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Abstract
In this paper, we consider a generalization of Horadam sequence {wn} which is
defined by the recurrence relation wn = χ (n)wn–1 + cwn–2, where χ (n) = a if n is even,
χ (n) = b if n is odd with arbitrary initial conditions w0, w1 and nonzero real numbers a,
b and c. As a special case, by taking the initial conditions 0, 1 and 2, b we define the
sequences {un} and {vn}, respectively. The main purpose of this study is to derive
some basic properties of the sequences {un}, {vn} and {wn} by using a matrix
approach.
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1 Introduction
A generalization of the Horadam sequence {wn} is defined by the recurrence relation

wn = χ (n)wn–1 + cwn–2, n ≥ 2, (1.1)

where χ (n) = a if n is even, χ (n) = b if n is odd with arbitrary initial conditions w0, w1

and nonzero real numbers a, b and c. They emerged as a generalization of the best known
sequences in the literature, such as the Horadam sequence, Fibonacci–Lucas sequence,
k-Fibonacci–k-Lucas sequence, Pell–Pell–Lucas sequence, Jacobsthal–Jacobsthal–Lucas
sequence, etc. Here we call the sequence {wn} a generalized bi-periodic Horadam sequence.
In particular, by taking the initial conditions 0, 1 and 2, b we call these sequences a gener-
alized bi-periodic Fibonacci sequence {un} and generalized bi-periodic Lucas sequence {vn},
respectively.

Some modified versions of the sequence {wn} have been studied by several authors. For
the case of w0 = 0, w1 = 1 and c = 1, the sequence {wn} reduces to the bi-periodic Fibonacci
sequence, and some basic properties of this sequence can be found in [4, 10, 18]. Its com-
panion sequence, the bi-periodic Lucas sequence, was studied in [2, 6, 14, 15]. For the
case of c = 1, the sequence {wn} reduces to the bi-periodic Horadam sequence, and sev-
eral properties of this sequence were given in [4, 13]. For a further generalization of the
sequence {wn}, we refer to [1, 9].
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Table 1 Special cases of the sequence {wn}
{wn} {wn(w0,w1;a,b, c)} generalized bi-periodic Horadam sequence

{un} {wn(0, 1;a,b, c)} generalized bi-periodic Fibonacci sequence
{vn} {wn(2,b;a,b, c)} generalized bi-periodic Lucas sequence
{qn} {wn(0, 1;a,b, 1)} bi-periodic Fibonacci sequence [4]
{pn} {wn(2,a;b,a, 1)} bi-periodic Lucas sequence [2]
{Wn} {wn(w0,w1;a,b, 1)} bi-periodic Horadam sequence [4]
{Hn} {wn(w0,w1;p,p, –q)} Horadam sequence [5]
{Fn} {wn(0, 1; 1, 1, 1)} Fibonacci sequence
{Ln} {wn(2, 1; 1, 1, 1)} Lucas sequence
{Fk,n} {wn(0, 1; k, k, 1)} k-Fibonacci sequence
{Lk,n} {wn(0, k; k, k, 1)} k-Lucas sequence
{Pn} {wn(0, 1; 2, 2, 1)} Pell sequence
{PLn} {wn(2, 2; 2, 2, 1)} Pell–Lucas sequence
{Jn} {wn(0, 1; 1, 1, 2)} Jacobsthal sequence
{JLn} {wn(2, 1; 1, 1, 2)} Jacobsthal–Lucas sequence

On the other hand, the matrix method is extremely useful for obtaining some well-
known Fibonacci properties, such as Cassini’s identity, d’Ocagne’s identity, and the con-
volution property. For the detailed history of the matrix technique see [3, 7, 8, 11, 16, 17].
The 2 × 2 matrix representation for the general case of the sequence {wn} was given firstly
in [15], and several properties were obtained for the even indices terms of this sequence.
Then, in [12], the author defined a new matrix identity for the bi-periodic Fibonacci se-
quence as follows:

S :=

[
ab ab
1 0

]
⇒ Sn = (ab)�

n
2 �

[
bζ (n)qn+1 aζ (n)bqn

a–ζ (n+1)qn bζ (n)qn–1

]
, (1.2)

where {qn} is the bi-periodic Fibonacci sequence and ζ (n) is the parity function. By using
this matrix identity, simple proofs of several identities of the bi-periodic Fibonacci and
Lucas numbers were given. One of the main objectives of this study is to generalize the
matrix identity (1.2) for the sequence {wn}.

Similar to the notation of the classical Horadam sequence in [5], we can state several
sequences in terms of the generalized bi-periodic Horadam sequence {wn} := {wn(w0, w1;
a, b, c)} in Table 1.

The outline of this paper as follows: in Sect. 2, inspired by the matrix identity (1.2),
we give analogous matrix representations for the generalized bi-periodic Fibonacci and
the generalized bi-periodic Lucas numbers. Then, we generalize the matrix identity (1.2)
to the generalized bi-periodic Horadam numbers. Thus, one can develop many matrix
identities by choosing appropriate initial values in our matrix formula. We state several
properties of these numbers by using matrix approach which provides a very simple proof.
Section 3 is devoted to obtaining more generalized expressions for the generalized bi-
periodic Horadam numbers, by using the matrix method in [16].

2 Matrix representations for {un}, {vn} and {wn}
First, we define the matrix U := [ ab cb

a 0 ]. For any nonnegative integer n, by using induction,
we have

Un = (ab)�
n
2 �

[
bζ (n)un+1 cba–ζ (n+1)un

aζ (n)un cbζ (n)un–1

]
, (2.1)
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where un is the nth generalized bi-periodic Fibonacci number. Since the matrix U is in-
vertible, then

U–n =
(ab)� n

2 �

(–abc)n

[
cbζ (n)un–1 –cba–ζ (n+1)un

–aζ (n)un bζ (n)un+1

]
.

By using the matrix identity (2.1) and using a similar method to [12, Theorem 1], one
can obtain the following results which give some basic properties of {un}. Note that the
results (1)–(3) can be found in [18, Theorem 9], but here we obtain these identities by
using matrix approach.

Lemma 1 The sequence {un} satisfies the following identities:
(1) ( a

b )ζ (n)u2
n – ( a

b )ζ (n+1)un–1un+1 = a
b (–c)n–1,

(2) ( b
a )ζ (mn+n)umun+1 + ( b

a )ζ (mn+m)cunum–1 = un+m,
(3) ( b

a )ζ (mn+n)unum+1 – ( b
a )ζ (mn+m)umun+1 = (–c)mun–m,

(4) ( b
a )ζ (mn+n)umun–m+1 + c( b

a )ζ (mn)um–1un–m = un.

Now we consider the matrix equality

K :=
1
2

[
ab �

1 ab

]
⇒ Kn =

(ab)� n
2 �

2

[
aζ (n)vn �aζ (n)–1un

aζ (n)–1un aζ (n)vn

]
, (2.2)

where � := a2b2 + 4abc �= 0. By using the method in [12, Theorem 4], one can obtain the
following results which give some relations involving both the generalized bi-periodic Fi-
bonacci and the generalized bi-periodic Lucas numbers.

Lemma 2 The sequences {un} and {vn} satisfy the following identities:
(1) v2

n – �

a2 u2
n = 4( b

a )ζ (n)(–c)n,
(2) vmvn + �

a2 umun = 2( b
a )ζ (n)ζ (m)vn+m,

(3) umvn + unvm = 2( b
a )ζ (n)ζ (m)un+m,

(4) vmvn – �

a2 umun = 2(–c)m( a
b )–ζ (n)ζ (m)vn–m,

(5) unvm – umvn = 2(–c)m( a
b )–ζ (n)ζ (m)un–m,

(6) vn+m + (–c)mvn–m = ( a
b )ζ (n)ζ (m)vmvn,

(7) un+m + (–c)mun–m = ( a
b )ζ (n)ζ (m)unvm.

We define the matrix H := K + abcK–1 = [ 0 �

1 0 ]. It is clear that we have the matrix relation

Kn =
(ab)� n

2 �

2
(
aζ (n)–1unH + aζ (n)vnI

)
. (2.3)

Also from the relation

wn = unw1 + c
(

b
a

)ζ (n)

un–1w0, (2.4)

we have vn = bun + 2c( b
a )ζ (n)un–1. Then we have

Kn = (ab)�
n
2 �(aζ (n)–1unK + cbζ (n)un–1I

)
. (2.5)
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By using the matrix relations (2.3) and (2.5), we give Theorem 1 and Theorem 2, respec-
tively.

Theorem 1 Let D := 1 – aζ (m)vm + (ab)ζ (m)(–c)m �= 0, then

n∑
j=0

(ab)�
mj+r

2 �aζ (mj+r)–1umj+r

=
1
D

(
(ab)�

r
2 �aζ (r)–1(ur – (–c)maζ (m)ζ (r+1)bζ (m)ζ (r)ur–m

)
– (ab)�

mn+m+r
2 �aζ (mn+m+r)–1

× (
umn+m+r + (–c)maζ (m)ζ (mn+m+r+1)bζ (m)ζ (mn+m+r)umn+r

))
,

n∑
j=0

(ab)�
mj+r

2 �aζ (mj+r)vmj+r

=
1
D

(
(ab)�

r
2 �aζ (r)(vr – (–c)maζ (m)ζ (r+1)bζ (m)ζ (r)vr–m

)
– (ab)�

mn+m+r
2 �aζ (mn+m+r)

× (
vmn+m+r + (–c)maζ (m)ζ (mn+m+r+1)bζ (m)ζ (mn+m+r)vmn+r

))
.

Proof It is clear that

I –
(
Km)n+1 =

(
I – Km) n∑

j=0

Kmj.

Since

det
(
I – Km)

= 1 – aζ (m)vm + (ab)ζ (m)(–c)m0 �= 0,

then

(
I – Km)–1 =

1
D

[
1 – aζ (m) vm

2 �aζ (m)–1 um
2

aζ (m)–1 um
2 1 – aζ (m) vm

2

]

=
1
D

((
1 – aζ (m) vm

2

)
I + aζ (m)–1 um

2
H

)
.

By using the matrix identity (2.2), we have

(
I – Km)–1(I –

(
Km)n+1)Kr

=
n∑

j=0

Kmj+r

=

[ ∑n
j=0(ab)�

mj+r
2 �aζ (mj+r) vmj+r

2 �
∑n

j=0(ab)�
mj+r

2 �aζ (mj+r)–1 umj+r
2∑n

j=0(ab)�
mj+r

2 �aζ (mj+r)–1 umj+r
2

∑n
j=0(ab)�

mj+r
2 �aζ (mj+r) vmj+r

2

]
. (2.6)
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On the other hand, we have

(
I – Km)–1(Kr – Kmn+m+r)

=
1
D

((
1 – aζ (m) vm

2

)
I + aζ (m)–1 um

2
H

)(
Kr – Kmn+m+r)

=
1
D

((
1 – aζ (m) vm

2

)(
Kr – Kmn+m+r) + aζ (m)–1 um

2
H

(
Kr – Kmn+m+r))

=
1
D

((
1 – aζ (m) vm

2

)[
X �Y
Y X

]
+ aζ (m)–1 um

2

[
�Y �X
X �Y

])
, (2.7)

where

X := (ab)�
r
2 �aζ (r) vr

2
– (ab)�

mn+m+r
2 �aζ (mn+m+r) vmn+m+r

2
,

Y := (ab)�
r
2 �aζ (r)–1 ur

2
– (ab)�

mn+m+r
2 �aζ (mn+m+r)–1 umn+m+r

2
.

By equating the corresponding entries of (2.6) and (2.7), and using the fifth identity of
Lemma 2, we get the desired result. The remaining result can be proven similarly by using
the fourth identity of Lemma 2. �

Theorem 2 For any nonnegative integers n, r and m with m > 1, we have

umn+r =
a1–ζ (mn+r)

(ab)� mn+r
2 �

n∑
i=0

(
n
i

)
cn–iui

mun–i
m–1ui+rδ[m, n, r, i],

vmn+r =
a1–ζ (mn+r)

(ab)� mn+r
2 �

n∑
i=0

(
n
i

)
cn–iui

mun–i
m–1vi+rδ[m, n, r, i],

where

δ[m, n, r, i] := (ab)�
i+r
2 �+n� m

2 �a–ζ (m+1)i–1+ζ (i+r)bζ (m)(n–i).

Proof By considering the matrix identities (2.5) and (2.2), then equating the corresponding
entries we obtain the desired results. �

Note that Theorem 1 and Theorem 2 can be seen as a generalization of the results in
[11].

Finally, we define the matrix T := [ abw1+cbw0 cbw1
aw1 cbw0

]. By induction we have

TUn = (ab)�
n+1

2 �
[

bζ (n+1)wn+2 cba–ζ (n)wn+1

aζ (n+1)wn+1 cbζ (n+1)wn

]
, (2.8)

where wn is the nth generalized bi-periodic Horadam number.
If we take the determinant of both sides of Eq. (2.8) and taking n → n – 1, we obtain

Cassini’s identity for the sequence {wn}:

(
b
a

)ζ (n)

wn–1wn+1 –
(

b
a

)ζ (n+1)

w2
n = (–1)ncn–1

(
w2

1 – bw0w1 – c
b
a

w2
0

)
. (2.9)
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The matrix T can be written as

T = cbw0I + w1U , (2.10)

where I is the 2 × 2 unit matrix. It is easy to see that

TUn = cbw0Un + w1Un+1. (2.11)

If we equate the corresponding entries of the matrix equality (2.11), we get the identity
(2.4). Also, the generalized bi-periodic Horadam numbers for negative subscripts can be
defined as

w–n = –
aζ (n+1)bζ (n)

c
w–n+1 +

1
c

w–n+2, (2.12)

so that the matrix identity (2.8) holds for every integer n. From (2.11), we have

(–c)nw–n =
(

b
a

)ζ (n)

w0un+1 – w1un, (2.13)

which reduces to

u–n =
(–1)n+1

cn un and v–n =
(–1)n

cn vn (2.14)

for the generalized bi-periodic Fibonacci and Lucas numbers, respectively.

3 More general results for {wn}
Besides the matrix U , the nth power of the matrix A := [ ab abc

1 0 ] also has entries involving
generalized bi-periodic Fibonacci numbers; that is,

An =

[
ab abc
1 0

]n

= (ab)�
n
2 �

[
bζ (n)un+1 cbaζ (n)un

a–ζ (n+1)un cbζ (n)un–1

]
. (3.1)

If n is even, then

An

[
w1

a–1w0

]
= (ab)

n
2

[
wn+1

a–1wn

]
, An

[
cbw2

cw1

]
= (ab)

n
2

[
cbwn+2

cwn+1

]
. (3.2)

By combining Eqs. (3.1) and (3.2) for even n,

[
wn+1

a–1wn

]
=

[
un+1 cbun

a–1un cun–1

][
w1

a–1w0

]
,

[
cbwn+2

cwn+1

]
=

[
un+1 cbun

a–1un cun–1

][
cbw2

cw1

]
.

(3.3)

We get (2.4) by comparing entries in (3.3). We generalize it further as follows.
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Theorem 3 Let n and p be any positive integers. Then

wn+p =
(

b
a

)ζ (n+1)ζ (p)

unwp+1 + c
(

b
a

)ζ (n)ζ (p+1)

un–1wp. (3.4)

Proof Let n and p be even. By (3.2), (3.3),

(ab)
n+p

2

[
wn+p+1

a–1wn+p

]
= An+p

[
w1

a–1w0

]

= (ab)
p
2 An

[
wp+1

a–1wp

]

= (ab)
n+p

2

[
un+1 cbun

a–1un cun–1

][
wp+1

a–1wp

]
. (3.5)

By comparing both entries of the matrices on both sides of (3.5), we get (3.4). Similarly, we
obtain the following equation by (3.2) and (3.3):

[
cbwn+p+2

cwn+p+1

]
=

[
un+1 cbun

a–1un cun–1

][
cbwp+2

cwp+1

]
. (3.6)

By comparing entries of the matrices in (3.6), we get the desired result. �

By Theorem 3, we have the following matrix identities for even n and even p:

[
wn+p+1

a–1wp

]
=

[
un+1 bcun

0 1

][
wp+1

a–1wp

]
, (3.7)

[
cbwn+p+2

cwp+1

]
=

[
un+1 bcun

0 1

][
cbwp+2

cwp+1

]
. (3.8)

The following theorem is a generalization of Catalan’s identity, Cassini’s identity and
d’Ocagne’s identity.

Theorem 4 Let n, p and q be any positive integers, then we have the following identity:

(
b
a

)ζ (n)ζ (p)ζ (q)

wn+pwn+q –
(

b
a

)ζ (n+1)ζ (p)ζ (q)

wnwn+p+q

=
(

b
a

)ζ (n)ζ (p+1)ζ (q+1)

(–c)nupuq

(
w2

1 – bw0w1 –
b
a

cw2
0

)
.

Proof For the case of even n, odd p and odd q, we note that

c
(

wn+pwn+q –
b
a

wnwn+p+q

)
=

[
wn+q a–1wn

][
cwn+p

–bcwn+p+q

]
. (3.9)
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By (3.7) and (3.8), we get the following two equations:

(ab)
n
2
[
wn+q a–1wn

]
= (ab)

n
2
[
wn+1 a–1wn

][
uq 0

bcuq–1 1

]

=
[

w1 a–1w0

] (
AT)n

[
uq 0

bcuq–1 1

]
, (3.10)

(ab)
n+p–1

2

[
cwn+p

–bcwn+p+q

]
=

[
1 0

–bcuq–1 uq

][
0 –1

–abc ab

]n+p–1 [
cw1

–bcw2

]
. (3.11)

We note that

[
uq 0

bcuq–1 1

][
1 0

–bcuq–1 uq

]
= uqI,

[
ab 1
abc 0

][
0 –1

–abc ab

]
= –abcI.

(3.12)

We take the product of equations (3.10) and (3.11), and by using (3.9), (3.12), we get

(ab)n+ p–1
2 c

(
wn+pwn+q –

b
a

wnwn+p+q

)

= uq

[
w1 a–1w0

][
ab 1
abc 0

]n [
0 –1

–abc ab

]n+p–1 [
cw1

–bcw2

]

= (–abc)nuq

[
w1 a–1w0

][
0 –1

–abc ab

]p–1 [
cw1

–bcw2

]

= (–abc)nuq

[
w1 a–1w0

]
(ab)

p–1
2

[
cup–2 –a–1up–1

–bcup–1 up

][
cw1

–bcw2

]
. (3.13)

We compute the following matrix product:

[
w1 a–1w0

][
cup–2 –a–1up–1

–bcup–1 up

][
cw1

–bcw2

]

= c2w2
1up–2 –

b
a

c2w0w1up–1 +
b
a

cw1w2up–1 –
b
a

cw0w2up

= c2w2
1up–2 –

b
a

cw1up–1(cw0 – w2) –
b
a

cw0up(aw1 + cw0)

= c2w2
1up–2 + bcw2

1up–1 – bcw0w1up –
b
a

c2w2
0up

= cw2
1(up–2 + bup–1) – bcw0w1up –

b
a

c2w2
0up

= cw2
1up – bcw0w1up –

b
a

c2w2
0up = cup

(
w2

1 – bw0w1 –
b
a

cw2
0

)
.

We replace it in (3.13) to get the result as desired for the case of even n, odd p and odd q.
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For the case of odd n′, we take n′ = n + 1 and then do a similar computation to the one
above for

(ab)n+ p+1
2

[
bcw(n+1)+p cw(n+1)

][
a–1w(n+1)+q

–w(n+1)+p+q

]

where n is even, p, q are odd.
For the case of even n, even p and odd q, we do a similar computation to the one above

for

(ab)n+ p
2
[

wn+q a–1wn

][
a–1wn+p

–wn+p+q

]
.

For the case of odd n, even p and odd q, we do a similar computation as above for

(ab)n–1+ p
2
[

bcwn+q cwn

][
cwn+p

–bcwn+p+q

]
.

The other cases for even q can be proven similarly. �

We state another two matrix identities for even n:

[
w1 bcw0

]
An = (ab)

n
2
[

wn+1 bcwn

]
,[

a–1w2 cw1

]
An = (ab)

n
2
[
a–1wn+2 cwn+1

]
.

(3.14)

The following result is a generalization of (2) and (4) of Lemma 1.

Theorem 5 For positive integers n and m, we have

(
b
a

)ζ (mn+n)

wn+1wm +
(

b
a

)ζ (mn+m)

cwnwm–1 = w1wm+n +
(

b
a

)ζ (m+n)

cw0wm+n–1.

Proof For even n and odd m, by (3.7) and (3.14),

(ab)
n+m–1

2

(
wn+1wm +

b
a

cwnwm–1

)

= (ab)
n+m–1

2
[
wn+1 bcwn

][
wm

a–1wm–1

]

=
[

w1 bcw0

]
AnAm–1

[
w1

a–1w0

]

=
[

w1 bcw0

]
Am+n–1

[
w1

a–1w0

]

= (ab)
m+n–1

2
[
w1 bcw0

][
wm+n

a–1wm+n–1

]
.
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Hence the result follows. For the case of odd n and even m, we do a similar computation
on

(ab)
n+m–1

2
[

a–1wm cwm–1

][
bcwn+1

cwn

]
.

For even n and even m, we do a similar computation on

(ab)
m+n–2

2
[

a–1wm cwm–1

][
wn+1

a–1wn

]
.

For odd n and odd m, we do a similar computation on

(ab)
m+n–2

2
[

wm bcwm–1

][
bcwn+1

cwn

]
. �

By substituting m = n + 1 in Theorem 5, we get the following corollary, which is a gen-
eralization of the classical result F2

n+1 + F2
n = F2n+1 for Fibonacci numbers.

Corollary 1 For positive integer n, we have

(
b
a

)ζ (n)

w2
n+1 +

(
b
a

)ζ (n+1)

cw2
n = w1w2n+1 +

(
b
a

)
cw0w2n.

By Corollary 1, we prove the following result, which is a generalization of the classical
result F2

n+1 – F2
n–1 = F2n for Fibonacci numbers.

Theorem 6 For positive integer n, we have

w2
n+1 – c2w2

n–1 = aζ (n)bζ (n+1)(w1w2n + cw0w2n–1).

Proof For even n, by Corollary 1,

w2
n+1 – c2w2

n–1 =
(

wn+1 +
b
a

cw2
n

)
–

(
b
a

cw2
n + c2w2

n–1

)

=
(

w1w2n+1 +
b
a

cw0w2n

)
– c

(
w1w2n–1 +

b
a

cw0w2n–2

)

= w1(w2n+1 – cw2n–1) +
b
a

cw0(w2n – cw2n–2)

= bw1w2n + bcw0w2n–1.

For odd n, by Corollary 1,

(
b
a

)2(
w2

n+1 – c2w2
n–1

)
=

b
a

(
b
a

w2
n+1 + cw2

n

)
–

b
a

c
(

w2
n +

b
a

cw2
n–1

)

=
b
a

(
w1w2n+1 +

b
a

cw0w2n

)
–

b
a

c
(

w1w2n–1 +
b
a

cw0w2n–2

)
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=
b
a

(
w1(w2n+1 – cw2n–1) +

b
a

cw0(w2n – cw2n–2)
)

=
b
a

(bw1w2n + bcw0w2n–1).

So the proof is complete after simple algebraic manipulations of both sides of the equa-
tion. �
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