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Abstract
By using new Green’s functions and Lidstone interpolating polynomial, some new
generalizations of Levinson type inequalities for (2p + 1)-convex functions are
obtained. In seek of applications of our results to information theory, new
generalizations based on f -divergence estimates are also proven. Moreover, some
inequalities for Shannon entropies are deduced as well.
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1 Introduction and preliminaries
The idea of Shannon entropy is the central job of information speculation, now and again
implied as a measure of uncertainty. The entropy of a random variable is described with
respect to a probability distribution, and it can be shown that it is a decent measure of
random. The assignment of Shannon entropy is to assess the typical least number of bits
expected to encode a progression of pictures subject to the letters, including the size and
the repetition of the symbols.

Divergences between probability distributions can be interpreted as measures of dis-
tance between them. An assortment of sorts of divergences exist, for example the f-
divergences (especially, Kullback–Leibler divergences, Hellinger distance, and total varia-
tion distance), Rényi divergences, Jensen–Shannon divergences, etc. (see [1, 2]). There are
a lot of papers dealing with the subject of inequalities and entropies, see, e.g., [3–7] and
the references therein. Jensen’s inequality deals with one kind of data points, Levinson’s
inequality deals with two types of data points.

1.1 Csiszár divergence
In [8, 9] Csiszár gave the following definition:
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Definition 1 Let f be a convex function from R
+ to R

+. Let r̃, k̃ ∈ R
n
+ be such that

∑n
ρ=1 rρ = 1 and

∑n
ρ=1 kρ = 1. Then f -divergence functional is defined by

If (r̃, k̃) :=
n∑

ρ=1

kρ f
(

rρ

kρ

)

.

By defining the following:

f (0) := lim
x→0+

f (x); 0f
(

0
0

)

:= 0; 0f
(

a
0

)

:= lim
x→0+

xf
(

a
0

)

, a > 0,

he stated that nonnegative probability distributions can also be used.
Using the definition of f -divergence functional, Horv́ath et al. [10] gave the following

functional:

Definition 2 Let I be an interval contained in R and f : I → R be a function. Also let
r̃ = (r1, . . . , rn) ∈R

n and k̃ = (k1, . . . , kn) ∈ (0,∞)n be such that

rρ

kρ

∈ I, ρ = 1, . . . , n.

Then

Îf (r̃, k̃) :=
n∑

ρ=1

kρ f
(

rρ

kρ

)

. (1)

The theory of convex functions has encountered a fast advancement. This can be at-
tributed to a few causes: firstly, applications of convex functions are directly involved in
modern analysis; secondly, many important inequalities are results of applications of con-
vex functions, and convex functions are closely related to inequalities (see [11]).

Divided differences are found to be very helpful when we are dealing with functions
having different degrees of smoothness. The following definition of divided difference is
given in [11, p. 14].

Levinson generalized Ky Fan’s inequality for 3-convex in [12] (see also [13, p. 32, Theo-
rem 1]) as follows:

Theorem 1 Let f : I = (0, 2λ) → R be such that f is 3-convex. Also let 0 < xρ < λ and pρ > 0,
then

1
Pn

n∑

ρ=1

pρ f (xρ) – f

(
1

Pn

n∑

ρ=1

pρxρ

)

≤ 1
Pn

n∑

ρ=1

pρ f (2λ – xρ)

– f

(
1

Pn

n∑

ρ=1

pρ(2λ – xρ)

)

. (2)
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Inequality (2) gives us the following functional:

J1
(
f (·)) =

1
Pn

n∑

ρ=1

pρ f (2λ – xρ) – f

(
1

Pn

n∑

ρ=1

pρ(2λ – xρ)

)

–
1

Pn

n∑

ρ=1

pρ f (xρ)

+ f

(
1

Pn

n∑

ρ=1

pρxρ

)

≥ 0. (3)

In [14], Popoviciu noticed that Levinson’s inequality (2) is substantial on (0, 2λ) for 3-
convex functions, while in [15] (see additionally [13, p. 32, Theorem 2]) Bullen gave dis-
tinctive confirmation of Popoviciu’s result and furthermore the converse of (2).

Theorem 2
(a) Let f : I = [ζ1, ζ2] →R be a 3-convex function and xρ , yρ ∈ [ζ1, ζ2] for ρ = 1, 2, . . . , n

be such that

max{x1 · · ·xn} ≤ min{y1 · · · yn}, x1 + y1 = · · · = xn + yn (4)

and pρ > 0, then

1
Pn

n∑

ρ=1

pρ f (xρ) – f

(
1

Pn

n∑

ρ=1

pρxρ

)

≤ 1
Pn

n∑

ρ=1

pρ f (yρ) – f

(
1

Pn

n∑

ρ=1

pρyρ

)

. (5)

(b) If pρ > 0, inequality (5) is valid for all xρ , yρ satisfying condition (4), and function f is
continuous, then f is 3-convex.

The following functional arises from inequality (5):

J2
(
f (·)) =

1
Pn

n∑

ρ=1

pρ f (yρ) – f

(
1

Pn

n∑

ρ=1

pρyρ

)

–
1

Pn

n∑

ρ=1

pρ f (xρ)

+ f

(
1

Pn

n∑

ρ=1

pρxρ

)

≥ 0. (6)

Remark 1 In the above results, if the function f is 3-convex, then Jk(f (·)) ≥ 0 for k = 1, 2
and Jk(f (·)) = 0 for f (x) = x or f (x) = x2 or a constant function f .

In the following result, Pečarić [16] (see also [13, p. 32, Theorem 4]) proved inequality
(5) by weakening condition (4).

Theorem 3 Let f : I = [ζ1, ζ2] → R be such that f 3(t) ≥ 0, pρ > 0. Also let xρ , yρ ∈ [ζ1, ζ2]
be such that xρ + yρ = 2c̆ for ρ = 1, . . . , n, xρ + xn–ρ+1 ≤ 2c̆ and pρxρ+pn–ρ+1xn–ρ+1

pρ+pn–ρ+1
≤ c̆. Then

inequality (5) holds.

In [17], Mercer proved that inequality (5) still holds after replacing the symmetry con-
dition with symmetric variances of points. His result is given in the following theorem.
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Theorem 4 Let f : I = [ζ1, ζ2] → R be such that f 3(t) ≥ 0, pρ are positive such that
∑n

ρ=1 pρ = 1. Also, let xρ , yρ satisfy max{x1 · · ·xρ} ≤ min{y1 · · · yρ} and

n∑

ρ=1

pρ

(

xρ –
n∑

ρ=1

pρxρ

)2

=
n∑

ρ=1

pρ

(

yρ –
n∑

ρ=1

pρyρ

)2

, (7)

then (5) holds.

Lidstone polynomials are useful in literature to generalize a number of novel inequali-
ties including Jensen, Ostrowski, Chebysev, and Hermite–Hadamard type inequalities. In
the literature, several extensions and generalizations of the said inequalities are found via
Lidstone interpolation. However, all these results involve only one type of data points and
are for the class of convex functions along with generalization for (2p)-convex functions.

The following result was proved by Wider in [18]:

Lemma 1.1 If f ∈ C∞[0, 1], then

f (t) =
p–1∑

l=0

[
f (2l)(0)Θl(1 – t) + f (2l)(0)Θl(t)

]
+

∫ 1

0
Gp(t, s)f (2p)(t) dt,

where Θl is a polynomial of degree (2l + 1) defined by the relations

Θ0(t) = t, Θ ′′
p (t) = Θp–1(t), Θp(0) = Θp(1) = 0, p ≥ 1,

and

G1(t, s) = G(t, s) =

⎧
⎨

⎩

(t – 1)s, s ≤ t;

(s – 1)t, t ≤ s,
(8)

is homogeneous Green’s function of the differential operator d2

ds2 on [0, 1], and with the suc-
cessive iterates of G(t, s)

Gp(t, s) =
∫ 1

0
G1(t, k)Gp–1(k, s) dk, p ≥ 2. (9)

The Lidstone polynomial can be expressed in terms of Gp(t, s) as

Θp(t) =
∫ 1

0
Gp(t, s)s ds. (10)

The Lidstone series representation of f ∈ C2p[ζ1, ζ2] is given in [19] as follows:

f (x) =
p–1∑

l=0

(ζ2 – ζ1)2lf (2l)(ζ1)Θl

(
ζ2 – x
ζ2 – ζ1

)

+
p–1∑

l=0

(ζ2 – ζ1)2lf (2l)(ζ2)Θl

(
x – ζ1

ζ2 – ζ1

)

+ (ζ2 – ζ1)2p–1
∫ ζ2

ζ1

Gp

(
x – ζ1

ζ2 – ζ1
,

t – ζ1

ζ2 – ζ1

)

f (2p)(t) dt. (11)
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The error function eF (t) can be represented in terms of Green’s function GF ,n(t, s) of the
boundary value problem

z(n)(t) = 0,

z(i)(ζ1) = 0, 0 ≤ i ≤ p,

z(i)(ζ2) = 0, p + 1 ≤ i ≤ n – 1,

eF (t) =
∫ ζ2

ζ1

GF ,n(t, s)f (n)(s) ds, t ∈ [ζ1, ζ2],

where

GF ,n(t, s) =
1

(n – 1)!

⎧
⎨

⎩

∑p
i=0

(n–1
i

)
(t – ζ1)i(ζ1 – s)n–i–1, ζ1 ≤ s ≤ t;

–
∑n–1

i=p+1
(n–1

i
)
(t – ζ1)i(ζ1 – s)n–i–1, t ≤ s ≤ ζ2.

(12)

In [20] Aras Gazić et al. proved the following result:

Theorem 5 Let f ∈ Cn[ζ1, ζ2] and PF be its ‘two-point right focal’ interpolating polynomial.
Then, for ζ1 ≤ a1 < a2 ≤ ζ2 and 0 ≤ p ≤ n – 2,

f (t) = PF (t) + eF (t)

=
p∑

i=0

(t – a1)i

i!
f (i)(a1)

+
n–p–2∑

j=0

( j∑

i=0

(t – a1)p+1+i(a1 – a2)j–i

(p + 1 + i)!(j – i)!

)

f (p+1+j)(a2)

+
∫ a2

a1

GF ,n(t, s)f (n)(s) ds, (13)

where GF ,n(t, s) is the Green’s function defined by (12).

We have the following two cases from (13).
(Case-1) For n = 3 and p = 0

f (t) = f (a1) + (t – a1)f (1)(a2) + (t – a1)(a1 – a2)f (2)(a2) +
(t – a1)2

2
f (2)(a2)

+
∫ a2

a1

G1(t, s)f (3)(s) ds, (14)

where

G1(t, s) =

⎧
⎨

⎩

(a1 – s)2, a1 ≤ s ≤ t;

–(t – a1)(a1 – s) + 1
2 (t – a1)2, t ≤ s ≤ a2.

(15)

(Case-2) For n = 3 and p = 1

f (t) = f (a1) + (t – a1)f (1)(a2) +
(t – a1)2

2
f (2)(a2) +

∫ a2

a1

G2(t, s)f (3)(s) ds, (16)
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where

G2(t, s) =

⎧
⎨

⎩

1
2 (a1 – s)2 + (t – a1)(a1 – s), a1 ≤ s ≤ t;

– 1
2 (t – a1)2, t ≤ s ≤ a2.

(17)

In [21], Pečarić et al. gave a probabilistic version of inequality (2) under condition (7). In
[22] an operator version of probabilistic Levinson’s inequality was discussed. In [20], Gazić
et al. considered the class of 2p-convex functions and generalized Jensen’s inequality and
converses of Jensen’s inequality by using Lidstone’s interpolating polynomials. All gener-
alizations that exist in literature refer only to one type of data points. But in this paper,
motivated by the above discussion, Levinson type inequalities are generalized for (2p + 1)-
convex function via Lidstone interpolating polynomial involving two types of data points
for higher order convex functions.

2 Main results
Motivated by functional (6), we generalize the following new results with the help of Lid-
stone interpolating polynomial given by (11).

2.1 Generalization of Bullen type inequalities for (2p + 1)-convex functions
First we define the following functional:
F : Let f : I1 = [ζ1, ζ2] →R be a function, x1, . . . , xn and y1, . . . , ym ∈ I1 be such that

max{x1 · · ·xn} ≤ min{y1 · · · ym}, x1 + y1 = · · · = xn + ym. (18)

Also let (p1, . . . , pn) ∈ R
n and (q1, . . . , qm) ∈ R

m be such that
∑n

ρ=1 pρ = 1
∑m

�=1 q� = 1
and xρ , y� ,

∑n
ρ=1 pρxρ ,

∑m
�=1 q�y� ∈ I1. Then

J̆
(
f (·)) =

m∑

�=1

q�f (y�) – f

( m∑

�=1

q�y�

)

–
n∑

ρ=1

pρ f (xρ) + f

( n∑

ρ=1

pρxρ

)

. (19)

Theorem 6 Assume F with f ∈ C2p+1[ζ1, ζ2], and let Θp(t) be the same as defined in
Lemma 1.1. Then

J̆
(
f (·)) =

p–2∑

l=0

(ζ2 – ζ1)2l
[

f (2l+3)(ζ1)
∫ ζ2

ζ1

J̆
(
Gk(·, s)

)
Θl

(
ζ2 – s
ζ2 – ζ1

)

ds

+ f (2l+3)(ζ2)
∫ ζ2

ζ1

J̆
(
Gk(·, s)

)
Θl

(
s – ζ1

ζ2 – ζ1

)

ds
]

+ (ζ2 – ζ1)2p–3
∫ ζ2

ζ1

f (2p+1)(v)

×
(∫ ζ2

ζ1

J̆
(
Gk(·, s)

)
Gp

(
s – ζ1

ζ2 – ζ1
,

v – ζ1

ζ2 – ζ1

)

ds
)

dv, (20)
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where

J̆
(
Gk(·, s)

)
=

m∑

�=1

q�Gk(y�, s) – Gk

( m∑

�=1

q�(y�, s)

)

–
n∑

ρ=1

pρGk(xρ , s) + Gk

( n∑

ρ=1

pρxρ , s

)

(21)

and Gk(·, s) (k = 1, 2) are defined in (15) and (17) respectively.

Proof Applying (19) to identities (14) and (16) respectively along with there defined new
Green’s functions, by means of simple calculations and following the properties of J̆(f (·)),
we get

J̆
(
f (·)) =

∫ ζ2

ζ1

J̆
(
Gk(·, s)

)
f (3)(s) ds. (22)

Using Lidstone series representation (11) on the function f (3)(s), we have

f (3)(s) =
p–1∑

l=0

(ζ2 – ζ1)2lf (2l+3)(ζ1)Θl

(
ζ2 – s
ζ2 – ζ1

)

+
p–1∑

l=0

(ζ2 – ζ1)2lf (2l+3)(ζ2)

× Θl

(
s – ζ1

ζ2 – ζ1

)

+ (ζ2 – ζ1)2p–1
∫ ζ2

ζ1

Gp

(
s – ζ1

ζ2 – ζ1
,

v – ζ1

ζ2 – ζ1

)

f (2p+3)(v) dv.

Replacing p by p – 1, we get

f (3)(s) =
p–2∑

l=0

(ζ2 – ζ1)2l
(

f (2l+3)(ζ1)Θl

(
ζ2 – s
ζ2 – ζ1

)

+ f (2l+3)(ζ2)Θl

(
s – ζ1

ζ2 – ζ1

))

+ (ζ2 – ζ1)2p–3
∫ ζ2

ζ1

Gp

(
s – ζ1

ζ2 – ζ1
,

v – ζ1

ζ2 – ζ1

)

f (2p+1)(v) dv. (23)

Now, using (23) in (22) yields

J̆
(
f (·)) =

∫ ζ2

ζ1

J̆
(
Gk(·, s)

)
[ p–2∑

l=0

(ζ2 – ζ1)2l
(

f (2l+3)(ζ1)Θl

(
ζ2 – s
ζ2 – ζ1

)

+ f (2l+3)(ζ2)Θl

(
s – ζ1

ζ2 – ζ1

))

+ (ζ2 – ζ1)2p–3

×
∫ ζ2

ζ1

Gp

(
s – ζ1

ζ2 – ζ1
,

v – ζ1

ζ2 – ζ1

)

f (2p+1)(v) dv

]

ds. (24)

After rearranging the terms in (24), we have

J̆
(
f (·)) =

p–2∑

l=0

(ζ2 – ζ1)2l
[

f (2l+3)(ζ1)
∫ ζ2

ζ1

J̆
(
Gk(·, s)

)
Θl

(
ζ2 – s
ζ2 – ζ1

)

ds

+ f (2l+3)(ζ2)
∫ ζ2

ζ1

J̆
(
Gk(·, s)

)
Θl

(
s – ζ1

ζ2 – ζ1

)

ds
]
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+ (ζ2 – ζ1)2p–3
∫ ζ2

ζ1

J̆
(
Gk(·, s)

)

×
(∫ ζ2

ζ1

Gp

(
s – ζ1

ζ2 – ζ1
,

v – ζ1

ζ2 – ζ1

)

f (2p+1)(v) dv
)

ds. (25)

Executing Fubini’s theorem in the last term of (25) yields (20). �

As an application we obtain Bullen type inequality for (2p + 1)-convex functions.

Theorem 7 Assume that all the conditions of Theorem 6 hold, and let f be a (2p+1)-convex
function. Then, for k = 1, 2, we have the following result:

If

∫ ζ2

ζ1

J̆
(
Gk(·, s)

)
Gp

(
s – ζ1

ζ2 – ζ1
,

v – ζ1

ζ2 – ζ1

)

ds ≥ 0, (26)

then

J̆
(
f (·)) ≥

p–2∑

l=0

(ζ2 – ζ1)2l
[

f (2l+3)(ζ1)
∫ ζ2

ζ1

J̆
(
Gk(·, s)

)
Θl

(
ζ2 – s
ζ2 – ζ1

)

ds

+ f (2l+3)(ζ2)
∫ ζ2

ζ1

J̆
(
Gk(·, s)

)
Θl

(
s – ζ1

ζ2 – ζ1

)

ds
]

. (27)

Proof Since the function f is (2p + 1)-convex and is (2p + 1) times differentiable, we have

f (2p+1)(x) ≥ 0 ∀x ∈ I1,

therefore, by using (26) in (27), we get the required results respectively. �

Remark 2
(i) In Theorem 7, inequality (26) holds in reverse direction if the inequality in (27) is

reversed.
(ii) Inequality in (27) is also reversed if f is (2p + 1)-concave.

If we put m = n, pρ = q� and use positive weights in (19), then J̆(·) converts to the func-
tional J2(·) defined in (6), also in this case (20), (21), (26), and (27) become

J2
(
f (·)) =

p–2∑

l=0

(ζ2 – ζ1)2l
[

f (2l+3)(ζ1)
∫ ζ2

ζ1

J2
(
Gk(·, s)

)
Θl

(
ζ2 – s
ζ2 – ζ1

)

ds

+ f (2l+3)(ζ2)
∫ ζ2

ζ1

J2
(
Gk(·, s)

)
Θl

(
s – ζ1

ζ2 – ζ1

)

ds
]

+ (ζ2 – ζ1)2p–3
∫ ζ2

ζ1

f (2p+1)(v)

×
(∫ ζ2

ζ1

J2
(
Gk(·, s)

)
Gp

(
s – ζ1

ζ2 – ζ1
,

v – ζ1

ζ2 – ζ1

)

ds
)

dv, (28)
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J2
(
Gk(·, s)

)
=

n∑

ρ=1

pρGk(yρ , s) – Gk

( n∑

ρ=1

pρ(yρ , s)

)

–
n∑

ρ=1

pρGk(xρ , s) + Gk

( n∑

ρ=1

pρxρ , s

)

, (29)

∫ ζ2

ζ1

J2
(
Gk(·, s)

)
Gp

(
s – ζ1

ζ2 – ζ1
,

v – ζ1

ζ2 – ζ1

)

ds ≥ 0, (30)

and

J2
(
f (·)) ≥

p–2∑

l=0

(ζ2 – ζ1)2l
[

f (2l+3)(ζ1)
∫ ζ2

ζ1

J2
(
Gk(·, s)

)
Θl

(
ζ2 – s
ζ2 – ζ1

)

ds

+ f (2l+3)(ζ2)
∫ ζ2

ζ1

J2
(
Gk(·, s)

)
Θl

(
s – ζ1

ζ2 – ζ1

)

ds
]

. (31)

Theorem 8 Let f : I1 = [ζ1, ζ2] → R be a (2p + 1)-convex function. Also let (p1, . . . , pn) be
positive real numbers such that

∑n
ρ=1 pρ = 1. Then, for the functional J2(·) defined in (6),

and using Θp(t) defined in Lemma 1.1, we have the following:
(i) For k = 1, 2, inequality (31) holds provided that p is odd.

(ii) For fixed k = 1, 2, let inequality (31) be satisfied and

p–2∑

l=0

(ζ2 – ζ1)2l
[

f (2l+3)(ζ1)Θl

(
ζ2 – s
ζ2 – ζ1

)

+ f (2l+3)(ζ2)Θl

(
s – ζ1

ζ2 – ζ1

)]

≥ 0. (32)

Then

J2
(
f (·)) ≥ 0. (33)

Proof It is clear that Green’s functions Gk(·, s) defined in (15) and (17) are 3-convex and the
weights are assumed to be positive. Therefore, applying Theorem 2 and using Remark 1,
we have J2(Gk(·, s)) ≥ 0 for fixed k = 1, 2.

(i) Gp( s–ζ1
ζ2–ζ1

, v–ζ1
ζ2–ζ1

) ≥ 0 for odd p, therefore (30) holds. As f is (2p + 1)-convex, hence, by
following Theorem 7, we get (31).

(ii) Using (32) in (31), we get (33) for fixed k = 1, 2. �

In the next result we give a generalization of the Levinson type inequality given in [16]
(see also [13]).

Theorem 9 Let f ∈ C2p+1[ζ1, ζ2], (p1, . . . , pn) ∈ R
n, (q1, . . . , qm) ∈R

m be such that
∑n

ρ=1 pρ =
1,

∑m
�=1 q� = 1 and

∑m
�=1 q�y� and

∑n
ρ=1 pρxρ ∈ I1. Also let x1, . . . , xn and y1, . . . , ym ∈ I1 be

such that xρ + y� = 2c̆ and xρ + xn–ρ+1 ≤ 2c̆, pρxρ+pn–ρ+1xn–ρ+1
pρ+pn–ρ+1

≤ c̆. Moreover, let Θp(t) be the
same as defined in Lemma 1.1, then (20) holds.

Proof Proof is similar to Theorem 6 by assuming conditions given in the statement. �

As an application, we obtain generalizations of Levinson type functional for (2p + 1)-
convex functions (p > 1).
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Theorem 10 Let f ∈ C2p+1[ζ1, ζ2] (p > 1), (p1, . . . , pn) ∈ R
n, (q1, . . . , qm) ∈ R

m be such
that

∑n
ρ=1 pρ = 1,

∑m
�=1 q� = 1 and

∑m
�=1 q�y� and

∑n
ρ=1 pρxρ ∈ I1. Also let x1, . . . , xn and

y1, . . . , ym ∈ I1 be such that xρ + y� = 2c̆ and xρ + xn–ρ+1 ≤ 2c̆, pρxρ+pn–ρ+1xn–ρ+1
pρ+pn–ρ+1

≤ c̆. Moreover,
let Θp(t) be the same as defined in Lemma 1.1. If (26) is valid, then (27) is also valid.

Proof Proof is similar to Theorem 7. �

Theorem 11 Let f ∈ C2p+1[ζ1, ζ2] (p > 1), (p1, . . . , pn) be positive real numbers such that
∑n

ρ=1 pρ = 1. Also let x1, . . . , xn and y1, . . . , yn ∈ I1 be such that xρ + y� = 2c̆ and xρ + xn–ρ+1,
pρxρ+pn–ρ+1xn–ρ+1

pρ+pn–ρ+1
≤ c̆. Moreover, let Θp(t) be the same as defined in Lemma 1.1. Then

(i) For k = 1, 2, inequality (31) holds provided that p is odd.
(ii) For fixed k = 1, 2, let inequality (31) be satisfied, then (33) holds.

Proof Proof is similar to Theorem 10. �

In the next result, a Levinson type inequality is given (for positive weights) under Mer-
cer’s condition (7).

Corollary 1 Let f : I1 = [ζ1, ζ2] → R be a (2p + 1)-convex function, xρ , yρ satisfy (7) and
max{x1 · · ·xn} ≤ min{y1 · · · yn}. Also let pρ be such that

∑n
ρ=1 pρ = 1. Moreover, let Θp(t) be

the same as defined in Lemma 1.1. Then (28) holds.

Proof We get (28) after using the conditions given in the statement and following similar
steps as in the proof of Theorem 6. �

2.2 Generalization of Levinson type inequality for (2p + 1)-convex functions
Motivated by functional (3), we generalize the following new results with the help of Lid-
stone interpolating polynomial given by (11).

First we defined the following functional:
H: Let f : I2 = [0, 2a] → R be a function, x1, . . . , xn ∈ (0, a), (p1, . . . , pn) ∈R

n, (q1, . . . , qm) ∈
R

m are real numbers such that
∑n

ρ=1 pρ = 1 and
∑m

�=1 q� = 1. Also let xρ ,
∑m

�=1 q�(2a–
x�) and

∑n
ρ=1 pρ ∈ I2. Then

J̃
(
f (·)) =

m∑

�=1

q�f (2a – x�) – f

( m∑

�=1

q�(2a – x�)

)

–
n∑

ρ=1

pρ f (xρ)

+ f

( n∑

ρ=1

pρxρ

)

. (34)

Theorem 12 Assume H with f ∈ C2p+1[0, 2a], and let Θp(t) be the same as defined in
Lemma 1.1. Then, for 0 ≤ ζ1 < ζ2 ≤ 2a, we have

J̃
(
f (·)) =

p–2∑

l=0

(ζ2 – ζ1)2l
[

f (2l+3)(ζ1)
∫ ζ2

ζ1

J̃
(
Gk(·, s)

)
Θl

(
ζ2 – s
ζ2 – ζ1

)

ds

+ f (2l+3)(ζ2)
∫ ζ2

ζ1

J̃
(
Gk(·, s)

)
Θl

(
s – ζ1

ζ2 – ζ1

)

ds
]
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+ (ζ2 – ζ1)2p–3
∫ ζ2

ζ1

f (2p+1)(v)

×
(∫ ζ2

ζ1

J̆
(
Gk(·, s)

)
Gp

(
s – ζ1

ζ2 – ζ1
,

v – ζ1

ζ2 – ζ1

)

ds
)

dv, (35)

where

J̃
(
Gk(·, s)

)
=

m∑

�=1

q�Gk(2a – x�, s) – Gk

( m∑

�=1

q�(2a – x�, s)

)

–
n∑

ρ=1

pρGk(xρ , s)

+ Gk

( n∑

ρ=1

pρxρ , s

)

(36)

and Gk(·, s) (k = 1, 2) are defined in (15) and (17) respectively.

Proof Replace I1 with I2 and y� with 2a – x� in Theorem 6, we get the required re-
sult. �

In the following theorem we obtain generalizations of Levinson’s inequality (for real
weights) for (2p + 1)-convex functions.

Theorem 13 Assume that all the conditions of Theorem 12 hold, and let f be a (2p + 1)-
convex function. Then, for k = 1, 2 and 0 ≤ ζ1 < ζ2 ≤ 2a, we have the following inequali-
ties:

If

∫ ζ2

ζ1

J̃
(
Gk(·, s)

)
Gp

(
s – ζ1

ζ2 – ζ1
,

v – ζ1

ζ2 – ζ1

)

ds ≥ 0, (37)

then

J̃
(
f (·)) ≥

p–2∑

l=0

(ζ2 – ζ1)2l
[

f (2l+3)(ζ1)
∫ ζ2

ζ1

J̃
(
Gk(·, s)

)
Θl

(
ζ2 – s
ζ2 – ζ1

)

ds

+ f (2l+3)(ζ2)
∫ ζ2

ζ1

J̃
(
Gk(·, s)

)
Θl

(
s – ζ1

ζ2 – ζ1

)

ds
]

. (38)

Proof Similar to Theorem 7. �

Remark 3 In Theorem 13, inequality in (38) holds in reverse direction if the inequality in
(37) is reversed.

If we put m = n, pρ = q� and use positive weights in (34), then J̃(·) converts to the
functional J1(·) defined in (2), also in this case (35), (36), (37), and (38) become, for
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0 ≤ ζ1 < ζ2 ≤ 2a,

J1
(
f (·)) =

p–2∑

l=0

(ζ2 – ζ1)2l
[

f (2l+3)(ζ1)
∫ ζ2

ζ1

J1
(
Gk(·, s)

)
Θl

(
ζ2 – s
ζ2 – ζ1

)

ds

+ f (2l+3)(ζ2)
∫ ζ2

ζ1

J1
(
Gk(·, s)

)
Θl

(
s – ζ1

ζ2 – ζ1

)

ds
]

+ (ζ2 – ζ1)2p–3
∫ ζ2

ζ1

f (2p+1)(v)

×
(∫ ζ2

ζ1

J1
(
Gk(·, s)

)
Gp

(
s – ζ1

ζ2 – ζ1
,

v – ζ1

ζ2 – ζ1

)

ds
)

dv, (39)

J1
(
Gk(·, s)

)
=

n∑

ρ=1

pρGk(2a – x�, s) – Gk

( n∑

ρ=1

pρ(2a – x�, s)

)

–
n∑

ρ=1

pρGk(xρ , s)

+ Gk

( n∑

ρ=1

pρxρ , s

)

, (40)

∫ ζ2

ζ1

J1
(
Gk(·, s)

)
Gp

(
s – ζ1

ζ2 – ζ1
,

v – ζ1

ζ2 – ζ1

)

ds ≥ 0, (41)

and

J1
(
f (·)) ≥

p–2∑

l=0

(ζ2 – ζ1)2l
[

f (2l+3)(ζ1)
∫ ζ2

ζ1

J1
(
Gk(·, s)

)
Θl

(
ζ2 – s
ζ2 – ζ1

)

ds

+ f (2l+3)(ζ2)
∫ ζ2

ζ1

J1
(
Gk(·, s)

)
Θl

(
s – ζ1

ζ2 – ζ1

)

ds
]

. (42)

Theorem 14 Let f : I2 = [0, 2a] → R be a (2p + 1)-convex function. Also let (p1, . . . , pn) be
positive real numbers such that

∑n
ρ=1 pρ = 1. Then, for the functional J1(·) defined in (3),

and using Θp(t) defined in Lemma 1.1, we have the following:
(i) For k = 1, 2, inequality (42) holds provided that p is odd.

(ii) For fixed k = 1, 2, let inequality (42) be satisfied and

p–2∑

l=0

(ζ2 – ζ1)2l
[

f (2l+3)(ζ1)Θl

(
ζ2 – s
ζ2 – ζ1

)

+ f (2l+3)(ζ2)Θl

(
s – ζ1

ζ2 – ζ1

)]

≥ 0. (43)

Then

J1
(
f (·)) ≥ 0. (44)

Proof By using Theorem 13 and Remark 1. �

Remark 4 Cebyšev, Grüss, and Ostrowski type new bounds related to the obtained gen-
eralizations can also be discussed. Moreover, we can also give related mean value the-
orems by using non-negative functionals (20) and (35) to construct the new families of
n-exponentially convex functions and Cauchy means related to these functionals as given
in Sect. 4 of [23].
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3 Estimation of f -divergence and Shannon entropy
In this section we obtain applications of information theory. We apply Theorem 7 for
(2p + 1)-convex functions to Îf (r̃, k̃).

Theorem 15 Let r̃ = (r1, . . . , rn) ∈R
n, w̃ = (w1, . . . , wm) ∈R

m, k̃ = (k1, . . . , kn) ∈ (0,∞)n, and
t̃ = (t1, . . . , tm) ∈ (0,∞)m be such that

rρ

kρ

∈ I, ρ = 1, . . . , n,

and

w�

t�
∈ I, � = 1, . . . , m.

Also let f ∈ C2p+1[ζ1, ζ2] be such that f is (2p + 1)-convex (for odd p) function, then

Jcis
(
f (·)) ≥

p–2∑

l=0

(ζ2 – ζ1)2l
[

f (2l+3)(ζ1)
∫ ζ2

ζ1

J
(
Gk(·, s)

)
Θl

(
ζ2 – s
ζ2 – ζ1

)

ds

+ f (2l+3)(ζ2)
∫ ζ2

ζ1

J
(
Gk(·, s)

)
Θl

(
s – ζ1

ζ2 – ζ1

)

ds
]

(45)

for k = 1, 2

J
(
Gk(·, s)

)
=

m∑

�=1

t�
∑m

�=1 t�
Gk

(
w�

t�
, s

)

– Gk

( m∑

�=1

w�
∑m

�=1 t�
, s

)

–
n∑

ρ=1

kρ
∑n

ρ=1 kρ

Gk

(
rρ

kρ

, s
)

+ Gk

( n∑

ρ=1

rρ
∑n

ρ=1 kρ

, s

)

. (46)

Proof It is clear that Green’s functions Gk(·, s) defined in (15) and (17) are 3-convex, there-
fore J(Gk(·, s)) ≥ 0 for fixed k = 1, 2. Also Gp( s–ζ1

ζ2–ζ1
, v–ζ1

ζ2–ζ1
) ≥ 0 for odd p, therefore (26) holds.

Hence, using pρ = kρ∑n
ρ=1 kρ

, xρ = rρ
kρ

, q� = t�∑m
�=1 t�

, y� = w�

t� in Theorem 7, (27) becomes (45),

where Îf (r̃, k̃) is defined in (1) and

Îf (w̃, t̃) :=
m∑

�=1

t�f
(

w�

t�

)

. (47)
�

3.1 Shannon entropy
Definition 3 (see [10]) The Shannon entropy of positive probability distribution k̃ =
(k1, . . . , kn) is defined by

S := –
n∑

ρ=1

kρ log(kρ). (48)

Corollary 2 Let k̃ = (k1, . . . , kn) and t̃ = (t1, . . . , tm) be positive probability distributions.
Also let r̃ = (r1, . . . , rn) ∈ (0,∞)n and w̃ = (w1, . . . , wm) ∈ (0,∞)m.
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If base of log is greater than 1 and p = odd (p > 2), then

Js(·) ≥
p–2∑

l=0

(ζ2 – ζ1)2l
[

(–1)2l+2(2l + 2)!
(ζ1)2l+3

∫ ζ2

ζ1

J
(
Gk(·, s)

)
Θl

(
ζ2 – s
ζ2 – ζ1

)

ds

+
(–1)2l+2(2l + 2)!

(ζ1)2l+3

∫ ζ2

ζ1

J
(
Gk(·, s)

)
Θl

(
s – ζ1

ζ2 – ζ1

)

ds
]

, (49)

where

Js(·) =
m∑

�=1

t� log(w�) + S̃ – log

( m∑

�=1

w�

)

–
n∑

ρ=1

kρ log(rρ) + S

+ log

( n∑

ρ=1

rρ

)

, (50)

and for fixed k = 1, 2, J(Gk(·, s)) is the same as defined in (46).

Proof The function f : x → log(x) is (2p + 1)-convex for odd p (p > 1) and base of log is
greater than 1. Therefore we use f = log(x) in (45) to get (49), where S is defined in (48)
and

S̃ = –
m∑

�=1

t� log(t�).
�
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