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Abstract
This paper mainly discusses the asymptotic behaviours on the lasso-type estimators
for diffusion-type processes with a small noise. By constructing the objective function
on the estimation, in view of convexity argument, it is proved that the estimator for
different values of γ satisfies the iterated logarithm law. The result also presents the
exponential convergence principle for the estimator converging to the true value.
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1 Introduction
Let {Xε

t }0≤t≤T be the solution of the following stochastic diffusion-type process:

dXε
t = St

(
θ , Xε

)
dt + ε dWt ,

Xε
0 = x0,

(1)

where x0 is a fixed constant, θ = (θ1, . . . , θp)′ ∈ Θ ⊂ R
p is an unknown parameter, St(θ , x) is

a known measurable, nonanticipative functions such that (1) has a strong unique solution,
Wt is a standard Wiener process, which is usually called random noise, and ε ∈ (0, 1] the
diffusion coefficient.

There is a rich literature on the methods to estimate parameter θ , such as least squares
estimation, Bayesian estimation, maximum likelihood estimation, and so on. However,
there is no uniform standard to comment on those methods. The limiting properties for
various estimators attract the attention of statisticians because of their applicability in
mathematical finance, biology and other fields; see [5, 16, 21]. As described by Kutoyants
[16], the minimum distance estimation is a relatively new method compared with tradi-
tional estimation methods, which deals with less stochastic calculations and robustness.
This paper considers a class of minimum distance estimators for the diffusion process (1)
and discusses their exponential convergence principle. To estimate the unknown param-
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eter θ , we need to introduce the ordinary differential equation:

dX0
t = St

(
θ , X0)dt, 0 ≤ t ≤ T , (2)

with initial condition X0
0 = x0.

The minimum distance estimator θ̂ ε is given by

θ̂ ε = argmin
θ∈Θ

∥∥Xε – X0∥∥2

= argmin
θ∈Θ

∫ T

0

(
Xε

t – X0
t
)2

α(dt), (3)

where Θ is the closure of Θ , α is some finite measure on [0, T] and argmin g = {x : g(x) =
inf g}. Kutoyants discussed the consistency and asymptotic normality of estimator θ̂ ε in
[17, 18]. Dietz and Kutoyants [7] considered a class of minimum distance estimators for
diffusion processes with ergodic properties. For general minimum distance estimators, the
reader can refer to Kutoyants [16] and references therein. Recently, Zhao and Zhang [22]
studied the minimum distance parameter estimation for stochastic differential equations
with small α-stable noises.

However, few works considered the convergence rate of θ̂ ε converging to the true value
of θ . This induces some stochastic dynamical systems not to be reasonably identified by
finite observations of spaced time points. What’s more, from the point of view of prob-
ability, the law of large numbers, the central limit theorem, and the iterated logarithm
law are all contained in the limit theory, which is a whole system. This motivates us to
study the convergence rate of θ̂ ε → θ∗ (θ∗ is the true value of θ ). In order to generalize
the model, we use the constrained minimum distance estimator based on Lγ -penalized
function contrast:

Zε(θ ) =
∫ T

0

(
Xε

t – X0
t
)2

α(dt) + λε

p∑

j=1

|θj|γ , (4)

where γ > 0 is a fixed constant and λε > 0 is a penalty parameter with respect to ε. Without
loss of generality, we assume that the trend functional of the processes (1) is of integral
type:

St
(
θ , Xε

)
= V

(
θ , t, Xε

)
+

∫ t

0
K

(
θ , t, s, Xε

s
)

ds.

Denote the true value of θ by θ∗ and the lasso-type estimator of θ by

θ̂ ε = argmin
θ∈Θ

Zε(θ ). (5)

In this paper, we will discuss the limit behaviors of θ̂ ε–θ∗
ε
√

2 log log(ε–1∨3)
, i.e., the iterated log-

arithm law. This shows that the estimator θ̂ ε converges to a constant almost everywhere
with an exponential convergence rate. We recall that Gregorio and Iacus showed that θ̂ ε
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satisfies the central limit theorem in [11], that is,

ε–1(θ̂ ε – θ∗) ⇒ argmin
u

V (u),

where ⇒ denotes convergence in distribution, V (u) is a fixed random function. Our result
also can be considered a supplement of Gregorio and Iacus’ work.

2 Preliminaries
This section will present some basic notations and assumptions which will be used in the
paper. Define the inner product by 〈x, y〉 =

∑p
i=1 xiyi in the spaceRp. In particular, use | ·| for

the Euclidean distance, that is, |y| =
√

y′y =
√∑p

i=1〈xi, xi〉, where y′ denotes the transpose
of y. Let B be some Banach space and write ‖ · ‖ for the corresponding norm. If B is the
space of all continuous bounded functions on R

p, we always define ‖f ‖ = supx∈Rp |f (x)| for
any f ∈ B. Let D(T) the space of càdlàg functions (i.e., right continuous with left limits) on
T with the Skorohod topology. For any set A ⊂R

p, we define the distance from x ∈R
p to A

by ρ(x, A) = infy∈A ρ(x, y). If {xε} is a suitable family of points in R
p, then let C({xε}) denote

the cluster set of {xε}. That is, C({xε}) are all possible limit points of the sequence {xn}.
We sometimes use the notation limε→0 xε = A if both limε→0 ρ(xε , A) = 0 and C({xε}) = A.
Throughout the paper, let Pθ denote the law of Xt(θ ) under parameter θ . The subscript
θ indicates that the process Xε

t (θ ) depends on θ . If it doesn’t cause confusion, we always
omit θ , i.e., Xε

t = Xε
t (θ ).

Define Vx(θ , t, x) = ∂
∂x V (θ , t, x) and Kx(θ , t, s, x) = ∂

∂x K(θ , t, s, x). Let Yt = {Yt(θ ), 0 ≤ t ≤ T}
be the solution of a diffusion-type process

dYt =
(

Vx
(
θ , t, X0(θ )

)
Yt +

∫ t

0
Kx

(
θ , t, s, X0

s (θ )
)
Ys ds

)
dt + dWt (6)

with initial condition Y0 = 0. The process Yt plays a central role in the study of the
asymptotic distribution of the estimators in the theory of diffusion process Xt with small
noise. Denote the p-dimensional vector of partial derivatives of X0

t (θ ) with respect to θj

(j = 1, . . . , p) by Ẋ0
t (θ ), that is,

Ẋ0
t (θ ) =

∂X0
t (θ )
∂θ

=
(

∂

∂θ1
X0

t (θ ), . . . ,
∂

∂θp
X0

t (θ )
)′

. (7)

It is easy to see that Ẋ0
t (θ ) satisfies the following differential equation:

dẊ0
t (θ )

dt
= Vx

(
θ , t, X0

t (θ )
)
Ẋ0

t (θ ) + V̇
(
θ , t, X0

t (θ )
)

+
∫ t

0

(
K̇

(
θ , t, s, X0

s (θ )
)

+ Kx
(
θ , t, s, X0

s (θ )
)
Ẋ0

s (θ )
)

ds (8)

and Ẋ0
0 (θ ) = 0, where V̇ (θ , t, X0

t (θ )) = ( ∂
∂θ1

V (θ , t, X0
t (θ )), . . . , ∂

∂θp
V (θ , t, X0

t (θ )))′.
We suppose that the following regular conditions for the trend coefficient V (θ , t, x) and

K(θ , t, s, x) hold:



Mao and Huang Advances in Difference Equations         (2020) 2020:33 Page 4 of 15

(A1) ε–1λε → λ0 ≥ 0;
(A2) for any t ∈ [0, T],

sup
θ∈Θ ,x∈Rp

∣∣
∣∣

∂

∂θ
V (θ , t, x)

∣∣
∣∣ < ∞, sup

θ∈Θ ,x∈Rp

∣∣
∣∣

∂

∂x
V (θ , t, x)

∣∣
∣∣ < ∞

and

sup
s,t∈[0,T]

sup
θ∈Θ ,x∈Rp

∣∣∣
∣

∂

∂θ
K(θ , t, s, x)

∣∣∣
∣ < ∞, sup

s,t∈[0,T]
sup

θ∈Θ ,x∈Rp

∣∣∣
∣

∂

∂x
K(θ , t, s, x)

∣∣∣
∣ < ∞;

(A3) there exist two positive constants M1 and M2 such that

sup
t∈[0,T],θ∈Θ

∣
∣∣
∣

∂

∂x
V (θ , t, x) –

∂

∂x
V (θ , t, y)

∣
∣∣
∣ < M1|x – y|,

sup
t,s∈[0,T],θ∈Θ

∣
∣∣∣

∂

∂x
K(θ , t, s, x) –

∂

∂x
K(θ , t, s, y)

∣
∣∣∣ < M1|x – y|

and

sup
t,s∈[0,T]

sup
x∈Rp

∣∣
∣∣

∂

∂x
V (θ1, t, s, x) –

∂

∂x
V (θ2, t, s, x)

∣∣
∣∣ ≤M2|θ1 – θ2|,

sup
t,s∈[0,T]

sup
x∈Rp

∣∣
∣∣

∂

∂x
K(θ1, t, s, x) –

∂

∂x
K(θ2, t, s, x)

∣∣
∣∣ ≤M2|θ1 – θ2|.

One can check that under conditions (A2) and (A3), the stochastic differential Eq. (1) sat-
isfies Condition L, that is,

∣∣V (θ , t, Xt) – V (θ , t, Yt)
∣∣ +

∣∣K(θ , t, s, Xt) – K(θ , t, s, Yt)
∣∣

≤ L1

∫ t

0
|Xs – Ys|dKs + L2|Xt – Yt|,

∣
∣V (θ , t, Xt)

∣
∣ +

∣
∣K(θ , t, s, Xt)

∣
∣ ≤ L1

∫ t

0

(
1 + |Xs|

)
dKs + L2

(
1 + |Xt|

)
,

where L1 and L2 are two positive constants and Ks is a nondecreasing right-continuous
function, 0 ≤ Kt ≤ K0, K0 > 0. By virtue of Theorem 4.6 of [19, 20], there exists a unique
D([0, T],Rp)-value strong solution for Eq. (1) under conditions (A2) and (A3) (the reader
can also see [8] for the theory on existence and uniqueness). In Lemma 4 below, we will
show that the deterministic diffusion process X0

t (θ ) is differentiable with respect to θ at
the point θ∗ in L2-norm under conditions (A2) and (A3), i.e.,

∫ T

0

(
X0

t
(
θ∗ + h

)
– X0

t
(
θ∗) – h′ ∂X0

t
∂θ

∣
∣∣
∣
θ=θ∗

)2

α(dt) = o
(|h|).

In the book of Kutoyants [16], the reader can see that the assumption is very impor-
tant for the statistical identification problems. We now introduce the objective function
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of θ̂ ε – θ∗:

Vε(u) =
1

ε2h(ε)

[∫ T

0

(
Xε

t – X0
t
(
θ∗ + h(ε)εu

))2
α(dt)

–
∫ T

0

(
Xε

t – X0
t
(
θ∗))2

α(dt) + λε

p∑

j=1

(∣∣θ∗
j + h(ε)εuj

∣
∣γ –

∣
∣θ∗

j
∣
∣γ )

]

,

where u = (u1, . . . , up)′. It is easy to see that

1
εh(ε)

(
θ̂ ε – θ∗) ∈ argmin

u∈Rp
Vε(u). (9)

A simple calculation yields

Vε(u) =
1

ε2h(ε)

∫ T

0

(
X0

t
(
θ∗ + h(ε)εu

)
– X0

t
(
θ∗))2

α(dt)

+
λε

ε2h(ε)

p∑

j=1

{∣∣θ∗
j + h(ε)εuj

∣
∣γ –

∣
∣θ∗

j
∣
∣γ }

–
2

ε2h(ε)

∫ T

0

(
Xt – X0

t
(
θ∗))(X0

t
(
θ∗ + h(ε)εu

)
– X0

t
(
θ∗))α(dt). (10)

In Sect. 4, we will show that Vε(u) can be approached by some stochastic function.

3 Main result
We state our main result as follows:

Theorem 1 Let h(ε) =
√

2 log log(ε–1 ∨ 3). Assume that conditions (A1)–(A3) hold. Then,
for γ ≥ 1, the process (θ̂ ε – θ∗)/(εh(ε)) satisfies the iterated logarithm law, that is,

lim sup
ε→0

ρ

(
θ̂ ε – θ∗

εh(ε)
, Q–1K

)
= 0, a.e.

and

P
(

ω : C
({

θ̂ ε – θ∗

εh(ε)

})
= Q–1K

)
= 1,

where ρ(·, ·) denotes the Euclidean distance, a.e. stands for almost everywhere, and

Q =
∫ T

0

∂X0
t

∂θ

∣
∣∣
∣
θ=θ∗

·
(

∂X0
t

∂θ

∣
∣∣
∣
θ=θ∗

)′
α(dt)

and

K =
{∫ T

0
g.

∂X0
t

∂θ

∣∣
∣∣
θ=θ∗

α(dt) : g ∈H and I(g) ≤ 1
}

. (11)

Here

I(g) := inf
φ∈H:g=Yφ

t

{
1
2

∫ T

0

∣∣φ̇(s)
∣∣2 ds

}
,



Mao and Huang Advances in Difference Equations         (2020) 2020:33 Page 6 of 15

H =
{
φ : φis an absolutely continuous function with φ(0) = 0

and
∫ T

0

∣∣φ̇(s)
∣∣2 ds < ∞

}
(12)

and Y φ is the solution of the integral equation given by

Y φ
t =

∫ t

0

[
Vx

(
θ , s, X0

s
)

+
∫ s

0
Kx

(
θ , s, u, X0

u(θ )
)

du
]

Y φ
s ds + φ(t). (13)

Remark For 0 < γ < 1, supposing that conditions (A2)–(A3) hold and λε/ε1–γ → λ0 ≥ 0,
it can be still proved that (θ̂ ε – θ∗)/(εh(ε)) satisfies the iterated logarithm law. The proof
method is the same as that of Theorem 1.

We below present an example, which is an application of the above result.

Example Consider the following diffusion process:

dXε
t = θXε

t dt + ε dWt , Xε
0 = x0 �= 0, 0 ≤ t ≤ T , (14)

where θ ∈ (κ1,κ2) = Θ and Wt is a standard Wiener process, then the limit solution is

X0
t = x0eθ t , 0 ≤ t ≤ T .

The minimum distance estimator θ̂ ε is defined by

θ̂ ε = argmin
θ∈Θ

∫ T

0

(
Xε

t – x0eθ t)2
α(dt).

It can be checked that the process (14) satisfies the conditions of Theorem 7.5 of [16], so
θ̂ ε is consistent and asymptotically normal:

θ̂ ε – θ∗

ε
⇒

∫ T
0 teθ∗tYt dt

x0
∫ T

0 t2e2θ∗tα(dt)
,

where Yt satisfies dYt = θ∗Yt dt + dWt , Y0 = 0, 0 ≤ t ≤ T . It can be easily proved that
∫ T

0 teθ∗tYtα(dt) is a Gaussian process with variance

σ 2 =
1

2θ

∫ T

0

∫ T

0
ste2θ∗(s+t)[1 – e–2θ∗(t∧s)]α(dt)α(ds). (15)

By virtue of Theorem 1, a simple calculation can show that the estimator θ̂ ε has the fol-
lowing limit behavior:

lim sup
ε→0

θ̂ ε – θ∗

ε
√

2 log log(ε–1 ∨ 3)
=

σ

x0
∫ T

0 t2e2θ∗tα(dt)
, a.e.

where σ 2 is defined in (15).
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4 Proofs
In order to prove Theorem 1, we need the following lemmas. Lemma 2 is about the ap-
proach of argmins, which is crucial to study the asymptotic theory for some argmin pro-
cesses of parametrized convex objective functions (see [10] and [14] for other applica-
tions).

Lemma 1 Suppose that Aε(u) and Bε(u), u ∈ R
p, are two convex bounded functions. As-

sume that limε→0 h(ε) = ∞ and for any u ∈ R
p, δ > 0,

lim sup
ε→0

1
h2(ε)

log P
(∣∣Aε(u) – Bε(u)

∣
∣ ≥ δ

)
= –∞. (16)

Then for any compact set D ⊂R
p,

lim sup
ε→0

1
h2(ε)

log P
(

sup
u∈D

∣
∣Aε(u) – Bε(u)

∣
∣ ≥ ε

)
= –∞. (17)

Proof The approach stems from Lemma 3 of Kato [13]. For the sake of completeness,
we simply state the proof. By the the convexity and boundedness of Aε(u), there exists a
constant β1 > 0 satisfying

∣
∣Aε(u) – Aε(v)

∣
∣ ≤ β1|u – v|, for any u, v ∈ D. (18)

Similarly, there exists another constant β2 > 0 satisfying

∣
∣Bε(u) – Bε(v)

∣
∣ ≤ β2|u – v|, for any u, v ∈ D. (19)

Let β0 = max{β1,β2}. For any ε > 0, there exists a finite set D1 ⊂ D such that each point of
D lies within the distance ε

3β0
of at least one point of D1. Equation (16) implies that

lim sup
ε→0

1
h2(ε)

log P
(

sup
v∈D1

∣
∣Aε(v) – Bε(v)

∣
∣ ≥ ε

)
= –∞. (20)

Giving any u ∈ K , let v be a point of D1 such that |u – v| ≤ ε
3β0

. Then

∣∣Aε(u) – Bε(u)
∣∣ ≤ ∣∣Aε(u) – Aε(v)

∣∣ +
∣∣Aε(v) – Bε(v)

∣∣ +
∣∣Bε(v) – Bε(u)

∣∣

≤ β1|u – v| +
∣
∣Aε(v) – Bε(v)

∣
∣ + β2|v – u|

≤ 2ε

3
+

∣∣Aε(v) – Bε(v)
∣∣.

Consequently,

P
(∣∣Aε(u) – Bε(u)

∣∣ ≥ ε
) ≤ P

(∣∣Aε(v) – Bε(v)
∣∣ ≥ ε

3

)
.

By virtue of (20), the desired result is obtained. �
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Lemma 2 Suppose that Aε(u) and Bε(u) are two suitable families of convex random func-
tions defined on a compact set S ∈ R

p, where ε ∈ (0, 1] is the index parameter. Let aε be
the argmin of Aε(u) and assume that Bε(u) has a unique argmin bε . Then for any positive
constant δ,

P
(∣∣aε – bε

∣∣ > δ
) ≤ P

(
�̃ε ≥ η

2

)
, (21)

where �̃ε = supu∈{u:|u–bε |≤δ} |Aε(u) – Bε(u)| and

η = inf
v∈Sp–1

{
Bε

(
bε + δv

)
– Bε

(
bε

)}
. (22)

Proof Let Sp–1 = {x ∈R
p : |x| = 1}. For any v ∈ S

p–1, the convexity of Aε(u) yields

(
1 –

δ

l

)
Aε

(
bε

)
+

δ

l
Aε

(
bε + lv

) ≥ Aε
(
bε + δv

)
, ∀l > δ.

It is equivalent to

δ

l
(
Aε

(
bε + lv

)
– Aε

(
bε

)) ≥ Aε
(
bε + δv

)
– Aε

(
bε

)
.

Let �ε(u) = Aε(u) – Bε(u). We have

δ

l
(
Aε

(
bε + lv

)
– Aε

(
bε

))

≥ Bε
(
bε + δv

)
– Bε

(
bε

)
+

(�ε

(
bε + δv

)
– �ε

(
bε

))

≥ η – 2�̃ε . (23)

Since S is a compact set and bε is the unique argmin point of Bε , so η is a positive random
variable. If �̃ε < η

2 , then Aε(bε + lv) – Aε(bε) > 0 for each v. This implies that if |aε – bε | > δ,
then Aε(aε) – Aε(bε) > 0. The minimum property of aε will lead to a contradiction. Thus,
for any positive constant δ,

P
(∣∣aε – bε

∣∣ > δ
) ≤ P

(
�̃ε ≥ η

2

)
.

The proof is completed. �

Lemma 3 Assume that Aε(u) is a convex random function defined in an open set S ∈ R
p.

Let Bε(u) = –uT Uε + 1
2 uT Qu, where Q is a symmetric and positive define p × p matrix and

Uε is stochastically bounded. Furthermore, let 1 ≤ h(ε) = o(1/
√

ε), we assume the following
three conditions hold:

(i) Random process Uε satisfies the iterated logarithm law, that is, there exists a fixed
bounded symmetric set K in R

p such that

lim sup
ε→0

ρ

(
Uε

√
2ε log log(ε–1 ∧ 3))

, K
)

= 0, a.e.
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and

P
(

ω : C
({

Uε

√
2ε log log(ε–1 ∧ 3))

})
= K

)
= 1.

(ii) For any R > 0 and any δ > 0, there exists an ε0 > 0 such that for all ε ∈ (0, ε0],

P
(∣∣Aε(u) – Bε(u)

∣∣ ≥ δh(ε)
) ≤ e–Rh2(ε). (24)

Then, aε , the minimizer of convex process Aε(u), satisfies the iterated logarithm law,
that is,

lim sup
ε→0

ρ

(
aε

√
2ε log log(ε–1 ∧ 3))

, Q–1K
)

= 0, a.e.

and

P
(

ω : C
({

aε

√
2ε log log(ε–1 ∧ 3))

})
= Q–1K

)
= 1,

where Q–1K = {Q–1x : x ∈ K}.

Proof Let bε = Q–1Uε . It is easy to see that bε is the unique minimum point of Bε(u). The
continuous mapping theorem in the iterated logarithm law yields

lim sup
ε→0

ρ

(
bε

√
2ε log log(ε–1 ∧ 3))

, Q–1K
)

= 0, a.e.

and

P
(

ω : C
({

bε

√
2ε log log(ε–1 ∧ 3))

})
= Q–1K

)
= 1.

Then a simple calculation shows that

Bε(u) – Bε
(
bε

)
=

1
2
(
u – bε

)′Q
(
u – bε

)

≥ c
∣
∣u – bε

∣
∣2, (25)

where c > 0 is the smallest eigenvalue of Q.
As in the proof of Lemma 2, note that by the definition of η, we further have

P
(∣∣aε – bε

∣∣ > δ
) ≤ P

(
�̃n ≥ cδ2

2

)
. (26)

From (25) and (26), combining condition (ii), we have

P
(∣∣aε – bε

∣∣ ≥ δh(ε)
) ≤ e–Rh2(ε).

This implies that aε , the minimizer of convex process Aε(u), satisfies the iterated logarithm
law. �



Mao and Huang Advances in Difference Equations         (2020) 2020:33 Page 10 of 15

Lemma 4 Assume Xε
t is the solution of the following stochastic differential equation:

dXε
t = b

(
Xε

t
)

dt +
√

εσ
(
Xε

t
)

dBt , Xε
0 = x0,

and that X0
t is the solution of the ordinary differential equations

dX0
t = b

(
X0

t
)

dt, X0
t = x0.

Assume that b(·) and σ (·) are Lipschitz continuous on every compact subset of R and there
exists a positive constant L, for any x, y ∈R

+, satisfying

xb(x) ≤ L
(
1 + |x|2),

∣∣σ (x) – σ (y)
∣∣ ≤ L|x – y|2.

Then, the process Xε
t –X0

t√
2ε log log(ε–1∨3)

satisfies the iterated logarithm law, that is,

lim sup
ε→0

ρ

(
Xε

t – X0
t√

2ε log log(ε–1 ∨ 3)
, K

)
= 0, a.e.

and

P
(

ω : C
({

Xε
t – X0

t√
2ε log log(ε–1 ∨ 3)

})
= K

)
= 1.

Here, K = {g : g ∈H and I(g) ≤ 1} and

I(g) := inf
φ∈H:g=Yφ

t

{
1
2

∫ T

0

∣∣φ̇(s)
∣∣2 ds

}
,

where H is defined in (12) and Y φ is the solution of the integral equation given by

Y φ
t =

∫ t

0
ḃ
(
X0

s
)
Y φ

s ds +
∫ t

0
σ
(
X0

s
)
φ̇(s) ds.

Proof See Theorem 2.2 of [3] and Proposition 3.2 of [15], or Theorem 3.1 of [6]. �

Lemma 5 Under conditions (A2) and (A3), the deterministic dynamical system X0
t (θ ) is

differentiable with respect to θ at the point θ∗ in L2-norm, that is,

∫ T

0

(
X0

t
(
θ∗ + h

)
– X0

t
(
θ∗) – h′ ∂X0

t
∂θ

∣
∣∣
∣
θ=θ∗

)2

α(dt) = o
(|h|).

Proof From Eq. (2), we have

X0
t (θ ) =

∫ t

0
Ss

(
θ , X0(θ )

)
ds

=
∫ t

0

[
V

(
θ , s, X0(θ )

)
+

∫ s

0
K

(
θ , s, u, X0

u(θ )
)

du
]

ds. (27)
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So

X0
t
(
θ∗ + h

)
– X0

t
(
θ∗)

=
∫ t

0
Ss

(
θ∗ + h, X0(θ∗ + h

))
ds –

∫ t

0
Ss

(
θ∗, X0(θ∗))ds

=
∫ t

0

[
V

(
θ∗ + h, s, X0(θ∗ + h

))
– V

(
θ∗, s, X0(θ∗ + h

))]
ds

+
∫ t

0

[
V

(
θ∗, s, X0(θ∗ + h

))
– V

(
θ∗, s, X0(θ∗))]ds

+
∫ t

0

[∫ s

0
K

(
θ∗ + h, s, u, X0

u
(
θ∗ + h

))
du –

∫ s

0
K

(
θ∗, s, u, X0

u
(
θ∗ + h

))
du

]
ds

+
∫ t

0

[∫ s

0
K

(
θ∗, s, u, X0

u
(
θ∗ + h

))
du –

∫ s

0
K

(
θ∗, s, u, X0

u
(
θ∗))du

]
ds.

Applying conditions (A2), (A3) and Gronwall’s inequality, we have

sup
0≤s≤T

∫ s

0

(
X0

u
(
θ∗ + h

)
– X0

u
(
θ∗))2

α(du) ≤MT |h|eT , (28)

where M is some positive constant. From (27), we also get that

∂X0
t

∂θ
=

∫ t

0

∂Ss(θ , X0)
∂θ

ds +
∫ t

0

∂Ss(θ , X0)
∂x

.
∂X0

s
∂θ

ds

and

X0
t
(
θ∗ + h

)
– X0

t
(
θ∗) – h′ ∂X0

t
∂θ

∣
∣∣
∣
θ=θ∗

=
∫ t

0

[
Ss

(
θ∗ + h, X0(θ∗ + h

))
– Ss

(
θ∗ + h, X0(θ∗))

– h′ ∂X0
s

∂θ
.
∂Ss(θ , X0)

∂x

∣∣
∣∣
θ=θ∗

]
ds

+
∫ t

0

[
Ss

(
θ∗ + h, X0(θ∗)) – Ss

(
θ∗, X0(θ∗)) – h′ ∂Ss(θ , X0)

∂θ

∣∣
∣∣
θ=θ∗

]
ds

= I1 + I2. (29)

Taylor’s expansion and (A3) imply that |I2| ≤M|h|2T .
For I1, let

As(θ ) =
∫ 1

0

∂

∂x
Ss

(
θ + h, X0

s (θ ) + u
(
X0

s (θ + h) – X0
s (θ )

))
du,

then
∫ T

0
(I1)2α(dt)

=
∫ T

0

(∫ t

0

[
As

(
θ∗)(X0

s
(
θ∗ + h

)
– X0

s
(
θ∗)) – h′ ∂X0

s
∂θ

∂Ss(θ , X0)
∂x

∣∣
∣∣
θ=θ∗

]
ds

)2

α(dt)



Mao and Huang Advances in Difference Equations         (2020) 2020:33 Page 12 of 15

≤
∫ T

0

[∫ t

0
As

(
θ∗)

(
(
X0

s
(
θ∗ + h

)
– X0

s
(
θ∗)) – h′ ∂X0

s
∂θ

)
ds

]2

α(dt)

+
∫ T

0

[∫ t

0

(
As

(
θ∗) –

∂Ss(θ + h, X0
s )

∂x

∣
∣∣
∣
θ=θ∗

)
h′ ∂X0

s
∂θ

ds
]2

α(dt)

+
∫ T

0

[∫ t

0

(
∂Ss(θ + h, X0

s )
∂x

∣
∣∣∣
θ=θ∗

–
∂Ss(θ , X0

s )
∂x

∣
∣∣∣
θ=θ∗

)
h′ ∂X0

s
∂θ

ds
]2

α(dt)

= I3 + I4 + I5.

Conditions (A2) and (A3) yield that function As(θ ) is bounded for any s ∈ [0, T]. By the
differentiability of function St(θ , x) at x for every fixed θ , we get I4 = o(|h|) and I5 = o(|h|).

On the other hand, we also have

I3 ≤M
∫ T

0

(∫ t

0

[
X0

s
(
θ∗ + h

)
– X0

s
(
θ∗) – h′ ∂X0

s
∂θ

∣∣
∣∣
θ=θ∗

]
ds

)2

α(dt).

By applying Gronwall’s inequality and combining (28) and (29), we get

∫ T

0

(
X0

t
(
θ∗ + h

)
– X0

t
(
θ∗) – h′ ∂X0

t
∂θ

∣
∣∣
∣
θ=θ∗

)2

α(dt) = o
(|h|).

The proof is completed. �

Proof of Theorem 1 Noting that

∂X0
t

∂θ

∣∣∣
∣
θ=θ∗

=
(

∂X0
t

∂θ1
, . . . ,

∂X0
t

∂θp

)T ∣∣∣
∣
θ=θ∗

and h(ε) =
√

2 log log(ε–1 ∨ 3), we define

Gε(u) = h(ε)
[

u′
∫ T

0

∂X0
t

∂θ

∣
∣∣
∣
θ=θ∗

·
(

∂X0
t

∂θ

∣
∣∣
∣
θ=θ∗

)′
α(dt) · u

– 2u′
∫ T

0

1
εh(ε)

(
Xε

t – X0
t
(
θ∗))∂X0

t
∂θ

∣∣
∣∣
θ=θ∗

α(dt)
]

. (30)

A simple calculation yields

|Vε(u) – Gε(u)|
h(ε)

=
∫ T

0

[(
X0

t (θ∗ + h(ε)εu) – X0
t (θ∗)

εh(ε)

)2

–
(

u′ ∂X0
t

∂θ

∣
∣∣
∣
θ=θ∗

)2]
α(dt)

+
λε

ε2h2(ε)

p∑

j=1

{∣∣θ∗
j + h(ε)εuj

∣
∣γ –

∣
∣θ∗

j
∣
∣γ }

– 2
∫ T

0

Xε
t – X0

t (θ∗)
εh(ε)

·
(

X0
t (θ∗ + h(ε)εu) – X0

t (θ∗)
εh(ε)

– u′ ∂X0
t

∂θ

∣∣
∣∣
θ=θ∗

)
α(dt)

:= J1 + J2 – 2J3. (31)
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For the case of γ > 1, noting that ε–1λε → λ0 as ε → 0, we have

J2 =
λε

εh(ε)

p∑

j=1

uj
|θ∗

j + h(ε)εuj|γ – |θ∗
j |γ

h(ε)εuj
∼ λ0

h(ε)

p∑

j=1

uj sgn
(
θ∗

j
)∣∣θ∗

j
∣∣γ –1 → 0,

where sgn(x) = 1 for x > 0; sgn(x) = –1 for x < 0 and sgn(0) = 0.
For the case of γ = 1,

J2 =
λε

ε2h2(ε)

p∑

j=1

{∣∣θ∗
j + εh(ε)uj

∣∣ –
∣∣θ∗

j
∣∣}

∼ λ0

h(ε)

p∑

j=1

(|uj|I
{
θ∗

j = 0
}

+ uj sgn
(
θ∗

j
)∣∣θ∗

j
∣∣I

{
θ∗

j �= 0
})

→ 0,

where I{·} denotes the indicator function. From Lemma 5, it implies that J1 → 0. Thus
for any δ > 0 and sufficiently small positive ε, we have

P
(∣∣Vε(u) – Gε(u)

∣∣ ≥ h(ε)δ
) ≤ P

(
|J3| ≥ δ

4

)
. (32)

In addition, Lemma 5 also implies that for any κ > 0, there exists a positive constant ε0

such that, when ε < ε0,

∣
∣∣
∣
X0

t (θ∗ + h(ε)εu) – X0
t (θ∗)

εh(ε)
– u′ ∂X0

t
∂θ

∣
∣∣
∣
θ=θ∗

∣
∣∣
∣ ≤ κ .

By the Cauchy–Schwartz inequality, we have

|J3|2 ≤
∫ T

0

(
Xε

t – X0
t (θ∗)

εh(ε)

)2

α(dt)

·
∫ T

0

(
X0

t (θ∗ + h(ε)εu) – X0
t (θ∗)

εh(ε)
– u′ ∂X0

t
∂θ

∣
∣∣
∣
θ=θ∗

)2

α(dt)

≤ Tκ2
∫ T

0

(
Xε

t – X0
t (θ∗)

εh(ε)

)2

α(dt).

Thus, for sufficiently small δ > 0,

P
(

|J3| ≥ δ

4

)
≤ P

((∫ T

0

(
Xε

t – X0
t (θ∗)

εh(ε)

)2

dt
) 1

2 ≥ δ

4
√

Tκ

)
. (33)

One can easily check that (A2)–(A3) imply Assumption (A) of [6]. By Lemma 4, the
stochastic process (Xε

t –X0
t (θ∗))/εh(ε) satisfies the law of iterated logarithm on C([0, T];R)

with the rate function I(·), that is,

lim sup
ε→0

ρ

(
Xε

t – X0
t (θ∗)

√
2ε log log(ε–1 ∨ 3)

, K1

)
= 0, a.e.
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and

P
(

ω : C
({

Xε
t – X0

t√
2ε log log(ε–1 ∨ 3)

})
= K1

)
= 1,

where K1 = {g : I(g) ≤ 1
2 } and

I(g) := inf
φ∈H:g=Yφ

t

{
1
2

∫ T

0

∣∣φ̇(s)
∣∣2 ds

}
.

Here H is defined in (12) and Y φ in (13).
The invariance principle (see Theorem 4.3 of [9]) yields that the stochastic process

∫ T

0

1
εh(ε)

(
Xε

t – X0
t
(
θ∗))∂X0

t
∂θ

∣∣
∣∣
θ=θ∗

α(dt)

satisfies the law of the iterated logarithm with rate function I∗(·), that is,

lim sup
ε→0

ρ

(∫ T

0

1
εh(ε)

(
Xε

t – X0
t
(
θ∗))∂X0

t
∂θ

∣
∣∣
∣
θ=θ∗

α(dt), K
)

= 0, a.e. (34)

and

P
(

ω : C
({∫ T

0

1
εh(ε)

(
Xε

t – X0
t
(
θ∗))∂X0

t
∂θ

∣
∣∣
∣
θ=θ∗

α(dt)
})

= K
)

= 1, (35)

where K is defined in (11) and

I∗(x) = inf
g∈H

{
I(g) : x =

∫ T

0
g
∂X0

t
∂θ

∣
∣∣
∣
θ=θ∗

α(dt)
}

.

On the other hand, letting κ → 0 in (33), we have

lim sup
ε→0

1
h2(ε)

log P
((∫ T

0

(
Xε

t – X0
t (θ∗)

εh(ε)

)2

α(dt)
) 1

2 ≥ δ

4
√

T

)
= –∞.

Hence, for any δ > 0 and R > 0, there exists an ε0 > 0 such that for all ε ∈ (0, ε0],

P
(∣∣Vε(u) – Gε(u)

∣∣ ≥ h(ε)δ
) ≤ eRh2(ε). (36)

Combining (30) and (34)–(36), by applying Lemma 3, we see that the process (θ̂ ε – θ∗)/
εh(ε) satisfies the law of the iterated logarithm. The proof is completed. �

5 Conclusion
In this paper, we discussed the convergence rate on the estimators θ̂ ε converging to the
true value. A simple example was given to test the feasibility of this result. Due to the com-
plexity and minimization of the convex process, we did not conduct an extensive simula-
tion study to identify these stochastic diffusion processes and illustrate the finite perfor-
mance of the proposed method. Recently, we got to know that some novel approaches of
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modeling such as the accurate discretization method [12], two coupled pendulums meth-
ods [4], fractional stochastic modeling [2], and fractional discretization [1] were intro-
duced. Those methods can be helpful when dealing with our simulation at some point.
This will become an important research direction for us in the future.
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