i.e.,

• If �1 = 0, �2 = 0, �3 = γ 2I , �4 = I , and λ = 0 then the inequality (2) describes the
L2–L∞ performance;

• If �1 = –I , �2 = 0, �3 = γ 2I , �4 = 0, and λ = 0 then the inequality (2) determines the
H∞ performance;

• If �1 = 0, �2 = I , �3 = γ I , �4 = 0, and λ = 0 then the inequality (2) reduces to the
passivity performance;

• If �1 = Q, �2 = S , �3 = R – γ I , �4 = 0, and λ = 0 then the inequality (2) degenerates
to the (Q,S ,R)–γ -dissipativity performance.

Lemma 2.2 ([38]) For a given symmetric positive definite matrix P ∈ R
n×n, scalars t, a,

and b satisfying b ≥ a ≥ 0, and a vector function w : [t – b, t] → R
n such that the integrals

involved are well defined, the following inequality holds:

1
2
(
b2 – a2)

∫ –a

–b

∫ t

t+θ

wT (s)Pw(s) ds dθ ≥
∫ –a

–b

∫ t

t+θ

wT (s) ds dθ

× P
∫ –a

–b

∫ t

t+θ

w(s) ds dθ .

Lemma 2.3 ([39]) For any constant matrices P ∈ R
n×n, X ∈ R

2n×2n, and Y ∈ R
2n×n with

[ X Y
∗ P ] ≥ 0, and such that the following inequality is well defined, it holds that

–
∫ –a

–b

∫ 0

θ

∫ t

t+β

ẇT (s)Pẇ(s) ds dβ dθ

≤ �T
1 (t)

[
(
b2 – a2)Sym{Y} +

b3 – a3

6
X

]

�1(t),

where  = [I, –I] and �1 = [wT (t),
∫ –a

–b
∫ t

t+θ
2

b2–a2 wT (s) ds dθ ]T .
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Lemma 2.4 ([40]) For a given matrix P > 0, the following inequality holds for all continu-
ous differentiable function w(t) in [a, b] ∈ R

n:

–
∫ b

a
ẇT (s)Pẇ(s) ds ≤ –

1
b – a

(
�T

2 P�2 + 3�T
3 P�3 + 5�T

4 P�4 + 7�T
5 P�5

)
,

where

�2 = w(b) – w(a),

�3 = w(b) + w(a) –
2

b – a

∫ b

a
w(s) ds,

�4 = w(b) – w(a) +
6

b – a

∫ b

a
w(s) ds –

12
(b – a)2

∫ b

a

∫ b

u
w(s) ds du,

�5 = w(b) + w(a) –
12

b – a

∫ b

a
w(s) ds +

60
(b – a)2

∫ b

a

∫ b

u
w(s) ds du

–
120

(b – a)3

∫ b

a

∫ b

u

∫ b

s
w(r) dr ds du.

Lemma 2.5 ([41]) Suppose that w(t) ∈ R
n and η ∈R. Then for any positive definite matrix

P, the following inequality holds:

–
η3

2
6

∫ 0

–η2

∫ 0

β

∫ t

t+λ

wT (s)Pw(s) ds dλdβ

≤ –
∫ 0

–η2

∫ 0

β

∫ t

t+λ

wT (s) ds dλdβP
∫ 0

–η2

∫ 0

β

∫ t

t+λ

w(s) ds dλdβ .

3 Main results
In what follows, for the simplification, some notations are introduced as:

G1 = e1 – e3, G2 = e1 + e3 – 2e8, G3 = e1 – e3 + 6e8 – 12e14,

G4 = e1 + e3 – 12e8 + 60e14 – 120e20, G5 = e1 – e4,

G6 = e1 + e4 – 2e9, G7 = e1 – e4 + 6e9 – 12e15,

G8 = e1 + e4 – 12e9 + 60e15 – 120e21, G9 = e5 – e4,

G10 = e5 + e4 – 2e11, G11 = e5 – e4 + 6e11 – 12e16,

G12 = e5 + e4 – 12e11 + 60e16 – 120e22, G13 = e3 – e5,

G14 = e3 + e5 – 2e10, G15 = e3 – e5 + 6e10 – 12e17,

G16 = e3 + e5 – 12e10 + 60e17 – 120e23, G17 =
[

e1 2e12 + 2e13

]
,

G18 = e1W T FT
p – e6, G19 = e6 – FmWe1, G20 = e5W T GT

p – e7,

G21 = e7 – GmWe5, G22 = e1W T HT
p – e24, G23 = e24 – HmWe1,

Ȳ =

[
Y1 + Y T

1 –Y1 + Y T
2

∗ –Y2 – Y T
2

]

, X̄ =

[
X1 + XT

1 X2 + XT
3

∗ X4 + XT
4

]

,
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Fp = diag
{

F+
1 , F+

2 , . . . , F+
n
}

, Fm = diag
{

F–
1 , F–

2 , . . . , F–
n
}

,

Gp = diag
{

G+
1 , G+

2 , . . . , G+
n
}

, Gm = diag
{

G–
1 , G–

2 , . . . , G–
n
}

,

Hp = diag
{

H+
1 , H+

2 , . . . , H+
n
}

, Hm = diag
{

H–
1 , H–

2 , . . . , H–
n
}

,

Z1 = diag{z11, z12, . . . , z1n} ≥ 0, Z2 = diag{z21, z22, . . . , z2n} ≥ 0,

Z3 = diag{z31, z32, . . . , z3n} ≥ 0,

ςT (t) =
[

wT (t), ẇT (t), wT (t – δ1), wT (t – δ2), wT(
t – δ(t)

)
, f T(

Ww(t)
)
,

gT(
Ww

(
t – δ(t)

))
,

1
δ1

∫ t

t–δ1

wT (s) ds,
1
δ2

∫ t

t–δ2

wT (s) ds,

1
δ(t) – δ1

∫ t–δ1

t–δ(t)
wT (s) ds,

1
δ2 – δ(t)

∫ t–δ(t)

t–δ2

wT (s) ds,

1
δ2

2 – δ2
1

∫ –δ1

–δ(t)

∫ t

t+θ

wT (s) ds dθ ,
1

δ2
2 – δ2

1

∫ –δ(t)

–δ2

∫ t

t+θ

wT (s) ds dθ ,

1
δ2

1

∫ t

t–δ1

∫ t

θ

wT (s) ds dθ ,
1
δ2

2

∫ t

t–δ2

∫ t

θ

wT (s) ds dθ ,

1
(δ2 – δ(t))2

∫ t–δ(t)

t–δ2

∫ t–δ(t)

θ

wT (s) ds dθ ,

1
(δ(t) – δ1)2

∫ t–δ1

t–δ(t)

∫ t–δ1

θ

wT (s) ds dθ ,
∫ –δ(t)

–δ2

∫ 0

β

∫ t

t+λ

wT (s) ds dλdβ ,

∫ –δ1

–δ(t)

∫ 0

β

∫ t

t+λ

wT (s) ds dλdβ ,
1
δ3

1

∫ t

t–δ1

∫ t

u

∫ t

s
wT (r) dr ds du,

1
δ3

2

∫ t

t–δ2

∫ t

u

∫ t

s
wT (r) dr ds du,

1
(δ2 – δ(t))3

∫ t–δ(t)

t–δ2

∫ t–δ(t)

u

∫ t–δ(t)

s
wT (r) dr ds du,

1
(δ(t) – δ1)3

∫ t–δ1

t–δ(t)

∫ t–δ1

u

∫ t–δ1

s
wT (r) dr ds du

]

,

ς̄T (t) =
[
ςT (t), uT (t)

]
,

ηT (t) =
[

ςT (t), hT(
Ww(t)

)
,
∫ t–σ1(t)

t–σ2(t)
hT(

Ww(s)
)

ds
]

,

η̄T (t) =
[
ηT (t), uT (t)

]
.

3.1 Stability analysis for generalized neural networks
In this section, new asymptotic stability criteria for the generalized neural networks (1),
and their special case, are obtained based on a suitable Lyapunov–Krasovskii functional
(LKF), an improved Wirtinger single integral inequality, a novel triple integral inequality,
and convex combination technique.

Theorem 3.1 For given scalars δ1, δ2, σ1, σ2, β1, and β2, if there exist symmetric positive
definite matrices P, U1, U2, T1, T2, T3, L, S1, S2, Q ∈R

n×n, positive definite matrices N1, N2 ∈
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R
n×n, positive diagonal matrices Z1, Z2, Z3 ∈ R

n×n, any matrices X1, X2, X3, X4, Y1, Y2 ∈
R

n×n, and positive scalars c1, c2 such that the following LMIs hold:

� + 2�i + 2c1I < 0, i = 1, 2, (4)

� + 2�j – 2c2I < 0, j = 3, 4, (5)

c1 – c2 > 0, (6)
⎡

⎢
⎣

X1 + XT
1 X2 + XT

3 Y1

∗ X4 + XT
4 Y2

∗ ∗ S1

⎤

⎥
⎦ ≥ 0, (7)

where

� = 2e1PeT
2 + e1U1eT

1 – e3U1eT
3 + e1U2eT

1 – e4U2eT
4 + δ2

1e2T1eT
2 – G1T1GT

1

– 3G2T1GT
2 – 5G3T1GT

3 – 7G4T1GT
4 + δ2

2e2T2eT
2 – G5T2GT

5 – 3G6T2GT
6

– 5G7T2GT
7 – 7G8T2GT

8 + (δ2 – δ1)2e2T3eT
2 – G9T3GT

9 – 3G10T3GT
10

– 5G11T3GT
11 – 7G12T3GT

12 – G13T3GT
13 – 3G14T3GT

14 – 5G15T3GT
15

– 7G16T3GT
16 +

(δ2
2 – δ2

1)2

4
e1LeT

1 –
(
δ2

2 – δ2
1
)2e13LeT

13 –
(
δ2

2 – δ2
1
)2e12LeT

12

+
(δ3

2 – δ3
1)2

36
e2S1eT

2 + G17

(
(
δ2

2 – δ2
1
)
Ȳ +

δ3
2 – δ3

1
6

X̄
)

GT
17

+
(δ3

2 – δ3
1)2

36
e1S2eT

1 – e18S2eT
18 – e19S2eT

19 + 2G18Z1GT
19 + 2G20Z2GT

21

+ (σ2 – σ1)2e24QeT
24 – e25QeT

25 + 2G22Z3GT
23

– 2e1β1NT
1 eT

2 – 2e1β1NT
1 CeT

1 + 2e1β1NT
1 B0eT

6 + 2e1β1NT
1 B1eT

7

+ 2e1β1NT
1 B2eT

25 – 2e2β2NT
2 eT

2 – 2e2β2NT
2 CeT

1

+ 2e2β2NT
2 B0eT

6 + 2e2β2NT
2 B1eT

7 + 2e2β2NT
2 B2eT

25,

�1 = –
(
δ2

2 – δ2
1
)2e13LeT

13,

�2 = –
(
δ2

2 – δ2
1
)2e12LeT

12,

�3 = –e18S2eT
18,

�4 = –e19S2eT
19,

then, the system (1) with u(t) = 0 is asymptotically stable.

Proof We consider the following Lyapunov–Krasovskii functional candidate for the sys-
tem (1):

V
(
w(t), t

)
=

10∑

i=1

Vi
(
w(t), t

)
, (8)
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where

V1
(
w(t), t

)
= wT (t)Pw(t),

V2
(
w(t), t

)
=

∫ t

t–δ1

wT (s)U1w(s) ds,

V3
(
w(t), t

)
=

∫ t

t–δ2

wT (s)U2w(s) ds,

V4
(
w(t), t

)
= δ1

∫ 0

–δ1

∫ t

t+s
ẇT (τ )T1ẇ(τ ) dτ ds,

V5
(
w(t), t

)
= δ2

∫ 0

–δ2

∫ t

t+s
ẇT (τ )T2ẇ(τ ) dτ ds,

V6
(
w(t), t

)
= (δ2 – δ1)

∫ –δ1

–δ2

∫ t

t+s
ẇT (τ )T3ẇ(τ ) dτ ds,

V7
(
w(t), t

)
=

(δ2
2 – δ2

1)
2

∫ –δ1

–δ2

∫ 0

β

∫ t

t+λ

wT (s)Lw(s) ds dλdβ ,

V8
(
w(t), t

)
=

(δ3
2 – δ3

1)
6

∫ –δ1

–δ2

∫ 0

β

∫ 0

λ

∫ t

t+ϕ

ẇT (s)S1ẇ(s) ds dϕ dλdβ ,

V9
(
w(t), t

)
=

(δ3
2 – δ3

1)
6

∫ –δ1

–δ2

∫ 0

β

∫ 0

λ

∫ t

t+ϕ

wT (s)S2w(s) ds dϕ dλdβ ,

V10
(
w(t), t

)
= (σ2 – σ1)

∫ –σ1

–σ2

∫ t

t+s
hT(

Ww(r)
)
Qh

(
Ww(r)

)
dr ds.

Time derivatives of Vi(w(t), t), i = 1, 2, . . . , 10, along the trajectories of (1) are as follows:

V̇1
(
w(t), t

)
= wT (t)Pẇ(t) + ẇT (t)Pw(t), (9)

V̇2
(
w(t), t

)
= wT (t)U1w(t) – wT (t – δ1)U1w(t – δ1), (10)

V̇3
(
w(t), t

)
= wT (t)U2w(t) – wT (t – δ2)U2w(t – δ2), (11)

V̇4
(
w(t), t

)
= δ1

∫ 0

–δ1

[
ẇT (t)T1ẇ(t) – ẇT (t + s)T1ẇ(t + s)

]
ds

= δ2
1ẇT (t)T1ẇ(t) – δ1

∫ t

t–δ1

ẇT (α)T1ẇ(α) dα, (12)

V̇5
(
w(t), t

)
= δ2

∫ 0

–δ2

[
ẇT (t)T2ẇ(t) – ẇT (t + s)T2ẇ(t + s)

]
ds

= δ2
2ẇT (t)T2ẇ(t) – δ2

∫ t

t–δ2

ẇT (α)T2ẇ(α) dα, (13)

V̇6
(
w(t), t

)
= (δ2 – δ1)

∫ –δ1

–δ2

[
ẇT (t)T3ẇ(t) – ẇT (t + s)T3ẇ(t + s)

]
ds

= (δ2 – δ1)2ẇT (t)T3ẇ(t) – (δ2 – δ1)
∫ t–δ1

t–δ2

ẇT (α)T3ẇ(α) dα, (14)
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V̇7
(
w(t), t

)
=

(δ2
2 – δ2

1)
2

∫ –δ1

–δ2

∫ 0

β

[
wT (t)Lw(t) – wT (t + λ)Lw(t + λ)

]
dλdβ

=
(δ2

2 – δ2
1)2

4
wT (t)Lw(t)

–
(δ2

2 – δ2
1)

2

∫ –δ1

–δ2

∫ t

t+β

wT (s)Lw(s) ds dβ , (15)

V̇8
(
w(t), t

)
=

(δ3
2 – δ3

1)
6

∫ –δ1

–δ2

∫ 0

β

∫ 0

λ

[
ẇT (t)S1ẇ(t)

– ẇT (t + ϕ)S1ẇ(t + ϕ)
]

dϕ dλdβ

=
(δ3

2 – δ3
1)2

36
ẇT (t)S1ẇ(t)

–
(δ3

2 – δ3
1)

6

∫ –δ1

–δ2

∫ 0

β

∫ t

t+λ

ẇT (s)S1ẇ(s) ds dλdβ , (16)

V̇9
(
w(t), t

)
=

(δ3
2 – δ3

1)2

36
wT (t)S2w(t)

–
(δ3

2 – δ3
1)

6

∫ –δ1

–δ2

∫ 0

β

∫ t

t+λ

wT (s)S2w(s) ds dλdβ , (17)

V̇10
(
w(t), t

)
= (σ2 – σ1)2hT(

Ww(t)
)
Qh

(
Ww(t)

)

– (σ2 – σ1)
∫ t–σ1

t–σ2

hT(
Ww(r)

)
Qh

(
Ww(r)

)
dr

≤ (σ2 – σ1)2hT(
Ww(t)

)
Qh

(
Ww(t)

)

–
(
σ2(t) – σ1(t)

)
∫ t–σ1(t)

t–σ2(t)
hT(

Ww(r)
)
Qh

(
Ww(r)

)
dr

≤ (σ2 – σ1)2ηT (t)e24QeT
24η(t) – ηT (t)e25QeT

25η(t). (18)

Utilizing Lemma 2.4, the following relations are easily obtained:

–δ1

∫ t

t–δ1

ẇT (α)T1ẇ(α) dα

≤ –ηT (t)(e1 – e3)T1(e1 – e3)Tη(t)

– 3ηT (t)(e1 + e3 – 2e8)T1(e1 + e3 – 2e8)Tη(t)

– 5ηT (t)(e1 – e3 + 6e8 – 12e14)T1(e1 – e3 + 6e8 – 12e14)Tη(t)

– 7ηT (t)(e1 + e3 – 12e8 + 60e14 – 120e20)

× T1(e1 + e3 – 12e8 + 60e14 – 120e20)Tη(t), (19)

–δ2

∫ t

t–δ2

ẇT (α)T2ẇ(α) dα

≤ –ηT (t)(e1 – e4)T2(e1 – e4)Tη(t)

– 3ηT (t)(e1 + e4 – 2e9)T2(e1 + e4 – 2e9)Tη(t)

– 5ηT (t)(e1 – e4 + 6e9 – 12e15)T2(e1 – e4 + 6e9 – 12e15)Tη(t)
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– 7ηT (t)(e1 + e4 – 12e9 + 60e15 – 120e21)

× T2(e1 + e4 – 12e9 + 60e15 – 120e21)Tη(t), (20)

–(δ2 – δ1)
∫ t–δ1

t–δ2

ẇT (α)T3ẇ(α) dα

= –(δ2 – δ1)
∫ t–δ(t)

t–δ2

ẇT (α)T3ẇ(α) dα – (δ2 – δ1)
∫ t–δ1

t–δ(t)
ẇT (α)T3ẇ(α) dα

≤ –ηT (t)(e5 – e4)T3(e5 – e4)Tη(t)

– 3ηT (t)(e5 + e4 – 2e11)T3(e5 + e4 – 2e11)Tη(t)

– 5ηT (t)(e5 – e4 + 6e11 – 12e16)T3(e5 – e4 + 6e11 – 12e16)Tη(t)

– 7ηT (t)(e5 + e4 – 12e11 + 60e16 – 120e22)

× T3(e5 + e4 – 12e11 + 60e16 – 120e22)Tη(t)

– ηT (t)(e3 – e5)T3(e3 – e5)Tη(t)

– 3ηT (t)(e3 + e5 – 2e10)T3(e3 + e5 – 2e10)Tη(t)

– 5ηT (t)(e3 – e5 + 6e10 – 12e17)T3(e3 – e5 + 6e10 – 12e17)Tη(t)

– 7ηT (t)(e3 + e5 – 12e10 + 60e17 – 120e23)

× T3(e3 + e5 – 12e10 + 60e17 – 120e23)Tη(t). (21)

On the other hand, we have the following inequality from Lemma 2.2:

–
(δ2

2 – δ2
1)

2

∫ –δ1

–δ2

∫ t

t+β

wT (s)Lw(s) ds dβ

≤ –
(
δ2

2 – δ2
1
)2

ηT (t)e13LeT
13η(t) – ε

(
δ2

2 – δ2
1
)2

ηT (t)e13LeT
13η(t)

–
(
δ2

2 – δ2
1
)2

ηT (t)e12LeT
12η(t) – (1 – ε)

(
δ2

2 – δ2
1
)2

ηT (t)e12LeT
12η(t), (22)

where ε = δ2(t)–δ2
1

δ2
2 –δ2

1
.

From Lemma 2.3 and condition (7), we obtain

–
(δ3

2 – δ3
1)

6

∫ –δ1

–δ2

∫ 0

β

∫ t

t+λ

ẇT (s)S1ẇ(s) ds dλdβ

≤ ηT (t)
[
e1 2e12 + 2e13

]

×
(

(
δ2

2 – δ2
1
)
Ȳ +

δ3
2 – δ3

1
6

X̄
)[

e1 2e12 + 2e13

]T
η(t). (23)

From Lemma 2.5, we gain

–
(δ3

2 – δ3
1)

6

∫ –δ1

–δ2

∫ 0

β

∫ t

t+λ

wT (s)S2w(s) ds dλdβ

≤ –ηT (t)e18S2eT
18η(t) – αηT (t)e18S2eT

18η(t)

– ηT (t)e19S2eT
19η(t) – (1 – α)ηT (t)e19S2eT

19η(t), (24)

where α = δ3(t)–δ3
1

δ3
2 –δ3

1
.
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It follows from Assumptions (A1), (A2), and (A3) that

2
(
FpWw(t) – f

(
Ww(t)

))T Z1
(
f
(
Ww(t)

)
– FmWw(t)

) ≥ 0, (25)

2
(
GpWw

(
t – δ(t)

)
– g

(
Ww

(
t – δ(t)

)))T

× Z2
(
g
(
Ww

(
t – δ(t)

))
– GmWw

(
t – δ(t)

)) ≥ 0, (26)

2
(
HpWw(t) – h

(
Ww(t)

))T Z3
(
h
(
Ww(t)

)
– HmWw(t)

) ≥ 0. (27)

We consider system (1), the following equation is obtained:

0 = 2
[
wT (t)β1NT

1 + ẇT (t)β2NT
2
]
[

–ẇ(t) – Cw(t) + B0f
(
Ww(t)

)

+ B1g
(
Ww

(
t – δ(t)

))
+ B2

∫ t–σ1(t)

t–σ2(t)
h
(
Ww(s)

)
ds + B3u(t)

]

. (28)

By adding the right-hand side of (28) to V̇ (w(t), t), we achieve from (9)–(27) that

V̇
(
w(t), t

) ≤ η̄T (t)
(
ε�̄(1) + (1 – ε)�̄(2) + α�̄(3) + (1 – α)�̄(4))η̄(t), (29)

where �̄(i) = 1
2 �̄ + �i (i = 1, 2) and �̄(j) = 1

2 �̄ + �j (j = 3, 4), �̄ = � + 2e26β1BT
3 N1eT

1 +
2e26β2BT

3 N2eT
2 , with � and �i, �j defined in (4) and (5).

When u(t) = 0 (no disturbance), one has from (29) that

V̇
(
w(t), t

) ≤ ηT (t)
(
ε�(1) + (1 – ε)�(2) + α�(3) + (1 – α)�(4))η(t),

where �(i) = 1
2� + �i (i = 1, 2) and �(j) = 1

2� + �j (j = 3, 4).
The upper bound of V̇ (w(t), t) is negative if the condition (6) and the following relations

hold simultaneously:

ε�(1) + (1 – ε)�(2) < –c1I,

α�(3) + (1 – α)�(4) < c2I.

The above relations can be rewritten as follows:

ε
(
�(1) + c1I

)
+ (1 – ε)

(
�(2) + c1I

)
< 0, (30)

α
(
�(3) – c2I

)
+ (1 – α)

(
�(4) – c2I

)
< 0. (31)

Since 0 ≤ ε,α ≤ 1, the term ε(�(1) + c1I) + (1 – ε)(�(2) + c1I) is a convex combination of
�(1) + c1I and �(2) + c1I ; and the expression α(�(3) – c2I) + (1 – α)(�(4) – c2I) is a convex
combination of �(3) –c2I and �(4) –c2I . These combinations are negative definite only if the
vertices become negative; therefore, (30) and (31) are equivalent to (4) and (5), respectively.
Then, the system (1) with u(t) = 0 is asymptotically stable. �
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Next, we consider the following generalized neural network model as a special case of
the system (1):

ẇ(t) = –Cw(t) + B0f
(
Ww(t)

)
+ B1g

(
Ww

(
t – δ(t)

))
+ B3u(t),

z(t) = D1w(t). (32)

Theorem 3.2 For given scalars δ1, δ2, β1, and β2, if there exist symmetric positive defi-
nite matrices P, U1, U2, T1, T2, T3, L, S1, S2 ∈R

n×n, positive definite matrices N1, N2 ∈R
n×n,

positive diagonal matrices Z1, Z2 ∈ R
n×n, any matrices X1, X2, X3, X4, Y1, Y2 ∈ R

n×n, and
positive scalars b1, b2 such that the following LMIs hold:

 + 2i + 2b1I < 0, i = 1, 2, (33)

 + 2j – 2b2I < 0, j = 3, 4, (34)

b1 – b2 > 0, (35)
⎡

⎢
⎣

X1 + XT
1 X2 + XT

3 Y1

∗ X4 + XT
4 Y2

∗ ∗ S1

⎤

⎥
⎦ ≥ 0, (36)

where

 = 2e1PeT
2 + e1U1eT

1 – e3U1eT
3 + e1U2eT

1 – e4U2eT
4 + δ2

1e2T1eT
2 – G1T1GT

1

– 3G2T1GT
2 – 5G3T1GT

3 – 7G4T1GT
4 + δ2

2e2T2eT
2 – G5T2GT

5 – 3G6T2GT
6

– 5G7T2GT
7 – 7G8T2GT

8 + (δ2 – δ1)2e2T3eT
2 – G9T3GT

9 – 3G10T3GT
10

– 5G11T3GT
11 – 7G12T3GT

12 – G13T3GT
13 – 3G14T3GT

14 – 5G15T3GT
15

– 7G16T3GT
16 +

(δ2
2 – δ2

1)2

4
e1LeT

1 –
(
δ2

2 – δ2
1
)2e13LeT

13 –
(
δ2

2 – δ2
1
)2e12LeT

12

+
(δ3

2 – δ3
1)2

36
e2S1eT

2 + G17

(
(
δ2

2 – δ2
1
)
Ȳ +

δ3
2 – δ3

1
6

X̄
)

GT
17

+
(δ3

2 – δ3
1)2

36
e1S2eT

1 – e18S2eT
18 – e19S2eT

19 + 2G18Z1GT
19

+ 2G20Z2GT
21 – 2e1β1NT

1 eT
2 – 2e1β1NT

1 CeT
1

+ 2e1β1NT
1 B0eT

6 + 2e1β1NT
1 B1eT

7 – 2e2β2NT
2 eT

2 – 2e2β2NT
2 CeT

1

+ 2e2β2NT
2 B0eT

6 + 2e2β2NT
2 B1eT

7 ,

1 = –
(
δ2

2 – δ2
1
)2e13LeT

13,

2 = –
(
δ2

2 – δ2
1
)2e12LeT

12,

3 = –e18S2eT
18,

4 = –e19S2eT
19,

then, the system (32) with u(t) = 0 is asymptotically stable.
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Proof We consider the following Lyapunov–Krasovskii functional candidate for the sys-
tem (32):

V
(
w(t), t

)
=

9∑

i=1

Vi
(
w(t), t

)
, (37)

where

V1
(
w(t), t

)
= wT (t)Pw(t),

V2
(
w(t), t

)
=

∫ t

t–δ1

wT (s)U1w(s) ds,

V3
(
w(t), t

)
=

∫ t

t–δ2

wT (s)U2w(s) ds,

V4
(
w(t), t

)
= δ1

∫ 0

–δ1

∫ t

t+s
ẇT (τ )T1ẇ(τ ) dτ ds,

V5
(
w(t), t

)
= δ2

∫ 0

–δ2

∫ t

t+s
ẇT (τ )T2ẇ(τ ) dτ ds,

V6
(
w(t), t

)
= (δ2 – δ1)

∫ –δ1

–δ2

∫ t

t+s
ẇT (τ )T3ẇ(τ ) dτ ds,

V7
(
w(t), t

)
=

(δ2
2 – δ2

1)
2

∫ –δ1

–δ2

∫ 0

β

∫ t

t+λ

wT (s)Lw(s) ds dλdβ ,

V8
(
w(t), t

)
=

(δ3
2 – δ3

1)
6

∫ –δ1

–δ2

∫ 0

β

∫ 0

λ

∫ t

t+ϕ

ẇT (s)S1ẇ(s) ds dϕ dλdβ ,

V9
(
w(t), t

)
=

(δ3
2 – δ3

1)
6

∫ –δ1

–δ2

∫ 0

β

∫ 0

λ

∫ t

t+ϕ

wT (s)S2w(s) ds dϕ dλdβ .

Time derivatives of Vi(w(t), t), i = 1, 2, . . . , 9, along the trajectories of (32) are as follows:

V̇1
(
w(t), t

)
= wT (t)Pẇ(t) + ẇT (t)Pw(t), (38)

V̇2
(
w(t), t

)
= wT (t)U1w(t) – wT (t – δ1)U1w(t – δ1), (39)

V̇3
(
w(t), t

)
= wT (t)U2w(t) – wT (t – δ2)U2w(t – δ2), (40)

V̇4
(
w(t), t

)
= δ1

∫ 0

–δ1

[
ẇT (t)T1ẇ(t) – ẇT (t + s)T1ẇ(t + s)

]
ds

= δ2
1ẇT (t)T1ẇ(t) – δ1

∫ t

t–δ1

ẇT (α)T1ẇ(α) dα, (41)

V̇5
(
w(t), t

)
= δ2

∫ 0

–δ2

[
ẇT (t)T2ẇ(t) – ẇT (t + s)T2ẇ(t + s)

]
ds

= δ2
2ẇT (t)T2ẇ(t) – δ2

∫ t

t–δ2

ẇT (α)T2ẇ(α) dα, (42)

V̇6
(
w(t), t

)
= (δ2 – δ1)

∫ –δ1

–δ2

[
ẇT (t)T3ẇ(t) – ẇT (t + s)T3ẇ(t + s)

]
ds
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= (δ2 – δ1)2ẇT (t)T3ẇ(t)

– (δ2 – δ1)
∫ t–δ1

t–δ2

ẇT (α)T3ẇ(α) dα, (43)

V̇7
(
w(t), t

)
=

(δ2
2 – δ2

1)
2

∫ –δ1

–δ2

∫ 0

β

[
wT (t)Lw(t) – wT (t + λ)Lw(t + λ)

]
dλdβ

=
(δ2

2 – δ2
1)2

4
wT (t)Lw(t)

–
(δ2

2 – δ2
1)

2

∫ –δ1

–δ2

∫ t

t+β

wT (s)Lw(s) ds dβ , (44)

V̇8
(
w(t), t

)
=

(δ3
2 – δ3

1)
6

∫ –δ1

–δ2

∫ 0

β

∫ 0

λ

[
ẇT (t)S1ẇ(t)

– ẇT (t + ϕ)S1ẇ(t + ϕ)
]

dϕ dλdβ

=
(δ3

2 – δ3
1)2

36
ẇT (t)S1ẇ(t)

–
(δ3

2 – δ3
1)

6

∫ –δ1

–δ2

∫ 0

β

∫ t

t+λ

ẇT (s)S1ẇ(s) ds dλdβ , (45)

V̇9
(
w(t), t

)
=

(δ3
2 – δ3

1)2

36
wT (t)S2w(t)

–
(δ3

2 – δ3
1)

6

∫ –δ1

–δ2

∫ 0

β

∫ t

t+λ

wT (s)S2w(s) ds dλdβ . (46)

Utilizing Lemma 2.4, the following relations are easily obtained:

–δ1

∫ t

t–δ1

ẇT (α)T1ẇ(α) dα

≤ –ςT (t)(e1 – e3)T1(e1 – e3)Tς (t)

– 3ςT (t)(e1 + e3 – 2e8)T1(e1 + e3 – 2e8)Tς (t)

– 5ςT (t)(e1 – e3 + 6e8 – 12e14)T1(e1 – e3 + 6e8 – 12e14)Tς (t)

– 7ςT (t)(e1 + e3 – 12e8 + 60e14 – 120e20)

× T1(e1 + e3 – 12e8 + 60e14 – 120e20)Tς (t), (47)

–δ2

∫ t

t–δ2

ẇT (α)T2ẇ(α) dα

≤ –ςT (t)(e1 – e4)T2(e1 – e4)Tς (t)

– 3ςT (t)(e1 + e4 – 2e9)T2(e1 + e4 – 2e9)Tς (t)

– 5ςT (t)(e1 – e4 + 6e9 – 12e15)T2(e1 – e4 + 6e9 – 12e15)Tς (t)

– 7ςT (t)(e1 + e4 – 12e9 + 60e15 – 120e21)

× T2(e1 + e4 – 12e9 + 60e15 – 120e21)Tς (t), (48)

–(δ2 – δ1)
∫ t–δ1

t–δ2

ẇT (α)T3ẇ(α) dα

= –(δ2 – δ1)
∫ t–δ(t)

t–δ2

ẇT (α)T3ẇ(α) dα – (δ2 – δ1)
∫ t–δ1

t–δ(t)
ẇT (α)T3ẇ(α) dα
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≤ –ςT (t)(e5 – e4)T3(e5 – e4)Tς (t)

– 3ςT (t)(e5 + e4 – 2e11)T3(e5 + e4 – 2e11)Tς (t)

– 5ςT (t)(e5 – e4 + 6e11 – 12e16)T3(e5 – e4 + 6e11 – 12e16)Tς (t)

– 7ςT (t)(e5 + e4 – 12e11 + 60e16 – 120e22)

× T3(e5 + e4 – 12e11 + 60e16 – 120e22)Tς (t),

– ςT (t)(e3 – e5)T3(e3 – e5)Tς (t)

– 3ςT (t)(e3 + e5 – 2e10)T3(e3 + e5 – 2e10)Tς (t)

– 5ςT (t)(e3 – e5 + 6e10 – 12e17)T3(e3 – e5 + 6e10 – 12e17)Tς (t)

– 7ςT (t)(e3 + e5 – 12e10 + 60e17 – 120e23)

× T3(e3 + e5 – 12e10 + 60e17 – 120e23)Tς (t). (49)

On the other hand, we have the following inequality from Lemma 2.2:

–
(δ2

2 – δ2
1)

2

∫ –δ1

–δ2

∫ t

t+β

wT (s)Lw(s) ds dβ

≤ –
(
δ2

2 – δ2
1
)2

ςT (t)e13LeT
13ς (t) – ε

(
δ2

2 – δ2
1
)2

ςT (t)e13LeT
13ς (t)

–
(
δ2

2 – δ2
1
)2

ςT (t)e12LeT
12ς (t) – (1 – ε)

(
δ2

2 – δ2
1
)2

ςT (t)e12LeT
12ς (t), (50)

where ε = δ2(t)–δ2
1

δ2
2 –δ2

1
.

From Lemma 2.3 and condition (36), we obtain

–
(δ3

2 – δ3
1)

6

∫ –δ1

–δ2

∫ 0

β

∫ t

t+λ

ẇT (s)S1ẇ(s) ds dλdβ

≤ ςT (t)
[
e1 2e12 + 2e13

]

×
(

(
δ2

2 – δ2
1
)
Ȳ +

δ3
2 – δ3

1
6

X̄
)[

e1 2e12 + 2e13

]T
ς (t). (51)

From Lemma 2.5, we get

–
(δ3

2 – δ3
1)

6

∫ –δ1

–δ2

∫ 0

β

∫ t

t+λ

wT (s)S2w(s) ds dλdβ

≤ –ςT (t)e18S2eT
18ς (t) – αςT (t)e18S2eT

18ς (t)

– ςT (t)e19S2eT
19ς (t) – (1 – α)ςT (t)e19S2eT

19ς (t), (52)

where α = δ3(t)–δ3
1

δ3
2 –δ3

1
.

It follows from Assumptions (A1) and (A2) that

2
(
FpWw(t) – f

(
Ww(t)

))T Z1
(
f
(
Ww(t)

)
– FmWw(t)

) ≥ 0, (53)

2
(
GpWw

(
t – δ(t)

)
– g

(
Ww

(
t – δ(t)

)))T

× Z2
(
g
(
Ww

(
t – δ(t)

))
– GmWw

(
t – δ(t)

)) ≥ 0. (54)
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We consider system (32), and the following equation is obtained:

0 = 2
[
wT (t)β1NT

1 + ẇT (t)β2NT
2
][

–ẇ(t) – Cw(t) + B0f
(
Ww(t)

)

+ B1g
(
Ww

(
t – δ(t)

))
+ B3u(t)

]
. (55)

By adding the right-hand side of (55) to V̇ (t), we achieve from (38)–(54) that

V̇
(
w(t), t

) ≤ ς̄T (t)
(
ε̄(1) + (1 – ε)̄(2) + ᾱ(3) + (1 – α)̄(4))ς̄ (t), (56)

where ̄(i) = 1
2 ̄ + i (i = 1, 2) and ̄(j) = 1

2 ̄ + j (j = 3, 4), ̄ =  + 2e24β1BT
3 N1eT

1 +
2e24β2BT

3 N2eT
2 , with  and i, j defined in (33) and (34).

When u(t) = 0 (no disturbance), one has from (56) that

V̇
(
w(t), t

) ≤ ςT (t)
(
ε(1) + (1 – ε)(2) + α(3) + (1 – α)(4))ς (t),

where (i) = 1
2 + i (i = 1, 2) and (j) = 1

2 + j (j = 3, 4).
The upper bound of V̇ (w(t), t) is negative if the condition (35) and the following relations

hold simultaneously:

ε(1) + (1 – ε)(2) < –b1I,

α(3) + (1 – α)(4) < b2I.

The above relations can be rewritten as follows:

ε
(
(1) + b1I

)
+ (1 – ε)

(
(2) + b1I

)
< 0, (57)

α
(
(3) – b2I

)
+ (1 – α)

(
(4) – b2I

)
< 0. (58)

Since 0 ≤ ε,α ≤ 1, the term ε((1) + b1I) + (1 – ε)((2) + b1I) is a convex combination of
(1) + b1I and (2) + b1I ; and the expression α((3) – b2I) + (1 – α)((4) – b2I) is a convex
combination of (3) – b2I and (4) – b2I . These combinations are negative definite only
if the vertices become negative; therefore, (57) and (58) are equivalent to (33) and (34),
respectively. Then, the system (32) with u(t) = 0 is asymptotically stable. �

3.2 Extended dissipativity analysis for generalized neural networks
In this section, new extended dissipativity criteria for the generalized neural networks (1),
and their special case, are obtained based on the stability conditions that were developed
in Theorems 3.1 and 3.2.

Theorem 3.3 For given scalars δ1, δ2, σ1, σ2, β1, β2, and a positive scalar d < 1, if there
exist symmetric positive definite matrices P, U1, U2, T1, T2, T3, L, S1, S2, Q ∈ R

n×n, positive
definite matrices N1, N2 ∈R

n×n, positive diagonal matrices Z1, Z2, Z3 ∈R
n×n, any matrices

X1, X2, X3, X4, Y1, Y2 ∈ R
n×n, and positive scalars c1, c2 such that the following LMIs hold:

�̃ + 2�i + 2c1I < 0, i = 1, 2, (59)

�̃ + 2�j – 2c2I < 0, j = 3, 4, (60)
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c1 – c2 > 0, (61)
⎡

⎢
⎣

X1 + XT
1 X2 + XT

3 Y1

∗ X4 + XT
4 Y2

∗ ∗ S1

⎤

⎥
⎦ ≥ 0, (62)

[
dP – DT

1 �4D1 –DT
1 �4D2

∗ (1 – d)P – DT
2 �4D2

]

≥ 0, (63)

where

�̃ = �̄ – e1DT
1 �1D1eT

1 – e1DT
1 �1D2eT

5 – e1DT
1 �1D3eT

26 – e5DT
2 �1D1eT

1

– e5DT
2 �1D2eT

5 – e5DT
2 �1D3eT

26 – e26DT
3 �1D1eT

1 – e26DT
3 �1D2eT

5

– 2e1DT
1 �2eT

26 – 2e5DT
2 �2eT

26 – e26
(
DT

3 �1D3 + 2DT
3 �2 + �3

)
eT

26,

�̄ = � + 2e26β1BT
3 N1eT

1 + 2e26β2BT
3 N2eT

2 ,

then, the system (1) is asymptotically stable and extended dissipative.

Proof To show that the GNNs system (1) is extended dissipative, first, we use the LKFs
candidate (8) and the following performance index for the GNNs (1).

Using inequality (29) in Theorem 3.1, equation (3), and LMIs (59)–(63), we obtain

V̇
(
w(t), t

)
– J(t) ≤ η̄T (t)

(
ε�̃(1) + (1 – ε)�̃(2) + α�̃(3) + (1 – α)�̃(4))η̄(t) ≤ 0,

V̇
(
w(t), t

) ≤ η̄T (t)
(
ε�̃(1) + (1 – ε)�̃(2) + α�̃(3) + (1 – α)�̃(4))η̄(t) + J(t)

≤ J(t). (64)

Then we integrate both sides of the inequality (64) from 0 to t ≥ 0 and, letting λ ≤
–V (w(0), 0), get

∫ t

0
J(s) ds ≥ V

(
w(t), t

)
– V

(
w(0), 0

) ≥ wT (t)Pw(t) + λ. (65)

Next, we consider two cases:
Case I. �4 = 0. For this case, from inequality (65) we obtain

∫ tf

0
J(s) ds ≥ λ. (66)

This matches Definition 2.1 with �4 = 0.
Case II. �4 	= 0. From Assumption (H1), it is clear that �1 = 0, �2 = 0, �3 > 0, and D3 = 0.

Then, for any 0 ≤ t ≤ tf and 0 ≤ t – δ(t) ≤ tf , (65) leads to

∫ tf

0
J(s) ds ≥

∫ t

0
J(s) ds ≥ wT (t)Pw(t) + λ

and
∫ tf

0
J(s) ds ≥

∫ t–δ(t)

0
J(s) ds ≥ wT(

t – δ(t)
)
Pw

(
t – δ(t)

)
+ λ,
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respectively. On the other hand, for t – δ(t) ≤ 0, it can be shown that

wT(
t – δ(t)

)
Pw

(
t – δ(t)

)
+ λ ≤ ‖P‖∣∣w(

t – δ(t)
)∣
∣2 + λ

≤ ‖P‖ sup
–δ2≤θ≤0

∣
∣φ(θ )

∣
∣2 + λ

≤ –V
(
w(0), 0

)

≤
∫ tf

0
J(s) ds.

Thus, there exists a positive scalar d < 1 such that

∫ tf

0
J(s) ds ≥ λ + dwT (t)Pw(t) + (1 – d)wT(

t – δ(t)
)
Pw

(
t – δ(t)

)
.

By the relationship of output z(t) with (63),

z(t)T�4z(t) = –

[
w(t)

w(t – δ(t))

]T [
dP – DT

1 �4D1 –DT
1 �4D2

∗ (1 – d)P – DT
2 �4D2

]

×
[

w(t)
w(t – δ(t))

]

+ dwT (t)Pw(t) + (1 – d)wT(
t – δ(t)

)
Pw

(
t – δ(t)

)
.

So, it is clear that for any t satisfying 0 ≤ t ≤ tf ,

∫ tf

0
J(s) ds ≥ z(t)T�4z(t) + λ. (67)

Taking the supremum over t in inequalities (66) and (67), system (1) is extended dissipa-
tive. This completes the proof. �

Theorem 3.4 For given scalars δ1, δ2, β1, and β2, if there exist symmetric positive defi-
nite matrices P, U1, U2, T1, T2, T3, L, S1, S2 ∈R

n×n, positive definite matrices N1, N2 ∈R
n×n,

positive diagonal matrices Z1, Z2 ∈ R
n×n, any matrices X1, X2, X3, X4, Y1, Y2 ∈ R

n×n, and
positive scalars b1, b2 such that the following LMIs hold:

̃ + 2i + 2b1I < 0, i = 1, 2, (68)

̃ + 2j – 2b2I < 0, j = 3, 4, (69)

b1 – b2 > 0, (70)
⎡

⎢
⎣

X1 + XT
1 X2 + XT

3 Y1

∗ X4 + XT
4 Y2

∗ ∗ S1

⎤

⎥
⎦ ≥ 0, (71)

P – DT
1 �4D1 ≥ 0, (72)

where

̃ = ̄ – e1DT
1 �1D1eT

1 – 2e24�
T
2 D1eT

1 – e24�3eT
24,
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̄ =  + 2e24β1BT
3 N1eT

1 + 2e24β2BT
3 N2eT

2 ,

then, the system (32) is asymptotically stable and extended dissipative.

Proof To show that the GNNs system (32) is extended dissipative, first, we use the LKFs
candidate (37) and the following performance index for the GNNs (32).

Using inequality (56) in Theorem 3.2, equation (3), and LMIs (68)–(72), we get

V̇
(
w(t), t

)
– J(t) ≤ ς̄T (t)

(
ε̃(1) + (1 – ε)̃(2) + α̃(3) + (1 – α)̃(4))ς̄ (t) ≤ 0,

V̇
(
w(t), t

) ≤ ς̄T (t)
(
ε̃(1) + (1 – ε)̃(2) + α̃(3) + (1 – α)̃(4))ς̄ (t) + J(t)

≤ J(t). (73)

Then we integrate both sides of the inequality (73) from 0 to t ≥ 0 and, letting 0 = λ ≤
–V (w(0), 0), get

∫ t

0
J(s) ds ≥ V

(
w(t), t

)
– V

(
w(0), 0

) ≥ wT (t)Pw(t). (74)

Next, we consider two cases:
Case I. �4 = 0. For this case, from inequality (74) we get

∫ tf

0
J(s) ds ≥ 0. (75)

This matches Definition 2.1 with �4 = 0.
Case II. �4 	= 0. From Assumption (H1), it is clear that �1 = 0, �2 = 0, and �3 > 0. Then,

for any 0 ≤ t ≤ tf , (74) leads to

∫ tf

0
J(s) ds ≥

∫ t

0
J(s) ds ≥ wT (t)Pw(t).

By the relationship of output with (72),

z(t)T�4z(t) = –wT (t)
(
P – DT

1 �4D1
)
w(t) + wT (t)Pw(t) ≤ wT (t)Pw(t).

So, it is clear that for any t satisfying 0 ≤ t ≤ tf ,

∫ tf

0
J(s) ds ≥ z(t)T�4z(t). (76)

Taking the supremum over t in inequalities (75) and (76), system (32) is extended dissipa-
tive. This completes the proof. �

Remark 3 Recently, many problems have been investigated to analyze extended dissipativ-
ity for neural networks with time delays, and the results have been reported in [11, 34, 35].
Moreover, the extended dissipative analysis was studied for the GNNs with interval time-
varying delay signals [37]. Unfortunately, most of research does not include the distributed
time-varying delay in the GNNs systems. We know that the distributed time-varying delay
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is a delay resulting from the transmission of distributed nerve impulses in a diversity of
axon sizes and lengths, which is considered difficult to avoid. Therefore, the extended dis-
sipativity analysis for the GNNs with interval discrete and distributed time-varying delays
was addressed in our research.

Remark 4 In recent years, the WSII was developed in [40] to estimate the derivatives of
LKFs with a single integral term. Several studies have used the improved WSII to estimate
the derivative of LKFs, for example, in [42], the authors have obtained criteria of finite-time
passivity for neutral-type neural networks with time-varying delays by using the improved
WSII with Jensen’s inequality. In 2018, a novel triple integral inequality was constructed in
[39] to estimate the derivative of LKFs with the triple integral term, moreover, the authors
achieved an improved delay-dependent exponential stability criterion by using a novel
triple integral inequality with the extended reciprocally convex technique. On the other
hand, in this work, we use the improved WSII to estimate four terms and the triple integral
inequality to estimate – (δ3

2 –δ3
1 )

6
∫ –δ1

–δ2

∫ 0
β

∫ t
t+λ

ẇT (s)S1ẇ(s) ds dλdβ . By applying the improved
WSII, a novel triple integral inequality, and convex combination technique, we gain less
conservative results when compared with the other works [6, 7, 43–45].

Remark 5 In this work, the Lyapunov–Krasovskii functional contains single, double,
triple, and quadruple integral terms, in which full information on the delays δ1, δ2, σ1,
σ2, and a state variable is used. Moreover, more information on activation functions
has been taken into the stability and performance analysis, that is, F–

i ≤ fi(Wiw(t))
Wiw(t) ≤ F+

i ,
G–

i ≤ gi(Wiw(t–δ(t)))
Wiw(t–δ(t)) ≤ G+

i , and H–
i ≤ hi(Wiw(t))

Wiw(t) ≤ H+
i are addressed in the proof. Therefore,

the construction and the technique for computation of the Lyapunov–Krasovskii func-
tional are the main keys to improve results of this work. In the proof of Theorems 3.1–
3.4, improved Wirtinger’s single integral inequality [40], a novel triple integral inequality
[39], and convex combination technique are used to bound the derivative of Lyapunov–
Krasovskii functional, which provide tighter bound than the inequalities in [6, 7, 43–45].
All of these lead to a reduction of the conservatism of our results compared to those in
some exiting works and, in particular, numerical examples. However, the complex compu-
tation of the Lyapunov–Krasovskii functional leads to the LMI derived in this work which
contains much information about the system. Hence, for further work, it is interesting for
researchers to improve the technique for a simple Lyapunov–Krasovskii functional and
also achieve better results.

4 Numerical examples
In this section, five numerical examples are presented to illustrate the effectiveness of our
results.

Example 4.1 Consider the generalized neural network (32) with the following matrices:

C = diag{7.3458, 6.9987, 5.5949}, W =

⎡

⎢
⎣

13.6014 –2.9616 –0.6936
7.4736 21.6810 3.2100
0.7290 –2.6334 –20.1300

⎤

⎥
⎦

B1 = I, B0 = Fm = Gm = 0, and Fp = Gp = diag{0.3680, 0.1795, 0.2876}.
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Table 1 The maximum allowable values of δ2 for δ1 = 0.5 and different values of μ in Example 4.1

Methods μ = 0.9 Unknown μ

Yang et al. (2014) [43] 0.6053 0.6053
Lee et al. (2015) [44] – 0.6169
Saravanakumar et al. (2017) [45] 0.6547 0.6547
Theorem 3.2 – 0.7442

Table 2 The maximum allowable values of δ2 for δ1 = 1 and different values μ in Example 4.2

Methods μ = 0.8 μ = 0.9 Unknown μ

Chen et al. (2010) [6] 1.4692 1.2948 1.1774
Wang et al. (2015) [7] (N = 2) 1.6201 1.3955 1.2363
Wang et al. (2015) [7] (N = 3) 1.6895 1.4385 1.2617
Saravanakumar et al. (2017) [45] 1.7732 1.6457 1.4765
Theorem 3.2 – – 1.9423

By taking parameters β1 = β2 = 1 and solving Example 4.1 using LMIs in Theorem 3.2,
we obtain maximum allowable values of δ2 for δ1 = 0.5 without the upper bound of dif-
ferentiable delay (μ) as shown in Table 1. This table shows that the results derived in this
research are less conservative than those in [43–45].

Example 4.2 Consider the generalized neural network (32) with the following matrices:

C = W = I, B0 =

[
–1 0.5
0.5 –1.5

]

, B1 =

[
–2 0.5
0.5 –2

]

,

Fm = Gm = 0, and Fp = Gp = diag{0.4, 0.8}.

By taking parameters β1 = β2 = 1 and solving Example 4.2 using LMIs in Theorem 3.2, we
obtain maximum allowable values of δ2 for δ1 = 1 without the upper bound of differentiable
delay (μ) as shown in Table 2. This table shows that the results derived in this research are
less conservative than those in [6, 7, 45].

Example 4.3 Consider the generalized neural network (1) with δ1 = 0.3, δ2 = 1, σ1 = 0.01,
σ2 = 0.4, β1 = 0.9, β2 = 1,

C = I, B0 =

[
0.2 –0.1

–0.5 0.1

]

, B1 =

[
–0.5 0
–0.3 –0.2

]

,

B2 =

[
0.15 0.1

0 –0.3

]

, W = 0.5I, I =

[
1 0
0 1

]

,

D1 = D2 = D3 = 0, Fp = Gp = Hp = 0.5I, and Fm = Gm = Hm = 0.

When the LMIs of (4) and (5) in Theorem 3.1 are solved, we obtain

P = 10–3 ×
[

0.0814 –0.0082
–0.0082 0.4716

]

, U1 = 10–4 ×
[

0.1293 –0.0131
–0.0131 0.8506

]

,

U2 = 10–4 ×
[

0.0851 –0.0155
–0.0155 0.8611

]

, T1 = 10–6 ×
[

0.2360 0.0002
0.0002 0.2268

]

,
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T2 = 10–6 ×
[

0.2350 0.0002
0.0002 0.2268

]

, T3 = 10–6 ×
[

0.7593 0.0118
0.0118 0.6331

]

,

L = 10–3 ×
[

0.0882 –0.0089
–0.0089 0.9342

]

, S1 =

[
0.0010 –0.0001

–0.0001 0.0041

]

,

S2 =

[
0.0004 0

0 0.0030

]

, Q =

[
0.0014 0

0 0.0032

]

,

Z1 = 10–3 ×
[

0.4624 0
0 0.4624

]

, Z2 = 10–4 ×
[

0.2162 0
0 0.2162

]

,

Z3 = 10–3 ×
[

0.5730 0
0 0.5730

]

, X1 = 107 ×
[

0 1.7712
–1.7712 0

]

,

X2 = 108 ×
[

–0.6297 –0.4719
0.8100 –5.6813

]

, X3 = 108 ×
[

0.6297 –0.8100
0.4719 5.6813

]

,

X4 = 105 ×
[

0 1.1347
–1.1347 0

]

, Y1 = 10–3 ×
[

–0.9288 0.0009
0.0002 –0.9876

]

,

Y2 = 10–3 ×
[

0.9194 –0.0003
0.0001 0.8781

]

, c1 = 2.0007 × 10–8, and

c2 = 1.1845 × 10–8.

The maximum allowable values of δ2 for different values of δ1 are shown in Table 3. Figure 1
shows the response solution w(t) in Example 4.3 where u(t) = 0 and the initial condition

Table 3 The maximum allowable values of δ2 for different values of δ1 in Example 4.3

Method δ1 = 0 δ1 = 0.3 δ1 = 1.0 δ1 = 1.5 δ1 = 2.0

Theorem 3.1 1.2085 1.2086 1.3483 1.9039 2.0993

Figure 1 The trajectories of w1(t) and w2(t) with u(t) = 0 in Example 4.3
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Figure 2 The trajectories of w1(t) and w2(t) in Example 4.3

Table 4 Minimum γ for Case I and Case II in Example 4.4 with δ1 = 0.5, and various δ2

Methods δ2 = 0.6 δ2 = 0.7 δ2 = 0.8 δ2 = 0.9

Case I. L2–L∞ 2.0751 2.1393 2.2210 2.3226
Case II. Passivity 4.3061 4.5764 4.9328 5.3942

φ(t) = [–0.2 0.2]T . Figure 2 shows the response solution w(t) in Example 4.3 where u(t) is
Gaussian noise with mean 0 and variance 1, and the initial condition is φ(t) = [–0.2 0.2]T .

Example 4.4 In this example, the extended dissipativity performance of the generalized
neural networks (32) is considered, which links all of the famous and important perfor-
mance notions such as the L2–L∞, H∞, passivity, and dissipativity performances. We con-
sider the GNNs (32) with the following parameters:

C = 5I, B0 =

[
2 –0.1

–5 2

]

, W = 0.3I, β1 = β2 = 1,

B1 =

[
–1.5 –0.1
–0.2 –1.5

]

, B3 = D1 = I, Fm = Gm = 0, and Fp = Gp = I.

When we solve Example 4.4 by using LMIs of (68), (69) in Theorem 3.4, we obtain four
cases:

Case I. L2–L∞ performance. By using the LMIs in Theorem 3.4 and letting �1 = 0, �2 = 0,
�3 = γ 2I , and �4 = I , the extended dissipativity performance is converted into the L2–L∞
performance. The L2–L∞ performance index γ can be achieved for δ1 = 0.5, and different
δ2, which are shown in Table 4. Figure 3 shows the plot of L(t) =

√
zT (t)z(t)/

∫ t
0 uT (s)u(s) ds

versus time with the initial condition φ(t) = [–0.1 0.1]T . Clearly, supt L(t) = 0.0265, which
is less than the prescribed L2–L∞ performance index 2.0751 in Table 4.

Case II. Passivity performance. By applying the LMIs in Theorem 3.4 and taking �1 =
0, �2 = I , �3 = γ I , and �4 = 0, the extended dissipativity performance degenerates to
the passivity performance. The passivity performance index γ can be gained for δ1 =
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Figure 3 The trajectory of L(t) in Example 4.4

Figure 4 The trajectory of P(t) in Example 4.4

0.5, and various δ2, which are presented in Table 4. Figure 4 shows the plot of P(t) =
–2

∫ t
0 zT (s)u(s) ds/

∫ t
0 uT (s)u(s) ds versus time with the initial condition φ(t) = [–0.1 0.1]T .

Clearly, P(t) converges to 0.6817, which is less than the prescribed passivity performance
index 4.3061 in Table 4.

Case III. H∞ performance. By using the LMIs in Theorem 3.4 and letting �1 = –I ,
�2 = 0, �3 = γ 2I , and �4 = 0, the extended dissipativity performance becomes the
H∞ performance. The maximum allowable values of δ2 with various γ can be ob-
tained for δ1 = 0.5, which are depicted in Table 5. Figure 5 shows the plot of H(t) =√∫ t

0 zT (s)z(s) ds/
∫ t

0 uT (s)u(s) ds versus time with the initial condition φ(t) = [–0.1 0.1]T .
Clearly, H(t) converges to 3.0415.

Case IV. Dissipativity performance. By applying the LMIs in Theorem 3.4 and taking
�1 = –I , �2 = I , �3 = R – γ I , R = 8I , and �4 = 0, the extended dissipativity performance
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Table 5 The maximum allowable values of δ2 for Case III and Case IV in Example 4.4 with δ1 = 0.5,
and various γ

Methods γ = 2.1 γ = 2.3 γ = 2.5 γ = 2.7

Case III. H∞ 0.6419 0.8795 1.0383 1.1621
Case IV. Dissipativity 0.9871 0.9548 0.9198 0.8815

Figure 5 The trajectory of H(t) in Example 4.4

Figure 6 The trajectory of D(t) in Example 4.4

determines the dissipativity performance. The maximum allowable values of δ2 with var-
ious γ can be achieved for δ1 = 0.5, which are shown in Table 5. Figure 6 shows the plot
of D(t) = (

∫ t
0 –zT (s)z(s) + 2zT (s)u(s) + 8uT (s)u(s) ds)/(

∫ t
0 uT (s)u(s) ds) versus time with the

initial condition φ(t) = [–0.1 0.1]T . Clearly, D(t) converges to –1.9323.



Luemsai et al. Advances in Difference Equations         (2021) 2021:42 Page 27 of 30

Table 6 The maximum allowable values of δ2 for different values of δ1 in Example 4.5

Method δ1 = 0.1 δ1 = 0.3 δ1 = 0.5 δ1 = 0.7

Theorem 3.3 0.5031 0.5121 0.6134 0.8246

Figure 7 The trajectories of w1(t) and w2(t) with u(t) = 0 in Example 4.5

Example 4.5 Consider the neural network (1) with σ1 = 0.1, σ2 = 0.5, β1 = 2, β2 = 3,

C = 5I, B0 =

[
0.2 –0.1

–0.5 0.1

]

, B1 =

[
–0.5 0
–0.3 –0.2

]

,

B2 =

[
0.15 0.1

0 –0.3

]

, B3 = I, W = –0.4I,

D1 = D2 = D3 = 0.1I, Fp = Gp = Hp = I, and Fm = Gm = Hm = 0.

Then, the extended dissipativity performance of system (1) is determined by choosing
�1 = –I , �2 = I , �3 = (8 – γ )I , and �4 = I . Here solving LMIs of (59) and (60) in Theo-
rem 3.3, we obtain the maximum allowable values of δ2 for different values of δ1 which are
shown in Table 6. Figure 7 shows the response solution w(t) in Example 4.5 where u(t) = 0
and the initial condition φ(t) = [–0.1 0.1]T . Figure 8 shows the response solution w(t) in
Example 4.5 where u(t) is Gaussian noise with mean 0 and variance 1, and the initial con-
dition φ(t) = [–0.1 0.1]T .

5 Conclusions
In this paper, we focus on the problem of asymptotic stability and extended dissipativity
analysis for the generalized neural networks with interval discrete and distributed time-
varying delays. Firstly, we obtain new asymptotic stability criteria for the generalized neu-
ral networks and also achieve an improved asymptotic stability criterion for a special case
of the generalized neural networks by using a suitable Lyapunov–Krasovskii functional
(LKF), an improved Wirtinger single integral inequality, a novel triple integral inequal-
ity, and convex combination technique. Then, the asymptotic stability results are applied
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Figure 8 The trajectories of w1(t) and w2(t) in Example 4.5

to extended dissipativity analysis that covers H∞, L2–L∞, passivity, and dissipativity per-
formance by setting parameters in the general performance index. Finally, we demon-
strate numerical examples that are less conservative than in other references. Moreover,
we present numerical examples for asymptotic stability and extended dissipativity per-
formance of the generalized neural networks, including a special case of the generalized
neural networks. In the future work, the derived results and methods in this paper are
expected to be applied to other systems such as fuzzy generalized neural networks, gener-
alized neural networks with Markovian switching, complex dynamical networks, and so
on [10, 32, 46].
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