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Abstract
In this study, we investigate the stochastic finite-time H∞ bounded control problem
for a class of networked control systems (NCSs) subject to mixed delays, stochastic
nonlinearities, and randomly missing measurement. The mixed delays consist of
discrete time-varying and distributed delays. The stochastic nonlinearities satisfy
statistical means. The missing measurement is modeled by a Bernoulli-distributed
random variable. By applying stochastic analysis method we present sufficient
conditions guaranteeing the stochastic finite-time boundedness of a closed-loop
system with desired H∞ performance level within a finite time interval. Moreover,
dynamic output feedback controller can be obtained in terms of a set of matrix
inequalities, which can be easily solved by using the cone complementarity
linearization method (CCLM). Finally, we provide two numerical examples to illustrate
the validity of the proposed design technique.

Keywords: Finite-time H∞; Dynamic output feedback control; Stochastic
nonlinearities; Mixed delays; Lyapunov–Krasovskii functional method

1 Introduction
Networked control systems (NCSs), which integrate the development of automatic control
technology, network communication technology, and microelectronics technology, have
become a hot research topic in the international control field in recent years. Different
from the traditional control system, it links sensors, controllers, and actuators distributed
in different regions of the control system to form a closed-loop feedback control system
through a communication network. The transmission of data and information between
each node is realized through the network. For many years now, these kinds of systems can
be found in a variety of engineering areas such as automobiles, manufacturing plants, and
aircrafts. At present the research on networked control systems is mostly concentrated on
continuous systems, but discrete-time networked control systems play important roles
in complex control systems and remote control systems, for example, pump-controlled
motor speed servo control, pendulum control, remote diagnostic, and troubleshooting
control [1–6]. NCSs have many advantages in comparison with traditional control sys-
tems, but the introduction of communication networks also bring a series of problems.

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other
third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

https://doi.org/10.1186/s13662-020-2499-0
http://crossmark.crossref.org/dialog/?doi=10.1186/s13662-020-2499-0&domain=pdf
http://orcid.org/0000-0001-7070-1492
mailto:houling0729@163.com


Hou et al. Advances in Difference Equations         (2020) 2020:95 Page 2 of 23

The communication between sensors, controllers, and actuators is accomplished by shar-
ing network platform after the networks are introduced into the control system. However,
due to limited spectrum resources, the problems of network connection interruption, data
collision, network congestion, or resource competition are inevitable, which will inevitably
lead to network delays, packet dropouts, or data missing phenomena in both sensor-to-
controller link and controller-to-actuator link. In addition, for the actual control system,
nonlinear factors are inevitable and cannot be ignored. Therefore it is necessary to con-
sider the network delays, missing measurement, and nonlinearity simultaneously in the
study of NCSs. In this paper, we focus on the problem of stochastic finite-time H∞ con-
trol for discrete-time NCSs with mixed delays, stochastic nonlinearities, and randomly
missing measurement.

Network delays in the NCSs are exposed when the data exchange from the sensor to
controller and from the controller to actuator. At present the delays are generally divided
into two categories according to the occurrence way, discrete delays and distributed delays.
In the recent years, some works have been done on the analysis and synthesis of systems
for various types of delays [7–12]. However, most of these studies considered one of the
delays mentioned before, whereas few considered two kinds of delays simultaneously, that
is, mixed delays (both discrete and distributed). In addition, in the existing literature on
mixed delays, continuous systems were considered. Note that infinite distributed delays
also exist in discrete case. With the development of applications to digital control systems,
it is important to discuss how mixed delays affect the dynamic behavior of discrete NCSs.
Some works in this field have been made [13, 14].

On the other hand, the missing measurement is also one of the problems that cause the
performance deterioration of NCS indicators. Therefore it is particularly important to
consider the impact of missing measurement on the performance of NCSs. The missing
measurement is usually described by two forms: the first is to regard the missing mea-
surement as a random variable that satisfies the Bernoulli distribution, and the second is
using Markov chains to describe random forms. At present, it is popular describing miss-
ing measurement by Bernoulli distribution [15, 16]. Recently, missing measurement has
attracted considerable attention, and many results have been obtained; see, for example,
[17, 18]. In [17] the quantized recursive filtering problem was further investigated for a
class of nonlinear systems. Hu et al. [18] studied event-based filtering problem for a class
of nonlinear systems. In addition, it is well known that the nonlinearities, such as delays
and missing measurements, also cause instability and poor performance of dynamic sys-
tems [19–21]. If the system involves serious nonlinearities, then it is difficult to design a
controller with good performance. In recent years, stochastic nonlinearities described by
statistical means have became a popular form. Hu et al. [22] investigated the H∞ filtering
problem for a class of stochastic nonlinear systems with time-varying delay and multiple
missing measurements. Other related results can be found in [23–26].

It should be pointed out that all the mentioned references on the problems of Lyapunov
asymptotical stability for NCSs defined over an infinite time interval, whereas in many
practical applications the main concern is not only system dynamic behavior on an infi-
nite time interval but also a bound of system trajectories over a fixed finite-time interval.
In this sense, Dorato [27] first proposed the concept of finite-time stability (FTS). Sub-
sequently, by using Lyapunov theory and LMI technique some sufficient conditions have
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been established to ensure FTS and finite-time boundedness in various systems [28–30],
particularly, in the NCSs [31–36]. Recently, Ma and Song [37, 38] studied a finite-time
dissipative problem for a class of singular discrete-time systems and discrete stochastic
systems. However, it is worth noting that most of the mentioned references on problems
of finite-time control were considered for discrete-time linear NCSs, whereas in the ac-
tual systems, most of the controlled objects or processes exhibit nonlinear features. To
the best of authors’ knowledge, so far, the problem of stochastic finite-time H∞ control
for discrete-time NCSs with mixed delays, stochastic nonlinearities, and randomly miss-
ing measurement has not been studied. This motivates our present research. It should
be remarked that it is difficult to analyze this problem owing to two reasons: (1) How to
characterize a suitable definition of stochastic finite-time boundedness for discrete-time
NCSs with mixed delays, stochastic nonlinearities, and randomly missing measurement?
(2) How to deal with mixed delays, stochastic nonlinearities, and randomly missing mea-
surement in the controller design stage.

Our aim is designing a stochastic finite-time output feedback controller by fully taking
into account mixed delays, stochastic nonlinearities, and randomly missing measurement.
Through such a output feedback controller, both stochastic finite-time boundedness and
desired H∞ performance can be guaranteed. The main contributions of this paper can be
itemized as follows: (1) The concept of stochastic finite-time boundedness is extended to
more general discrete-time NCSs containing mixed delays, stochastic nonlinearities, and
randomly missing measurement. (2) The effects of mixed delays, stochastic nonlineari-
ties, and randomly missing measurement on system performance are considered, which
are important in system analysis and synthesis. (3) By constructing a novel Lyapunov–
Krasovskii functional and using stochastic analysis method, a more general controller, the
output feedback controller, is designed. This controller is more useful than the previous
given state feedback controller when the state of the system is not measurable.

Notations R
n and R

m×n respectively denote the space of n-dimensional real vectors and
m × n real matrices; I and 0 stand for the identity and zero matrices of compatible dimen-
sion, respectively; Prob{·} denotes the occurrence probability of the event; and E{·} is the
mathematical expectation operator with respect to the given probability measure. Diag{·}
stands for the block diagonal matrix. The notation X ≥ Y or X > Y means that X – Y is
positive semidefinite or positive definite, where X and Y are both symmetric matrices.
λmax and λmin are the maximum and minimum eigenvalues of a matrix, respectively. MT

denotes the transpose of matrix M, and ∗ denotes the matrix elements induced by sym-
metry.

2 Problem formulation
In this paper, we consider the following discrete-time NCS:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x(k + 1) = Ax(k) + Adx(k – d(k)) + Al
∑+∞

m=1 μmx(k – m)

+ Bu(k) + f (k) + Dω(k),

z(k) = E1x(k) + E2ω(k),

x(k) = ϕ(k), –∞ < k ≤ 0,

(1)
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where x(k) ∈ R
n is the state vector, z(k) ∈ R

t is the controlled output, u(k) ∈ R
p is the

control input,
∑+∞

m=1 μmx(k – m) is the distributed delay, and A, Ad , Al , B, D, E1, E2 are
known real constant matrices of appropriate dimensions. For simplicity, we denote xd =
x(k – d(k)) and xm = x(k – m).

Before proceeding the main results, let us introduce the following assumptions.

Assumption 1 d(k) is time-varying communication delay satisfying

dm ≤ d(k) ≤ dM, dm > 0, dM > 0, (2)

where dm and dM are given positive numbers.

Assumption 2 f (k) is stochastic nonlinearities cover x(k), x(k – d(k)) and
∑+∞

m=1 μmx(k –
m) in a statistical sense, which is bounded as follows:

E
[
f (k)

]
= 0,

E
[
f (k)f T (k)

]
=

q∑

i=1

ρiρ
T
i

[

xT (k)Aix(k) + xT
d Adixd +

( +∞∑

m=1

μmxm

)T

Ali

+∞∑

m=1

μmxm

]

,
(3)

where Ai, Adi, and Ali are known positive definite matrices of appropriate dimensions, ρi

(i = 1, . . . , q) are known as column vectors, and q > 1 is a known constant. The constants
μm satisfy the following convergence conditions:

μ̄ =
+∞∑

m=1

μm ≤
+∞∑

m=1

mμm < +∞. (4)

Remark 1 At present, delays have attracted the attention of many scholars. However, most
of the existing results are concerned with either discrete delays [32] or distributed delays
[8]. Different from [32], on the one hand, we introduce stochastic nonlinearities into the
study of finite-time bounded control. It is worth noting that deterministic systems and
stochastic systems have different properties. We need to handle this separately. On the
other hand, authors in [32] considered only discrete delays, whereas we consider both
discrete delays and distributed delays. It is shown that the distributed delays have an im-
portant effect on the finite-time boundedness of the system.

Assumption 3 External disturbance input ω(k) is time varying and satisfies

N∑

k=0

ωT (k)ω(k) ≤ ω̄, ω̄ ≥ 0, (5)

for any given positive number ω̄.

In this paper, the randomly missing measurement is described by

y(k) = α(k)F1x(k) + F2ω(k), (6)
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where y(k) denotes the measured output vector, F1, F2 are parameter matrices of appro-
priate dimensions, and α(k) is a Bernoulli-distributed stochastic variable, that is,

Prob
{
α(k) = 1

}
= ᾱ, Prob

{
α(k) = 0

}
= 1 – ᾱ, (7)

where ᾱ ∈ [0, 1] is a constant, and the variance α̃2 = ᾱ(1 – ᾱ).
In this paper, we consider the following dynamic output feedback:

⎧
⎨

⎩

x̂(k + 1) = AK x̂(k) + BK y(k),

u(k) = CK x̂(k),
(8)

where x̂(k) ∈R
n is the state estimation of system (1), and AK , BK , and CK are the controller

gain parameters to be determined.
By the combination of (6) and (8) with (1) the resultant closed-loop system can be written

as

⎧
⎪⎪⎨

⎪⎪⎩

η(k + 1) = Āη(k) + (α(k) – ᾱ)Ãη(k) + Ādηd

+ Āl
∑+∞

m=1 μmηd + D̄ω(k) + Ḡf (k),

z(k) = Ē1η(k) + E2ω(k),

(9)

where

η(k) =

[
x(k)
x̂(k)

]

, ηd = η
(
k – d(k)

)
, ηm = η(k – m), Ā =

[
A DCK

ᾱBK F1 AK

]

,

Ã =

[
0 0

BK F1 0

]

, Ād =

[
Ad 0
0 0

]

, Āl =

[
Al 0
0 0

]

, Ē1 =

[
E1

0

]T

,

D̄ =

[
D

BK F2

]

, Ḡ =

[
I
0

]

.

The objective of this paper is to deal with stochastic finite-time H∞ control problem for
closed-loop dynamic system (9). We introduce the following definitions and lemmas be-
fore giving the main results.

Definition 1 For a given symmetric matrix R > 0 and positive numbers c1, c2 (c1 < c2), ω̄,
N , system (9) is stochastically finite-time bounded (SFTB) with respect to (c1, c2, ω̄, R, N)
if

sup
–∞<l≤0

E
{

x(l)T Rx(l)
} ≤ c1 ⇒ E

{
x(k)T Rx(k)

} ≤ c2, k ∈ {1, . . . , N},

for all ω(k) satisfying Assumption 3.

Definition 2 For given symmetric matrix R > 0, system (9) is stochastically finite-time
H∞ bounded (SFTH∞B) with respect to (c1, c2, ω̄,γ , R, N) if the following two conditions
hold:

(1) System (9) is SFTB with respect to (c1, c2, ω̄, R, N).
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(2) Under the zero-initial condition, the output z(k) satisfies

E

{ N∑

s=0

zT (s)z(s)

}

≤ γ

N∑

s=0

ωT (s)ω(s) (10)

for all ω(k) satisfying Assumption 3.

Lemma 1 (Schur complement [17]) Let S1, S2, and S3 be constant matrices such that
S1 = ST

1 and S2 = ST
2 > 0. Then S1 + ST

3 S–1
2 S3 < 0 if and only if

[
S1 ST

3

∗ –S2

]

< 0 or

[
–S2 S3

∗ S1

]

< 0.

Lemma 2 ([17]) Let M ∈ Rn×n be a positive semidefinite matrix, let xi ∈ Rn, and let αi

(i = 1, 2, . . .) be constant series. If the series αi ≥ 1 are convergent, then

( +∞∑

m=1

αixi

)T

M

( +∞∑

m=1

αixi

)

≤
( +∞∑

m=1

αi

) +∞∑

m=1

αixT
i Mxi. (11)

3 Main results
In this section, we first investigate the problem of stochastic finite-time boundedness for
dynamic system (9). Furthermore, we design the dynamic gain matrices AK , BK , and CK .

3.1 Stochastic finite-time boundedness analysis
In this subsection, we consider the stochastic finite-time boundedness for discrete-time
NCSs with mixed delays, stochastic nonlinearities, and randomly missing measurement.

Theorem 1 For given scalar δ ≥ 1 and symmetric matrix R > 0, system (9) is SFTB with
respect to (c1, c2, ω̄, R, N) if there exist positive scalars λi (i = 1, 2, 3, 4) and ξi (i = 1, 2, . . . , q),
and symmetric matrices P > 0, Q > 0, and Z > 0 such that the following inequalities hold:

[
–ξi ρT

i ḠT

∗ –P–1

]

< 0 (i = 1, 2, . . . , q), (12)

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Φ 0 0 0 ĀT P α̃ÃT P
∗ –δdm Q +

∑q
i=1 ξiĀdi 0 0 ĀT

d P 0
∗ ∗ – 1

μ̄
Z +

∑q
i=1 ξiĀli 0 ĀT

l P 0
∗ ∗ ∗ – γ

δN I D̄T P 0
∗ ∗ ∗ ∗ –P 0
∗ ∗ ∗ ∗ ∗ –P

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0, (13)

λ1R < P < λ2R, 0 < Q < λ3R, 0 < Z < λ4R, (14)
⎡

⎢
⎢
⎢
⎣

γ ω̄ – c2δλ1 c1δ
N+1λ2 ρ1λ3 ρ2λ4

∗ –c1δ
N+1λ2 0 0

∗ ∗ –ρ1λ3 0
∗ ∗ ∗ –ρ2λ4

⎤

⎥
⎥
⎥
⎦

< 0, (15)
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where

Φ := (dM – dm + 1)Q + μ̄Z – δP +
q∑

i=1

ξiĀi,

Āi =

[
Ai 0
0 0

]

, Ādi =

[
Adi 0
0 0

]

, Āli =

[
Ali 0
0 0

]

,

ρ1 := δN+dM–1
[

dMδ +
1
2

(dM – dm)(dM + dm – 1)
]

, ρ2 := δN+1σ ,

σ = μ1 + (1 + δ)μ2 + · · · +
(
1 + δ + · · · + δdM–1)μdM ,

τ1 = dM – dm + 1, τ2 = dM + dm – 1.

Proof To show the stochastic finite-time boundedness of system (9), we choose a Lya-
punov–Krasovskii functional candidate as follows:

V (k) = V1(k) + V2(k) + V3(k), (16)

where

V1(k) = ηT (k)Pη(k),

V2(k) =
k–1∑

s=k–d(k)

δk–1–sηT (s)Qη(s) +
–dm+1∑

s=–dM+2

k–1∑

t=k+s–1

δk–1–tηT (t)Qη(t),

V3(k) =
+∞∑

m=1

μm

k–1∑

l=k–m

δk–1–lηT (l)Zη(l).

Let us assume that

E
{
η(k)T Rη(k)

} ≤ c1, –∞ < k ≤ 0. (17)

The goal is to show that E{η(k)T Rη(k)} ≤ c2 for all k ∈ {1, . . . , N} if conditions (12)–(15)
hold.

Firstly, we calculate E{Vi(k + 1) – δVi(k)} (i = 1, 2, 3) along the solution of (9):

E
{

V1(k + 1) – δV1(k)
}

= E
{
ηT (k + 1)Pη(k + 1) – δηT (k)Pη(k)

}

= E

{

ηT (k)ĀT PĀη(k) + 2ηT (k)ĀT PĀdηd + 2ηT (k)ĀT PĀl

+∞∑

m=1

μmηm

+ 2ηT (k)ĀT PḠf (k) + 2ηT (k)ĀT PD̄ω(k) + 2
(
α(k) – ᾱ

)
ηT (k)ÃT PĀl

+∞∑

m=1

μmηm

+ 2
(
α(k) – ᾱ

)
ηT (k)ÃT PĀdηd +

(
α(k) – ᾱ

)2
ηT (k)ÃT PÃη(k)

+ 2
(
α(k) – ᾱ

)
ηT (k)ÃT PḠf (k) + 2

(
α(k) – ᾱ

)
ηT (k)ÃT PD̄ω(k)
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+ ηT
d ĀT

d PĀdηd + 2ηT
d ĀT

d PĀl

+∞∑

m=1

μmηm + 2ηT
d ĀT

d PḠf (k) + 2ηT
d ĀT

d PD̄ω(k)

+

( +∞∑

m=1

μmηm

)T

ĀT
l PĀl

+∞∑

m=1

μmηm + 2

( +∞∑

m=1

μmηm

)T

ĀT
l PḠf (k)

+ 2

( +∞∑

m=1

μmηm

)T

ĀT
l PD̄ω(k) + f T (k)ḠT PḠf (k) + 2f T (k)ḠT PD̄ω(k)

+ ωT (k)D̄T PD̄ω(k) – δηT (k)Pη(k)

}

.

By Assumption 2 and inequality (12) we have

E
{

f T (k)ḠT PḠf (k)
}

= E
{
tr
[
ḠT PḠf (k)f T (k)

]}

=
q∑

i=1

tr
(
ḠT PḠρiρ

T
i
)
[

ηT (k)Āiη(k) + ηT
d Ādiηd +

( +∞∑

m=1

μmηm

)T

Āli

+∞∑

m=1

μmηm

]

<
q∑

i=1

ξi

[

ηT (k)Āiη(k) + ηT
d Ādiηd +

( +∞∑

m=1

μmηm

)T

Āli

+∞∑

m=1

μmηm

]

. (18)

Thus

E
{

V1(k + 1) – δV1(k)
}

< ηT (k)

(

ĀT PĀα̃2ÃT PÃ +
q∑

i=1

ξiĀi – δP

)

η(k) + 2ηT (k)ĀT PĀdηd

+ 2ηT (k)ĀT PĀl

+∞∑

m=1

μmηm + 2ηT (k)ĀT PD̄ω(k)

+ ηT
d

(

ĀT
d PĀd +

q∑

i=1

ξiĀdi

)

ηd

+ 2ηT
d ĀT

d PĀl

+∞∑

m=1

μmηm + 2ηT
d ĀT

d PD̄ω(k)

+

( +∞∑

m=1

μmηm

)T(

ĀT
l PĀl +

q∑

i=1

ξiĀi

) +∞∑

m=1

μmηm

+ 2

( +∞∑

m=1

μmηm

)T

ĀT
l PD̄ω(k) + ωT (k)D̄T PD̄ω(k), (19)

E
{

V2(k + 1) – δV2(k)
}

=
k∑

s=k+1–d(k+1)

δk–sηT (s)Qη(s) –
k–1∑

s=k–d(k)

δk–sηT (s)Qη(s)
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+
–dm+1∑

s=–dM+2

k∑

t=k+s

δk–tηT (t)Qη(t) –
–dm+1∑

s=–dM+2

k–1∑

t=k+s–1

δk–tηT (t)Qη(t)

≤ (dM – dm + 1)ηT (k)Qη(k) – δdmηT
d Qηd, (20)

E
{

V3(k + 1) – δV3(k)
}

=
+∞∑

m=1

μm

[ k∑

l=k+1–m

δk–lηT (l)Zη(l) –
k–1∑

l=k–m

δk–lηT (l)Zη(l)

]

=
+∞∑

m=1

μm
[
ηT (k)Zη(k) – δmηT

mZηm
]
. (21)

Noting that μ̄ =
∑+∞

m=1 μm and δ ≥ 1, we get

E
{

V3(k + 1) – δV3(k)
} ≤ μ̄ηT (k)Zη(k) –

+∞∑

m=1

μmηT
mZηm. (22)

Furthermore, from Lemma 2 we obtain

–
+∞∑

m=1

μmηT
mZηm ≤ –

1
μ̄

( +∞∑

m=1

μmηm

)T

Z
+∞∑

m=1

μmηm. (23)

Then

E
{

V3(k + 1) – δV3(k)
} ≤ μ̄ηT (k)Zη(k) –

1
μ̄

( +∞∑

m=1

μmηm

)T

Z
+∞∑

m=1

μmηm. (24)

Thus

E
{

V (k + 1) – δV (k)
}

< ξT (k)Πξ (k),

where

ξT (k) =
[

ηT (k) ηT
d (

∑+∞
m=1 μmηm)T ωT (k)

]
,

Π =

⎡

⎢
⎢
⎢
⎣

Π11 ĀT PĀd ĀT PĀl ĀT PD̄
∗ Π22 ĀT

d PĀl ĀT
d PD̄

∗ ∗ Π33 ĀT
l PD̄

∗ ∗ ∗ D̄T PD̄

⎤

⎥
⎥
⎥
⎦

,

Π11 = ĀT PĀ + α̃2ÃT PÃ + (dM – dm + 1)Q + μ̄Z +
q∑

i=1

ξiĀi – δP,

Π22 = ĀT
d PĀd +

q∑

i=1

ξiĀdi – δdm Q,

Π33 = ĀT
l PĀl +

q∑

i=1

ξiĀli –
1
μ̄

Z.
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Hence

E
{

V (k + 1) – δV (k)
} ≤ ξT (k)Π̄ξ (k) +

γ

δN ωT (k)ω(k), (25)

where

Π̄ =

⎡

⎢
⎢
⎢
⎣

Π11 ĀT PĀd ĀT PĀl ĀT PD̄
∗ Π22 ĀT

d PĀl ĀT
d PD̄

∗ ∗ Π33 ĀT
l PD̄

∗ ∗ ∗ D̄T PD̄ – γ

δN I

⎤

⎥
⎥
⎥
⎦

.

Then from (13) it follows that Π̄ < 0, and subsequently

E
{

V (k + 1) – δV (k)
}

<
γ

δN ωT (k)ω(k), ∀k ∈ Z+, (26)

that is,

E
{

V (k + 1)
}

< δE
{

V (k)
}

+
γ

δN ωT (k)ω(k), ∀k ∈ Z+. (27)

We can obtain the following inequality from Assumption 3:

E
{

V (k)
}

< δk
E

{
V (0)

}
+

γ

δN

k–1∑

s=0

δk–1–s{ωT (s)ω(s)
}

< δN
E

{
V (0)

}
+

γ

δN δN–1
N–1∑

s=0

{
ωT (s)ω(s)

}

< δN
E

{
V (0)

}
+

γ

δ
ω̄. (28)

By condition (14) we have

E
{

V (0)
}

= ηT (0)Pη(0) +
–1∑

s=–d(0)

δ–1–sηT (s)Qη(s)

+
–dm+1∑

s=–dM+2

–1∑

t=s–1

δ–1–tηT (t)Qη(t) +
+∞∑

m=1

μm

–1∑

l=–m

δ–1–lηT (l)Zη(l)

< λ2η
T (0)Rη(0) + λ3δ

dM–1
–1∑

s=–dM

ηT (s)Rη(s)

+ λ3δ
dM+2

–dm+1∑

s=–dM+2

–1∑

t=–1+s

ηT (t)Rη(t)

+ λ4

+∞∑

m=1

μm

–1∑

l=–m

δ–1–lηT (l)Rη(l).
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Since

+∞∑

m=1

μm

–1∑

l=–m

δ–1–lηT (l)Rη(l)

= μ1η
T (–1)Rη(–1) + μ2

[
δηT (–2)Rη(–2) + ηT (–1)Rη(–1)

]

+ μ3
[
δ2ηT (–3)Rη(–3) + δηT (–2)Rη(–2) + ηT (–1)Rη(–1)

]

+ · · · + μm
[
δm–1ηT (–m)Rη(–m) + δm–2ηT (–m + 1)Rη(–m + 1)

+ · · · + ηT (–1)Rη(–1)
]

+ · · ·
= μ1η

T (–1)Rη(–1) + μ2
[
δηT (–2)Rη(–2) + ηT (–1)Rη(–1)

]

+ μ3
[
δ2ηT (–3)Rη(–3) + δηT (–2)Rη(–2) + ηT (–1)Rη(–1)

]

+ · · · + μdM

[
δdM–1ηT (–dM)Rη(–dM) + δdM–2ηT (–dM + 1)Rη(–dM + 1)

+ · · · + ηT (–1)Rη(–1)
]

≤ c1
[
μ1 + (1 + δ)μ2 + · · · +

(
1 + δ + · · · + δdM–1)μdM

]

� c1σ ,

we get

E
{

V (0)
}

<
[

λ2 + λ3dMδdM–1 + λ3
(dM – dm)(dM + dm – 1)

2
δdM–2 + λ4σ

]

c1

� ς1. (29)

Taking (28) and (29) into account, we have

E
{

V (k)
}

< δNς1 +
γ

δ
ω̄, ∀k ∈ Z+. (30)

On the other hand, we can deduce that

E
{

V (k)
} ≥ ηT (k)Pη(k) > λ1η

T (k)Rη(k), ∀k ∈ Z+. (31)

Consequently, from (30) and (31) it is easy to get that

ηT (k)Rη(k) <
1

λ1δ

(
δN+1ς1 + γ ω̄

)
. (32)

Note that

δN+1ς1 + γ ω̄ – c2δλ1 < 0

⇔ γ ω̄ – c2δλ1 + c1δ
N+1λ2 + c1ρ1λ3 + c1ρ2λ4 < 0

⇔ γ ω̄ – c2δλ1 +
[

c1δ
N+1λ2 ρ1λ3 ρ2λ4

]
Γ

[

c1δ
N+1λ2 ρ1λ3 ρ2λ4

]T
< 0,

(33)
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where

Γ =

⎡

⎢
⎣

c1δ
N+1λ2 0 0
0 ρ1λ3 0
0 0 ρ2λ4

⎤

⎥
⎦

–1

.

By Lemma 1 inequality (33) is equivalent to LMI (15), so we have

ηT (k)Rη(k) <
1

λ1δ

(
δN+1ς1 + γ ω̄

)
< c2.

By Definition 1 system (9) is SFTB with respect to (c1, c2, ω̄, R, N), which completes the
proof of Theorem 1. �

3.2 Stochastic finite-time H∞ boundedness analysis
In this subsection, we provide sufficient conditions guaranteeing the stochastic finite-time
H∞ boundedness of system (9).

Theorem 2 For given scalar δ ≥ 1 and symmetric matrix R > 0, system (9) is SFTH∞B
with respect to (c1, c2, ω̄,γ , R, N) if there exist positive scalars λi (i = 1, 2, 3, 4) and ξi (i =
1, 2, . . . , q) and symmetric matrices P > 0, Q > 0, and Z > 0 such that (16), (17), and the
following inequalities hold:

[
–ξi ρT

i ḠT

∗ –P–1

]

< 0, i = 1, . . . , q, (34)

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Φ 0 0 0 ĀT P α̃ÃT P ĒT
1

∗ –δdm Q +
∑q

i=1 ξiĀdi 0 0 ĀT
d P 0 0

∗ ∗ – 1
μ̄

Z +
∑q

i=1 ξiĀli 0 ĀT
l P 0 0

∗ ∗ ∗ – γ

δN I D̄T P 0 ET
2

∗ ∗ ∗ ∗ –P 0 0
∗ ∗ ∗ ∗ ∗ –P 0
∗ ∗ ∗ ∗ ∗ ∗ –I

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

< 0, (35)

with the remaining parameters as in Theorem 1.

Proof By Lemma 1 and Theorem 1 conditions (34) and (35) can ensure that system (9) is
SFTB with respect to (c1, c2, ω̄, R, N). In the following, our objective is to prove inequality
(10). By using the same Lyapunov–Krasovskii functional as in Theorem 1 from (25) it
follows that

E
{

V (k + 1) – δV (k)
}

< ξT (k)Π̃ξ (k) +
γ

δN ωT (k)ω(k) + E
{

zT (k)z(k)
}

– E
{

zT (k)z(k)
}

, ∀k ∈ Z+.

Then

E
{

V (k + 1) – δV (k)
}

< ξT (k)Π̃ξ (k) +
γ

δN ωT (k)ω(k) – E
{

zT (k)z(k)
}

, ∀k ∈ Z+,
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where

Π̃ =

⎡

⎢
⎢
⎢
⎣

Π11 + ĒT
1 Ē1 ĀT PĀd ĀT PĀl ĀT PD̄ + ĒT

1 E2

∗ Π22 ĀT
d PĀl ĀT

d PD̄
∗ ∗ Π33 ĀT

l PD̄
∗ ∗ ∗ D̄T PD̄ + ET

2 E2 – γ

δN I

⎤

⎥
⎥
⎥
⎦

.

From condition (35) we have

E
{

V (k + 1)
}

< δE
{

V (k)
}

+
γ

δN ωT (k)ω(k) – E
{

zT (k)z(k)
}

, ∀k ∈ Z+.

Thus

0 ≤ E
{

V (k)
}

< δk
E

{
V (0)

}
+

k–1∑

s=0

δk–1–s
[

γ

δN ωT (s)ω(s) – E
{

zT (s)z(s)
}
]

. (36)

Therefore, under the zero initial condition, (36) implies

k–1∑

s=0

δk–1–s
E

{
zT (s)z(s)

}
<

k–1∑

s=0

[

δk–1–s γ

δN ωT (s)ω(s)
]

.

Letting k = N + 1, we have

N∑

s=0

δN–s
E

{
zT (s)z(s)

}
<

N∑

s=0

δN–s
[

γ

δN ωT (s)ω(s)
]

. (37)

Note that 1 ≤ δN–s ≤ δN for s ∈ {0, 1, . . . , N}, which, together with (37), yields

N∑

s=0

E
{

zT (s)z(s)
}

< γ

N∑

s=0

ωT (s)ω(s).

This completes the proof. �

3.3 Stochastic finite-time output feedback control
In this subsection, we give the design procedure of the controller gains.

Theorem 3 For given scalar δ ≥ 1 and symmetric matrix R > 0, system (1) is SFTH∞B
with respect to (c1, c2, ω̄,γ , R, N) if there exist positive scalars λ′

i (i = 1, 2, 3, 4) and ξi (i =
1, 2, . . . , q), symmetric matrices S > 0, T > 0, Q̂1 > 0, Q̂3 > 0, Ẑ1 > 0, and Ẑ3 > 0, nonsingu-
lar matrices Y12 and Y22, and real matrices Â, B̂, Ĉ, Q̂2, and Ẑ2 such that the following
inequalities hold:

⎡

⎢
⎣

–ξi ρT
i 0

∗ –S –Y12

∗ ∗ –Y22

⎤

⎥
⎦ < 0, i = 1, . . . , q, (38)

[
Ω11 Ω12

∗ Ω22

]

< 0, (39)
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δN+1ς2 + γ ω̄ – c2δλ
′
1 < 0, (40)

λ′
1R1 ≤ S ≤ λ′

2R1, Q̂3 ≤ λ′
3R1, Ẑ3 ≤ λ′

4R1. (41)

Furthermore, the corresponding gain matrices of the controller can be given by

AK = X–1
12 TÂS

(
X12Y T

12
)–1X12, BK = X–1

12 TB̂, CK = ĈS
(
X12Y T

12
)–1X12,

where

ς2 =
[

λ′
2 + λ′

3dMμdM–1 +
1
2
λ′

3(τ1 – 1)τ2μ
dM–2 + λ′

4σ

]

c1,

Ω11 = diag
{
Ω ′

11,Ω ′
22,Ω ′

33,Ω ′
44

}
,

Ω12 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

AT + ĈT DT AT + ĈT DT + ᾱFT
1 B̂T + Â 0 α̃FT

1 B̂T ET
1

AT AT + ᾱFT
1 B̂T 0 α̃FT

1 B̂T ET
1

AT
d AT

d 0 0 0
AT

d AT
d 0 0 0

AT
l AT

l 0 0 0
AT

l AT
l 0 0 0

DT DT + FT
2 B̂T 0 0 ET

2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

Ω22 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

–S –T–1 0 0 0
∗ –T–1 0 0 0
∗ ∗ –S –T–1 0
∗ ∗ ∗ –T–1 0
∗ ∗ ∗ ∗ –I

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

Ω ′
11 =

[
–δS–1 + τ Q̂1 + μ̄Ẑ1 +

∑q
i=1 ξiĀi –δS–1 + τ Q̂T

2 + μ̄ẐT
2 +

∑q
i=1 ξiĀi

∗ –δT + τ Q̂3 + μ̄Ẑ3 +
∑q

i=1 ξiĀi

]

,

Ω ′
22 =

[
–δdm Q̂1 +

∑q
i=1 ξiĀdi –δdm Q̂T

2 +
∑q

i=1 ξiĀdi

∗ –δdm Q̂T
3 +

∑q
i=1 ξiĀdi

]

,

Ω ′
33 =

[
– 1

μ̄
Ẑ1 +

∑q
i=1 ξiĀli – 1

μ̄
ẐT

2 +
∑q

i=1 ξiĀli

∗ – 1
μ̄

Ẑ3 +
∑q

i=1 ξiĀli

]

, Ω ′
44 = –

γ

δN I,

X12 is a nonsingular matrix satisfying X12Y T
12 = I – TS, and the remaining parameters are

as in Theorem 1.

Proof Firstly, we define P, Q, Z, and R in Theorem 2 as follows:

P =

[
T X12

XT
12 X22

]

, P–1 =

[
S Y12

Y T
12 Y22

]

, Q =

[
Q1 Q2

QT
2 Q3

]

,

Z =

[
Z1 Z2

ZT
2 Z3

]

, R =

[
R1 0
0 R2

]

, T1 =

[
S I

Y T
12 0

]

, T2 =

[
I T
0 XT

12

]

,
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where the partitioning of P, P–1, Q, and Z is compatible with that of Ā, Ã, Ād , and Āl ,
which implies that

PT1 = T2, (42)

TT
1 QT1 =

[
SQ1S + SQ2Y T

12 + Y12QT
2 S + Y12Q3Y T

12 SQ1 + Y12QT
2

∗ Q1

]

=

[
SQ̂1S SQ̂T

2

∗ Q̂3

]

, (43)

TT
1 ZT1 =

[
SẐ1S SẐT

2

∗ Ẑ3,

]

, (44)

where

Q̂1 = Q1 + Q2Y T
12S–1 + S–1Y12QT

2 + S–1Y12Q3Y T
12S–1,

Q̂2 = Q1 + Q2Y T
12S–1, Q̂3 = Q1,

Ẑ1 = Z1 + Z2Y T
12S–1 + S–1Y12ZT

2 + S–1Y12Z3Y T
12S–1,

Ẑ2 = Z1 + Z2Y T
12S–1, Ẑ3 = Z1.

It is easy to see that (38) and (34) are equivalent. To obtain (39), pre- and postmultiplying
(35) by ψT and ψ , we obtain

[
Π̂11 Π̂12

∗ Π̂22

]

< 0, (45)

where

ψ = diag{T1, T1, T1, I, T1, T1, I}, Π̂11 = diag
{
Π̂ ′

11, Π̂ ′
22, Π̂ ′

33, Π̂ ′
44

}
,

Π̂12 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

SAT + Y12CT
K DT �1 0 α̃SFT

1 BT
K XT

12 SET
1

AT AT T + ᾱFT
1 BT

K XT
12 0 α̃FT

1 BT
K XT

12 ET
1

SAT
d SAT

d T 0 0 0
AT

d AT
d T 0 0 0

SAT
l SAT

l T 0 0 0
AT

l AT
l T 0 0 0

DT DT T + FT
2 BT

K XT
12 0 0 ET

2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

Π̂22 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

–S –I 0 0 0
∗ –T 0 0 0
∗ ∗ –S –I 0
∗ ∗ ∗ –T 0
∗ ∗ ∗ ∗ –I

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

Π̂ ′
11 =

[
–δS + τSQ̂1S + μ̄SẐ1S +

∑q
i=1 ξiSAiS –δI + τSQ̂T

2 + μ̄SẐT
2 +

∑q
i=1 ξiSAi

∗ –δT + τ Q̂3 + μ̄Ẑ3 +
∑q

i=1 ξiAi

]

,
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Π̂ ′
22 =

[
–δdm SQ̂1S +

∑q
i=1 ξiSAdiS –δdm SQ̂T

2 +
∑q

i=1 ξiSAdi

∗ –δdm Q̂T
3 +

∑q
i=1 ξiAdi

]

,

Π̂ ′
33 =

[
– 1

μ̄
SẐ1S +

∑q
i=1 ξiSAliS – 1

μ̄
SẐT

2 +
∑q

i=1 ξiSAli

∗ – 1
μ̄

Ẑ3 +
∑q

i=1 ξiAli

]

,

Π̂ ′
44 = Ω ′

44, �1 = SAT T + Y12CT
K DT T + ᾱSFT

1 BT
K XT

12 + Y12AT
K XT

12.

Pre- and postmultiplying (45) by diag{S–1, I, S–1, I, S–1, I, I, I, T–1, I, T–1, I}, we can con-
clude that

[
Π̌11 Π̌12

∗ Π̌22

]

< 0, (46)

where

Π̌11 = Ω11,

Π̌12 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

AT + S–1Y12CT
K DT �2 0 α̃FT

1 BT
K XT

12T–1 ET
1

AT AT + ᾱFT
1 BT

K XT
12T–1 0 α̃FT

1 BT
K XT

12T–1 ET
1

AT
d AT

d 0 0 0
AT

d AT
d 0 0 0

AT
l AT

l 0 0 0
AT

l AT
l 0 0 0

DT DT + FT
2 BT

K XT
12T–1 0 0 ET

2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

Π̌22 = Ω22,

�2 = AT + S–1Y12CT
K DT + ᾱFT

1 BT
K XT

12T–1 + S–1Y12AT
K XT

12T–1.

Letting Â = T–1X12AK Y T
12S–1, B̂ = T–1X12BK , and Ĉ = CK Y T

12S–1, we get inequality (39).
Since P is a positive definite matrix, we have

TT
1 PT1 =

[
S I
I T

]

> 0 or TS – I > 0. (47)

From (47) it follows that I – TS = X12Y T
12 < 0. So there exist two nonsingular matrices X12

and Y12 such that X12Y T
12 < 0. This completes the proof. �

Remark 2 So far, we have investigated the problem of the stochastic finite-time H∞
bounded control for a class of NCSs with mixed delays, stochastic nonlinearities, and ran-
domly missing measurement. Also, some sufficient conditions reflecting the impacts from
the involved phenomena are given. Some criterion of the error analysis of the proposed
theoretical result will be obtained in the near future if the error analysis becomes neces-
sary.

Remark 3 In Theorem 3, sufficient conditions guaranteeing the stochastic finite-time
boundedness of the system are obtained. It is easy to see that the obtained results of this
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paper are influenced by all system parameters, such as the bounds on the delay. Thus the
results of this paper are more general and less conservative than the existing results. In
addition, we also give sufficient conditions for the existence of the output feedback con-
troller in Theorem 3. However, this condition is not expressed in the form of LMI, and we
cannot directly use the standard LMI toolbox to obtain it. Based on the literature [36], we
present the following controller design method.

Let us denote U = S–1 and V = T–1. Then (41) can be rewritten

[
Ω̄11 Ω̄12

∗ Ω̄22

]

< 0, (48)

where

Ω̄11 = diag
{
Ω̄ ′

11, Ω̄ ′
22, Ω̄ ′

33, Ω̄ ′
44

}
, Ω̄12 = Ω12,

Ω̄22 =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

–S –V 0 0 0
∗ –V 0 0 0
∗ ∗ –S –V 0
∗ ∗ ∗ –V 0
∗ ∗ ∗ ∗ –I

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

,

Ω̄ ′
11 =

[
–δU + τ Q̂1 + μ̄Ẑ1 +

∑q
i=1 ξiAi –δU + τ Q̂T

2 + μ̄Ẑ2 +
∑q

i=1 ξiAi

∗ –δT + τ Q̂3 + μ̄Ẑ3 +
∑q

i=1 ξiAi

]

,

Ω̄ ′
22 = Ω ′

22, Ω̄ ′
33 = Ω ′

33, Ω̄ ′
44 = Ω ′

44.

Consequently, we can transform the original nonconvex problem into the following min-
imization problem involving LMI conditions, which can be solved by CCLM:

min
V >0,S>0,T>0

tr{US + VT}

s.t. (48),

[
U I
I S

]

> 0,

[
V I
I T

]

> 0.

Remark 4 For given scalars δ ≥ 1, γ , c1, c2, ω̄, N and symmetric positive definite matrix
R, we can get the following algorithm for calculating the output feedback controller by
CCLM [36].

Step 1. Given the maximum iteration N̄ and fixed scalars δ ≥ 1, γ , c1, ω̄, N .
Step 2. Determine an initial value of c2.
Step 3. Find a feasible solution S0, U0, T0, V0 satisfying (49) and let Sk = S0, Uk = U0,

Tk = T0, Vk = V0. If there are none, then exit. Set k = 0.
Step 4. If |tr(Uk+1Sk + Sk+1Uk + φk+1Rk + φkRk+1) – 4n| < c2, then exit. Otherwise, set

k = k + 1 and go to Step 2.
Step 5. If k > N̄ , then stop.
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Step 6. If problem (49) is unfeasible, then the initial value for c2 need to be increased.
Otherwise, we decrease c2 until we get its minimum value.

min
V >0,S>0,T>0,Y12>0,

Y22>0,Ẑ1,Ẑ2,Ẑ3,Q̂1,Q̂2,Q̂3

tr(USk + STk + VTk + TVk) + γ

s.t. (38), (40), (41), and (48). (49)

where γ is the disturbance attenuation, and c2 is the prescribed bound of
E{xT R1x}.

4 Numerical examples
In this section, we give two numerical examples to show the validity of the proposed theo-
retical results for stochastic nonlinear NCSs (1) with mixed delays and randomly missing
measurement.

Example 1 To demonstrate that our methods are better than some existing results, we
consider the same example as in [29] with the following system parameters:

A =

[
0.4 0.1
0.3 0.5

]

, Ad =

[
0.2 –0.15

0.15 0.1

]

, B =

[
0.1
0.2

]

, D =

[
0.25
0.3

]

,

R1 =

[
1.2 0
0 1.3

]

, E1 =

[
0.2
0.3

]

, E2 = 0.1, F1 =

[
2.738
2.287

]

, F2 = 0.2.

Without loss of generality, we assume that the noise ω(k) in system (1) is selected as
ω(k) = 1

0.1+k2 , the time-varying communication delay satisfies 1 ≤ d(k) ≤ 12, the initial
states of NCSs and the estimators are x(0) = [0.5 –0.2]T and x̂(0) = [0 0]T , respectively,
N = 40, ω̄ = 2, c1 = 1, δ = 1.00027, and f (k) = 0. We easily check that the initial condition
E{xT (0)R1x(0)} ≤ c1 is satisfied.

Firstly, we let Al = 0. By applying the method in this paper and the method in [29], we can
obtain the minimum values of γ and c2 for different values of dM in Table 1. From Table 1
we can obviously observe that the obtained minimum values of this paper are smaller than
that in [29]. Since c2 is the prescribed bound of E{xT R1x}, the smaller c2 is, the better the
state trajectory of the system converges. Since γ is the level of disturbance attenuation,
the smaller the γ , the better the system performance. This shows that the obtained results
of this paper are better than that in [29].

Table 1 Optimal values for different time-delay upper bound dM when μ̄ = 0

dM 4 6 8 12

Theorem 3 in [29] γmin = 0.4243 γmin = 0.5901 γmin = 0.7751 γmin = 1.2997
c2min = 2.3383 c2min = 3.2000 c2min = 4.2679 c2min = 6.8833

Theorem 3 γmin = 0.2208 γmin = 0.2636 γmin = 0.3072 γmin = 0.3131
c2min = 1.5068 c2min = 1.8734 c2min = 2.2580 c2min = 2.7284
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Table 2 Optimal values for different upper bound dM and μ̄

dM = 4, μ̄ = 1
4 dM = 6, μ̄ = 1

8 dM = 8, μ̄ = 1
36 dM = 12, μ̄ = 1

54

γmin 0.2356 0.2625 0.2995 0.3138
c2min 1.4281 1.7283 2.0821 2.5549

In the following, we choose Al =
[ 0.2 0

0.3 0.4

]
. The constant sequence {μm} ∈ [0, +∞) is cho-

sen as μm = 3–(3+m), and the stochastic nonlinear function is selected as follows:

f (k) =

[
0.3
0.3

]
[
0.2x1(k)ν1(k) + 0.2x2(k)ν2(k)

+ 0.1x1
(
k – d(k)

)
ξ1(k) + 0.2x2

(
k – d(k)

)
ξ2(k)

]
,

where xi(k) (i = 1, 2) stand for the ith element of the system state, νi(k) and ξi(k) (i = 1, 2)
represent the mutually uncorrelated Gaussian white noise sequences with unity variances:

E
{
νi(k)

}
= 0, E

{
νi(k)2} = 1, E

{
ξi(k)

}
= 0, E

{
ξi(k)2} = 1.

For different upper bounds of discrete delay and distributed delays, the optimal values of
γ and c2 are listed in Table 2. From Table 2 we can easily find that as upper bounds of
discrete delay and distributed delays increase, the optimal values of γ and c2 get bigger.
Thus, when upper bounds of discrete delay and distributed delays increase, the system
performance becomes worse, which means that the mixed delays have important influence
on the system performance. Thus the results proposed in this paper are less conservative
than those obtained in [29].

Example 2 In the following, we consider system (1) with following system parameters:

A =

⎡

⎢
⎣

–0.9226 –0.4330 0
1 0 0
0 1 0

⎤

⎥
⎦ , Ad =

⎡

⎢
⎣

0.2 0 0
0 –0.3 0.4
0 0 0.4

⎤

⎥
⎦ ,

Al =

⎡

⎢
⎣

–0.1 0.2 0
0 0.3 0

0.2 0.1 0.4

⎤

⎥
⎦ , B =

⎡

⎢
⎣

0
0
1

⎤

⎥
⎦ , D =

⎡

⎢
⎣

0.5
0

–1.01

⎤

⎥
⎦ ,

R1 =

⎡

⎢
⎣

1.2 0 0
0 1.3 0
0 0 1.4

⎤

⎥
⎦ , E1 =

⎡

⎢
⎣

0
0.2
0.1

⎤

⎥
⎦

T

, E2 =

⎡

⎢
⎣

2.738
2.287

0

⎤

⎥
⎦

T

, F2 = 0.1,

F2 = 0.2, N = 60, d(k) = 1 + sin(0.5kπ )2, c1 = 1, δ = 1.03.

We consider the stochastic nonlinear function

f (k) =

⎡

⎢
⎣

0.3
0.3
0.3

⎤

⎥
⎦

[
0.2x1(k)ν1(k) + 0.2x2(k)ν2(k) + 0.2x3(k)ν3(k) + 0.1x1

(
k – d(k)

)
ξ1(k)

+ 0.2x2
(
k – d(k)

)
ξ2(k) + 0.1x3

(
k – d(k)

)
ξ3(k)

]
.
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We easily obtain that

E
[
f (k)f T (k)

]
=

⎡

⎢
⎣

0.3
0.3
0.3

⎤

⎥
⎦

⎡

⎢
⎣

0.3
0.3
0.3

⎤

⎥
⎦

T ⎡

⎢
⎣xT (k)

⎡

⎢
⎣

0.04 0 0
0 0.04 0
0 0 0.04

⎤

⎥
⎦x(k)

+ xT(
k – d(k)

)

⎡

⎢
⎣

0.01 0 0
0 0.04 0
0 0 0.01

⎤

⎥
⎦x

(
k – d(k)

)

⎤

⎥
⎦ .

The initial conditions are supposed to be x(0) = [–0.2 0.5 0.2]T , x̂(0) = [0 0 0]T . The
external disturbance is chosen as ω(k) = 1

k2 . We easily check that the initial condition
E{xT (0)R1x(0)} ≤ c1 is satisfied. The corresponding lower and upper bounds of discrete
delay are dm = 1 and dM = 2, respectively. Other parameters are chosen as those in Exam-
ple 1.

Solving the minimization problem given in Remark 4 by using Matlab LMI toolbox, it
follows that the optimal values of γmin = 3.0314 and c2 min = 1.5660 can be obtained with
the desired controller as

AK =

⎡

⎢
⎣

–0.6051 0.0572 0.0045
2.1737 –0.0815 –0.0052

–0.4089 –0.1916 –0.0020

⎤

⎥
⎦ , BK =

⎡

⎢
⎣

0.0947
–0.1708
–1.0978

⎤

⎥
⎦ ,

CK =

⎡

⎢
⎣

–0.4020
–0.2370
–0.0035

⎤

⎥
⎦

T

.

In addition, the simulation results of xT (k)R1x(k) are shown in Fig. 1. Figure 1 depicts
the trajectories of xT (k)R1x(k) along nine individual experiments. From Fig. 1 we can con-
clude that the state trajectories of E{xT (k)R1x(k)} remain within the obtained optimal
value c2 min = 1.5660 over the fixed interval despite facing mixed delays, stochastic non-
linearities, and randomly missing measurement, which means that the systems are both
SFTB under nine individual experiments. Furthermore, by applying the method in [36] we
define the following function γ (k) to show the effect on the output energy z(k) from the

Figure 1 The responses of xT (k)R1x(k)
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Figure 2 The responses of the function γ (k) during
the simulation

disturbance input energy ω(k):

γ (k) =
∑k

s=0 E{zT (s)z(s)}
∑k

s=0 ωT (s)ω(s)
, k = 1, . . . , N .

The corresponding curves of γ (k) are plotted in Fig. 2. We can obtain that E{γ (60)} ≈
1
9
∑9

i=1[γ (60)] = 0.4693 < γmin = 3.0314. Thus the developed output feedback controller
is a finite-time H∞ controller for the discrete-time NCSs with mixed delays, stochastic
nonlinearities, and randomly missing measurement (1) according to Definition 2.

Remark 5 In [29, 32, 34] the problem of stochastic finite-time H∞ control for discrete
time NCSs has been investigated. However, they did not consider mixed delays, stochastic
nonlinearity, and randomly missing measurement. Thus our proposed results are more
general than those given in [29, 32, 34].

5 Conclusions
In this paper, we investigated the problem of stochastic finite-time H∞ control for stochas-
tic nonlinear NCSs with mixed delays and randomly missing measurement. Based on a
novel Lyapunov–Krasovskii functional and stochastic analysis method, we provided the
sufficient conditions for stochastic finite-time boundedness of discrete-time NCSs. Then
we designed an H∞ output feedback controller ensuring that discrete-time NCS (1) is
SFTB. Although the derived results are for a nonconvex feasibility problem, we can turn
it into LMI feasibility problem by CCLM. In addition, we analyzed effects of mixed delays
on dynamic performance of NCSs and the effective of the developed controller by two
numerical examples. Note that the main results proposed in this paper can be extended to
the stochastic finite-time filtering design problem. In addition, other factors can be con-
sidered in the finite-time H∞ control issues for discrete-time NCSs with mixed delays in
the future. For example, we can consider actuator saturation [37], stochastic fading mea-
surement [38], and event-triggered scheme [39].
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