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Abstract
Let T > 1 be an integer, and let T = {1, 2, . . . , T}. We show the existence of positive
solutions of the Dirichlet boundary value problem with second-order difference
operator

{
–�2u(j – 1) = λf (j,u(j)), j ∈ T,

u(0) = u(T + 1) = 0,

where λ > 0 is a parameter, and f : T×R
+ → R is a continuous function satisfying

f (j, 0) < 0 for all j ∈ T. The proofs of the main results are based upon topological
degree and global bifurcation techniques.
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1 Introduction
In this paper, we deal with the existence of positive solutions of the discrete Dirichlet
boundary value problems (BVP)

⎧⎨
⎩–�2u(j – 1) = λf (j, u(j)), j ∈ T,

u(0) = u(T + 1) = 0,
(1.1)

where T > 1 is an integer, T = {1, 2, . . . , T}, � is the forward difference operator defined
by �u(j) = u(j + 1) – u(j), �2u(j) = �(�u(j)), λ > 0 is a parameter, and f : T × R

+ → R is
a continuous function satisfying the condition

(f1) f (j, 0) < 0, ∀j ∈ T.
Problem (1.1) is referred as a semipositone problem, which is introduced by Castro and
Shivaji [7] for Dirichlet problems of differential equations.

On the contrary, if

f (j, 0) ≥ 0, ∀j ∈ T,
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then (1.1) is called a positone problem. It has been extensively studied by many authors
by using different methods, such as those of topology degree theory, critical point theory,
and the fixed point theorem in cones; see Agarwal, Perera, and O’Regan [2], Merdivenci
[15], Bai and Xu [5], Henderson and Thompson [11, 12], Li, Niu, and Sun [13], Zhang and
Ge [18], D’Aguìa, Mawhin, and Sciammetta [8], and the references therein.

Since 1989, the existence of positive solutions for semipositone problems of ordinary
differential equations has also been extensively studied; we refer the reader to the cele-
brated works by Ambrosetti, Arcoya, and Buffoni [3] and Anuradha, Hai, and Shivaji [4].

However, relatively little is known about the existence of positive solutions for semiposi-
tone problems of difference equations; see Bai and Xu [6].

In particular, employing the fixed point theorem in cones due to Guo and Krasnoselskii,
Bai and Xu [6] obtained the existence of at least one positive solution for the semipositone
Sturm–Liouville-like BVP of the second-order difference equation{

–�[p(j – 1)�u(j – 1)] = λf (j, u(j)), j ∈ T,
γ1u(0) – γ2p(0)�u(0) = 0, γ3u(T + 1) + γ4p(T)�u(T) = 0,

(1.2)

under the assumptions γi ≥ 0 (i = 1, . . . , 4), γ1γ3 + γ1γ4 + γ2γ3 > 0, and p(j) > 0, j ∈
{0, 1, . . . , T} and the superlinear condition

(A1) there exist two positive integers α and β with 0 < α < β < T such that

lim
s→∞

f (j, s)
s

= ∞

uniformly for j ∈ {α, . . . ,β}.
It is worth pointing out that in [6], only the existence of positive solutions of (1.2) for

sufficiently small λ, the norm of solutions obtained is also small, and no information is
provided about the global behavior of the set of positive solutions.

Motivated by [3, 6], in this paper, we address three points of interest regarding the dis-
crete semipositone problem (1.1):

(i) Does (1.1) have solutions of large norm?
(ii) Does (1.1) have solutions for sufficiently large λ?

(iii) Does the set of positive solutions of (1.1) have a connected component?
Particular significance in these points lie in the fact that when a continuous BVP is dis-

cretized, strange and interesting changes can occur in the solutions. For example, prop-
erties such as the existence, uniqueness, and multiplicity of solutions may not be shared
between the continuous differential equation and related discrete difference equation [1,
p. 520]. Thus new challenges are faced, and innovation is required. For instance, for
r ∈ (1,∞), the problem{

–w′′(x) = wr(x), x ∈ (0, 1),
w(0) = w(1) = 0

has a unique positive solution w0. However, for the corresponding discrete analogue{
–�2w(j – 1) = wr(j), j ∈ T,
w(0) = w(T + 1) = 0,

the uniqueness of a positive solution is still open.
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The rest of the paper is arranged as follows. In Sect. 2, we give some notations and pre-
liminaries. In Sect. 3, we prove an existence result for asymptotically linear problems by
topological theory. Section 4 is devoted to investigating sublinear problems, and a unique-
ness result allows us to show that (1.1) possesses positive solutions for λ ≥ λ∗. Finally, in
Sect. 5, we study superlinear problems, and some a priori estimates help us prove that (1.1)
has positive solutions, provided that λ is small enough.

For recent developments of nonlinear discrete BVP by using critical point theory and
bifurcation theory, we refer the reader to [14, 16, 19, 20] and the references therein.

2 Some notations and preliminaries
Recall that T = {1, 2, . . . , T}. Let T̂ = {0, 1, . . . , T , T + 1}. We will work in the space X := {u :
T̂ →R : u(0) = u(T + 1) = 0}; the norm of this space is defined by ‖u‖ = maxj∈T̂ |u(j)|. Let

Σ =
{

(λ, u) ∈ R
+ × X : u �= 0, (λ, u) satisfies (1.1)

}
.

Let H := {u : T̂→R} with the inner product

(u, v) =
T+1∑
j=0

u(j)v(j), u, v ∈ H ,

and the norm

‖u‖H =
√

(u, u) =

(T+1∑
j=0

u2(j)

)1/2

.

We also set R+ = [0, +∞).

Lemma 2.1 Let u, v ∈ X. Then

T∑
j=1

�2u(j – 1)v(j) =
T∑

j=1

�2v(j – 1)u(j).

Proof Since u(0) = u(T + 1) = 0 and v(0) = v(T + 1) = 0, we have

T∑
j=1

�2u(j – 1)v(j)

=
T∑

j=1

v(j)
(�u(j) – �u(j – 1)

)

=
T∑

j=1

�u(j)v(j) –
T∑

j=1

�u(j – 1)v(j)

=
T∑

j=1

�u(j)v(j) –
T–1∑
k=0

�u(k)v(k + 1) (by setting k = j – 1)

=

[
�u(T)v(T) +

T–1∑
j=1

�u(j)v(j)

]
–

[
�u(0)v(1) +

T–1∑
k=1

�u(k)v(k + 1)

]
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=
[�u(T)�v(T) – �u(0)�v(0)

]
+

[T–1∑
j=1

�u(j)v(j) –
T–1∑
j=1

�u(j)v(j + 1)

]

= �u(T)�v(T) – �u(0)�v(0) –
T–1∑
j=1

�u(j)�v(j).

Similarly, we have

T∑
j=1

�2v(j – 1)u(j) = �u(T)�v(T) – �u(0)�v(0) –
T–1∑
j=1

�u(j)�v(j).

Accordingly,

T∑
j=1

�2u(j – 1)v(j) =
T∑

j=1

�2v(j – 1)u(j).
�

Define the difference operator L : X → X by

Lu(j) =

⎧⎪⎪⎨
⎪⎪⎩

–�2u(j – 1), j ∈ T,

0, j = 0,

0, j = T + 1.

Then it is easy to see that L : X → X is an isomorphism.
Define G : T̂× T̂ →R

+ by

G(j, s) =
1

T + 1

⎧⎨
⎩(T + 1 – j)s, 1 ≤ s ≤ j ≤ T + 1,

(T + 1 – s)j, 0 ≤ j ≤ s ≤ T .

Define

E =
{

j ∈N :
T
4

≤ j ≤ 3T
4

}
, δ = min

{
1
T

min E, T + 1 –
1
T

max E
}

.

From [10, 17] it follows that

G(j, s) ≤ G(s, s), s ∈ T, j ∈ T̂, (2.1)

G(j, s) ≥ δG(s, s), s ∈ T, j ∈ E, (2.2)

and K : X → X defined by

Kφ(j) =
T∑

s=1

G(j, s)f
(
s,φ(s)

)

is well defined and continuous.
According to the previous notations, u ∈ X is a solution of (1.1) if and only if it is a

solution of the problem

u – λKf (u) = 0, u ∈ X. (2.3)
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Hereafter we will use the same symbol to denote both the function and the associated
Nemitski operator.

The first eigenvalue of

⎧⎨
⎩–�2u(j – 1) = λu(j), j ∈ T,

u(0) = u(T + 1) = 0

is denoted by λ1, and ϕ1 is the corresponding eigenfunction such that ϕ1 > 0 in T and
‖ϕ1‖ = 1.

Let X ⊂ H . Further, we let L be the linear operator induced by L in H . It is well known
that L has a principal eigenvalue λ1 > 0, and the corresponding eigenspace is spanned by
a function ϕ1 ∈ X. Hence the space H admits the topological direct decomposition

H = H1 ⊕ {cϕ1},

where H1 is the orthogonal complement (in H) of {cϕ1}. Note that H1 and {cϕ1} are invari-
ant under L. Since ϕ1 ∈ X and X ⊂ H , the space X is also decomposed in

X = X1 ⊕ {cϕ1}, (2.4)

where X1 = H1 ∩ X. Clearly, the restriction L–1|X maps X into itself and is compact.

3 Asymptotically linear problems
In this section, we suppose that f satisfies (f1) and

(f2) there exists m > 0 such that

lim
u→+∞

f (j, u)
u

= m uniformly in j ∈ T̂.

We further suppose that
(A1) a(j) := lim infu→+∞(f (j, u) – mu) > 0 for all j ∈ T;
(A2) A(j) := lim supu→+∞(f (j, u) – mu) < 0 for all j ∈ T.
Let λ∞ = λ1

m . Our main result is the following:

Theorem 3.1 Assume that (f1) and (f2). Then
(i) if (A1) is satisfied, then exists ε > 0 such that (1.1) has positive solutions for

λ ∈ [λ∞ – ε,λ∞);
(ii) if (A2) is satisfied, then there exists ε′ > 0 such that (1.1) has positive solutions for

λ ∈ (λ∞,λ∞ + ε′].

We divide the proof of Theorem 3.1 into several steps. First, let us extend f (j, ·) to R by
setting

F(j, u) = f
(
j, |u|).

For the remainder of the proof, we will omit the dependence with respect to j.
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Let

Φ(λ, u) = u – λKF(u).

Clearly, any u > 0 such that Φ(λ, u) = 0 is a positive solution of (1.1). For R > 0, let BR = {u ∈
X : ‖u‖ < R}. We also denote by deg(Φ(λ, ·), BR, 0) the degree of Φ(λ, ·) on BR with respect
to 0.

To prove Theorem 3.1, we need the following preliminary results.

Lemma 3.2 Let Λ ⊂ R
+ be a compact interval with λ∞ /∈ Λ. Then there exists a number

r > 0 such that for all u ∈ X with ‖u‖ ≥ r and λ ∈ Λ, Φ(λ, u) �= 0. Moreover:
(i) if (A1) holds, then we can take Λ = [λ∞,λ], where λ > λ∞;

(ii) if (A2) holds, then we can take Λ = [0,λ∞].

Proof Suppose on the contrary that there exist un ∈ X with ‖un‖ → ∞ and μn ∈ Λ such
that

un = μnKF(un).

We may assume that μn → μ ∈ Λ.
Let wn = un

‖un‖ . Then

wn = μnK
F(un)
‖un‖ .

Since F(un)
‖un‖ is bounded in X, wn is a relatively compact set in X by the compactness of K .

Assumption (f2) and the definition of F yield that, after taking a subsequence if necessary,
wn → w in X, where w is a solution of the problem

⎧⎨
⎩–�2w(j – 1) = μm|w(j)|, j ∈ T,

w(0) = w(T + 1) = 0,

and satisfies ‖w‖ = 1. From the maximum principle it follows that w ≥ 0. Since ‖w‖ = 1,
we deduce that μm = λ1, that is, μ = λ∞ /∈ Λ, which is a contradiction.

Next, we will only prove (i) of Lemma 3.2 since applying the same method, with obvious
changes, we may obtain (ii).

Suppose now there exist sequences un in X and μn in R
+ with ‖un‖ → ∞, μn → λ∞,

and μn > λ∞ such that

Φ(μn, un) = 0. (3.1)

Arguing as in the proof of the previous statement, we set wn = un
‖un‖ and conclude that,

possibly passing to a subsequence, wn → w in X, ‖w‖ = 1, and w ≥ 0 satisfies

⎧⎨
⎩–�2w(j – 1) = λ1w(j), j ∈ T,

w(0) = w(T + 1) = 0.
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Subsequently, there exists β > 0 such that w = βϕ1. Then we have un = ‖un‖wn → +∞ for
all j ∈ T and F(un) = f (un) for n large. By (3.1) and Lemma 2.1 we have

λ1

T∑
j=1

un(j)ϕ1(j) = μn

T∑
j=1

(
f
(
un(j)

)
– mun(j)

)
ϕ1(j) + μnm

T∑
j=1

un(j)ϕ1(j).

From μn > λ∞ and
∑T

j=1 un(j)ϕ1(j) > 0 for n large, it follows that

T∑
j=1

(
f
(
un(j)

)
– mun(j)

)
ϕ1(j) < 0

for n large, which, together with the Fatou lemma, yields

0 ≥ lim inf
n→∞

T∑
j=1

(
f
(
un(j)

)
– mun(j)

)
ϕ1(j)

≥
T∑

j=1

(
lim inf

n→∞
(
f
(
un(j)

)
– mun(j)

))
ϕ1(j)

=
T∑

j=1

a(j)ϕ1(j)

> 0,

which is impossible, since a(j) > 0 for all j ∈ T. �

We follow the standard pattern. Let z = u
‖u‖2 (u �= 0), and let

Ψ (λ, z) =
Φ(λ, u)
‖u‖2 = z – λ‖z‖2KF

(
z

‖z‖2

)
.

Then λ∞ is a bifurcation from infinity for (2.3) if and only if it is a bifurcation from the
trivial solution z = 0 for Ψ = 0.

Lemma 3.3 For λ ∈ (0,λ∞), deg(Ψ (λ, ·), B1/r, 0) = 1.

Proof Lemma 3.2, applied to the interval Λ = [0,λ], guarantees the existence of r > 0 such
that

u – tλKF(u) �= 0

for all u ∈ X with ‖u‖ ≥ r and t ∈ [0, 1]. Thus, performing the transformation z = u
‖u‖2

(u �= 0), we get

z – tλ‖z‖2KF
(

z
‖z‖2

)
�= 0, ∀z ∈ X, 0 < ‖z‖ ≤ 1

r
,∀t ∈ [0, 1].
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Hence

deg
(
Ψ (λ, ·), B1/r, 0

)
= deg

(
Ψ (0, ·), B1/r, 0

)
= deg(I, B1/r, 0)

= 1. �

Lemma 3.4 If λ > λ∞, then there exists r > 0 such that for all u ∈ X with ‖u‖ ≥ r,

Φ(λ, u) �= τϕ1 for all τ ≥ 0.

Proof Suppose on the contrary that there exist sequences un ∈ X with ‖un‖ → ∞ and
τn ≥ 0 such that

Φ(λ, un) = τnϕ1.

Then

K–1(un) = λF(un) + τnλ1ϕ1, (3.2)

and since τnλ1ϕ1 ≥ 0 in T, it follows by the maximum principle that un ≥ 0 in T. Let
un = wn + snϕ1 be decomposed according to decomposition (2.4). Then sn = (un,ϕ1) ≥ 0
for every n ∈N.

We first prove that sn → +∞ as n → ∞.
Suppose that sn is bounded. Then ‖wn‖ → ∞. Let vn = wn

‖wn‖ . Let P : X → X be the con-
tinuous projection of X onto X1 parallel to {cϕ1}. Applying P to (3.2), by (f2) we obtain

K–1(vn) =
λPF(un)
‖wn‖ � λmP(un)

‖wn‖ = λmvn.

We infer as in the proof of Lemma 3.2 that vn → v in X, ‖v‖ = 1, and (v,ϕ1) = 0. Thus v
has to change sign in T. On the other hand, un ≥ 0 in T implies that vn ≥ –sn

ϕ1
‖wn‖ , and this

contradicts the fact v ≥ 0.
Taking the inner product of (3.2) with ϕ1, we get

snλ1 =
(
K–1(un),ϕ1

)
= (λmun,ϕ1) +

(
λ
(
F(un) – mun

)
,ϕ1

)
+ (τnλ1ϕ1,ϕ1)

≥ λmsn +
(
λ
(
F(un) – mun

)
,ϕ1

)
.

Hence

λ1 ≥ λm +
(λ(F(un) – mun),ϕ1)

sn
→ λm (n → ∞),

a contradiction to the assumption λ > λ∞. �

Lemma 3.5 For λ > λ∞, deg(Ψ (λ, ·), B1/r, 0) = 0.
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Proof By Lemma 3.4 there exists r > 0 such that Φ(λ, u) �= t‖u‖2ϕ1 for u ∈ X with ‖u‖ ≥ r
and t ∈ [0, 1]. Then

Ψ (λ, z) �= tϕ1, ∀z ∈ X, 0 < ‖z‖ ≤ 1
r

,∀t ∈ [0, 1].

We conclude that

deg
(
Ψ (λ, ·), B1/r, 0

)
= deg

(
Ψ (λ, ·) – ϕ1, B1/r , 0

)
= 0. �

From the Lemma 3.3 and Lemma 3.5 we deduce the following:

Proposition 3.6 There exists an unbounded connected component Σ∞ ⊂ Σ that meets
(λ∞,∞). Moreover, if (A1) holds, then Σ∞ bifurcates to the left, whereas if (A2) holds, then
Σ∞ bifurcates to the right.

Proof of Theorem 3.1 Suppose there exists sequence (μn, un) ⊂ Σ∞ with ‖un‖ → ∞ and
μn → λ∞. We only to show that un > 0 in T for n large. Arguing as in the proof of
Lemma 3.2, let wn = un

‖un‖ . We find that, up to a subsequence, wn → w in X, where ‖w‖ = 1,
w > 0, and w = βϕ1, β > 0. Hence we have un > 0 in T for n large. �

Remark 3.7 In fact, solutions on Σ∞ can change sign, and the behavior Σ∞ depends on
the definition of f for u < 0. However, independently of such a definition, there exists a
connected component Σ0 ⊂ Σ bifurcating from (0, 0) ∈ R

+ × X, consisting of negative
solutions of (1.1), and such that Σ∞ ∩ Σ0 = ∅.

Remark 3.8 Suppose that there exists β > 0 such that f (β) = 0, f (s) < 0 for 0 < s < β , and
f (s) > 0 for s > β . It is well known that if u is a positive solution of (1.1), then ‖u‖ > β . From
the proof of Theorem 3.1 we have that the solutions on Σ∞ are positive as λ → λ∞, and
hence by the continuity argument we deduce that ‖u‖ > β for all (λ, u) ∈ Σ∞.

4 Sublinear problems
In this section, we suppose that f satisfies (f1) and

(f3) there exists b ∈ X with b > 0 such that for some 0 ≤ q < 1,

lim
u→+∞

f (j, u)
uq = b uniformly in j ∈ T̂.

Our main result is stated as follows.

Theorem 4.1 If (f1) and (f3) hold, then there exists λ∗ > 0 such that (1.1) has positive so-
lutions for all λ ≥ λ∗. More precisely, there exists an unbounded connected component of
positive solutions of (1.1) bifurcating from infinity at λ∞ = +∞.

Let us define the cone

P =
{

u ∈ X : u(j) ≥ 0 for j ∈ T̂
}

.

Before we prove the main result, we first give the following:
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Lemma 4.2 Let 0 < q < 1, and let b be as in (f3). Then the nonlinear problem

⎧⎨
⎩–�2w(j – 1) = b(j)wq(j), j ∈ T,

w(0) = w(T + 1) = 0
(4.1)

has a unique positive solution.

Proof It is easy to verify that problem (4.1) has at least one positive solution by the fixed
point theorem in cones; see [9, 15].

Suppose that u1, u2 are positive solutions of (4.1), that is,

–�2u1(j – 1) = b(j)uq
1(j), j ∈ T,

–�2u2(j – 1) = b(j)uq
2(j), j ∈ T,

and

u1(0) = u2(0) = u1(T + 1) = u2(T + 1) = 0.

Then u1 and u2 are concave down in T̂.
We will show that u1 ≥ u2 and u2 ≥ u1 in T̂.
Suppose on the contrary that u1 � u2. We consider the element φr(j) of the form

φr(j) = u1(j) – ru2(j), j ∈ T̂.

We denote by r0 the value of r such that φr0 ∈ P and φr /∈ P for r > r0. The number r0 is
positive since u1 ≥ 0 and φr ∈ P for sufficiently small positive r.

From the definition of r0 it follows that there exists τ0 ∈ (0, 1) such that

φr0 (τ0) = u1(τ0) – r0u2(τ0) = 0. (4.2)

On the other hand,

–�2φr0 (j – 1) = –�2u1(j – 1) + r0�2u2(j – 1)

= b(j)uq
1(j) – r0b(j)uq

2(j)

= b(j)
[
uq

1(j) – r0uq
2(j)

]
≥ b(j)

[
rq

0uq
2(j) – r0uq

2(j)
]

= b(j)uq
2(j)

(
rq

0 – r0
)

> 0,

and

φr0 (0) = φr0 (T + 1) = 0.
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Then

φr0 (j) > 0, j ∈ T.

However, this contradicts (4.2).
Therefore we have u1 ≥ u2 in T̂. By the same method we may prove that u2 ≥ u1

in T̂. �

Proof of Theorem 4.1 As before, we extend f to R by setting

F(u) = f
(|u|).

Let

G(u) = F(u) – b|u|q.

Then, from (f3), it follows that limu→+∞ G(u) = 0. Let

w = γ u, λ = γ q–1, γ > 0.

It is easy to check that (λ, u), λ > 0, is a solution of

Φ(λ, u) = 0 (4.3)

if and only if (γ , w) is a solution of

w – KF̂(γ , w) = 0, (4.4)

where

F̂(γ , w) = b|w|q + γ qG
(

w
γ

)
, γ > 0.

We can define F̂ in R
+ × X by setting

F̂(0, w) = b|w|q.

From (f3) it follows that F̂(·, w) is continuous in R
+.

Let

S(γ , w) = w – KF̂(γ , w), γ ∈R
+.

Then S(γ , ·) = I – K̂(γ , ·), K̂(γ , ·) = KF̂(γ , ·), and K̂ is compact.
From Lemma 4.2 it follows that the problem

⎧⎨
⎩–�2w(j – 1) = b(j)wq(j), j ∈ T,

w(0) = w(T + 1) = 0
(4.5)

has a unique positive solution w0.
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Let

Ωδ =
{

w ∈ X : ‖w – w0‖ ≤ δ
}

,

and let λ1[bwq–1
0 ] denote the first eigenvalue of the linearized problem

⎧⎨
⎩–�2v(j – 1) = λbwq–1

0 v(j), j ∈ T,

v(0) = v(T + 1) = 0.

Then (4.5) yields that v = w0 is the eigenfunction associated with

λ1
[
bwq–1

0
]

= 1. (4.6)

Note that S0(w) = w – KF̂0(w). For h ∈ X, from 0 < q < 1 and the fact

(y0 + h)q – yq
0 = qyq–1

0 h + ◦(‖h‖)
it follows that

S0(w0 + h)(j) – S0(w0)(j)

=
[
(w0 + h) – Kb|w0 + h|q](j) –

[
w0 – Kb|w0|q

]
(j)

= h(j) – Kb
[|w0 + h|q(j) – |w0|q(j)

]
= h(j) – Kbqwq–1

0 (j)h(j) + ◦(‖h‖).

Hence the Fréchet derivative of S0 is given by

S ′
0(w0)v =

⎧⎨
⎩v – K[qbwq–1

0 ]v, 0 < q < 1,

v, q = 0.

It follows from 0 < q < 1 and (4.6) that all the characteristic values of I –S ′
0(w0) are greater

than 1. Hence we deduce that

deg
(
S0(·),Ωδ , 0

)
= 1, 0 ≤ q < 1.

By continuation we deduce that there exists a connected component C of solutions of
S(γ , w) = 0, γ > 0, such that (0, w0) ∈ C . Moreover, there exists γ0 > 0 such that these solu-
tions are positive, provided that 0 < γ ≤ γ0.

Notice that, by w = γ u and λ = γ q–1, C can be transformed into a connected component
Σ∞ of solutions of (1.1). These solutions are indeed positive for all λ > λ∗ := γ

q–1
0 , and,

together with the fact

λ → +∞ if and only if γ → 0,

we have that Σ∞ bifurcates from infinity at λ∞ = +∞. �
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5 Superlinear problems
In this section, we suppose that f satisfies (f1) and

(f4) there exists b ∈ X with b > 0 such that

lim
u→+∞

f (j, u)
up = b uniformly in j ∈ T̂,

with p > 1.
The main result of this section is the following:

Theorem 5.1 If (f1) and (f4) hold, then there exists λ∗ > 0 such that (1.1) has positive solu-
tions for all λ ∈ (0,λ∗]. More precisely, there exists an unbounded connected component of
positive solutions of (1.1) bifurcating from infinity at λ∞ = 0.

We will show that in this case that there exists the connected component of positive
solutions of (1.1) bifurcating from infinity at λ∞ = 0. Following the same procedure as for
the sublinear case, we employ the rescaling w = γ u, λ = γ p–1 and use the same notation,
with p instead of q. As before, (λ, u) solves (4.3) if and only if (γ , w) satisfies (4.4).

It is worth pointing out that, for γ = 0, solutions of S0(w) := S(0, w) = 0 are solutions of

⎧⎨
⎩–�2w(j – 1) = b|w|p, j ∈ T,

w(0) = w(T + 1) = 0.
(5.1)

We claim that there exist two constant r, R : R > r > 0, such that

S0(w) �= 0, ∀‖w‖ ≥ R; (5.2)

S0(w) �= 0, ∀‖w‖ ≤ r; (5.3)

deg
(
S0(·), BR \ B̄r , 0

)
= –1. (5.4)

Assume on the contrary that (5.2) is not true. Then there exists a sequence {wn} of so-
lutions of (5.1) satisfying

‖wn‖ → ∞, n → ∞.

In fact, from (5.1) we have that

⎧⎨
⎩–�2wn(j – 1) = (b|wn(j)|p–1)wn(j), j ∈ T,

wn(0) = wn(T + 1) = 0.

Since

lim
n→∞ b

∣∣wn(j)
∣∣p–1 = ∞ uniformly in j ∈ T,

it follows that wn must change its sign in T̂, a contradiction.
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Assume on the contrary that (5.3) is not true. Then there exists a sequence {wn} of so-
lutions of (5.1) satisfying

‖wn‖ → 0, n → ∞.

Let vn = wn
‖wn‖ . Arguing as in the proof of (5.2), we have

lim
n→∞ b

∣∣wn(j)
∣∣p–1 = 0 uniformly in j ∈ T.

From this fact, by the standard argument, after taking a subsequence and relabeling if
necessary, it follows that there exists v∗ ∈ X with ‖v∗‖ = 1 such that

vn → v∗, n → ∞,

and
⎧⎨
⎩–�2v∗(j – 1) = 0, j ∈ T,

v∗(0) = v∗(T + 1) = 0,

which implies that v∗ = 0, a contradiction.
To show (5.4), let us define the cone

P̂ =
{

u ∈ X : u(j) ≥ 0, min
j∈E

u(j) ≥ δ‖u‖
}

,

where E and δ are given as in Sect. 2. Denote

Ωρ =
{

u ∈ P̂ : ‖u‖ ≤ ρ
}

.

By (2.1), (2.2), and a similar argument as in [15], we can deduce that

i
(
KF̂(0, ·),Ωr , P̂

)
= 1, i

(
KF̂(0, ·),ΩR, P̂

)
= 0,

and, subsequently,

i
(
KF̂(0, ·),ΩR \ Ω̊r , P̂

)
= –1.

Combining this together with the fact S0 : X → ΩR \ Ω̊r and using (5.2) and (5.3), we
deduce that

deg
(
S0(·), BR \ B̄r , 0

)
= –1.

Lemma 5.2 There exists γ0 > 0 such that
(i) deg(S(γ , ·), BR \ B̄r , 0) = –1 for 0 ≤ γ ≤ γ0;

(ii) if S(γ , w) = 0 for γ ∈ [0,γ0] and ‖w‖ ∈ [r, R], then w > 0 in T.
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Proof (i) It suffices to show that S(γ , w) �= 0 for all γ ∈ [0,γ0] and ‖w‖ ∈ {r, R}. Suppose on
the contrary that there exists (γn, wn) with γn → 0 and ‖wn‖ ∈ {r, R} such that S(γn, wn) =
0. By the compactness of K and by the standard argument, after taking a subsequence
and relabeling if necessary, we obtain wn → w, S0(w) = 0, and ‖w‖ ∈ {r, R}. However, this
contradicts with (5.2) and (5.3).

(ii) We still suppose that there exists a sequence wn ∈ X with {j ∈ T : wn(j) ≤ 0} �= ∅
such that wn → w, ‖w‖ ∈ [r, R], and S(γ , w) = 0 for γ ∈ [0,γ0]. Since w solves (5.1), we can
deduce that w > 0 in T. Hence wn > 0 in T for n large since wn → w in X, a contradiction. �

Proof of Theorem 5.1 By Lemma 5.2, (4.4) has a positive solution w for any γ ∈ [0,γ0]. As
remarked before, γ > 0 and p > 1, and hence λ = γ p–1 and u = w

γ
give a solution of (1.1)

for 0 < λ < λ∗ := γ
p–1
0 . Moreover, ‖w‖ ≥ r for all γ ∈ [0,γ0] implies that ‖u‖ = ‖w‖

γ
→ ∞ as

γ → 0. We complete the proof. �
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