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Abstract
This study investigates the finite-time synchronization of uncertain nonlinear
complex dynamic networks with time-varying delay. For a class of complex network
models with time-varying delay and uncertain system parameters, the time delay
changes infrequently, uncertain terms are unknown but bounded, and the matching
conditions are satisfied. The coupling relationship between nodes is a nonlinear
function with time delay, and the function satisfies the Lipschitz condition. A new
criterion for the finite-time synchronization of a class of complex dynamical networks
with variable delay is obtained, and the upper bound of the time for the system to
achieve synchronization is presented by constructing a suitable Lyapunov–Krasovskii
function, designing a nonlinear controller, and combining analysis techniques, such
as matrix inequality. Finally, the validity of finite-time synchronization is verified
through computer simulation.

Keywords: Complex network; Time-varying delay; Uncertainty; Nonlinear coupling;
Finite-time synchronization

1 Introduction
Many real-world systems, such as a communication system that consists of opulent inter-
acting, interdependent components that are used to accomplish a unified goal of trans-
mitting and receiving signals, can be described using complex network models. This sys-
tem is considered as a complex network, and the units that compose the entire system is
regarded as the nodes of the complex network. The introduction of a complex network
model provides a huge convenience for people to solve many practical problems and has
been extensively investigated [1–3]. Synchronization, as a major feature of complex net-
works, has attracted considerable attention. At present, many different styles of synchro-
nization, such as complete [4], global [5], cluster [6], lag [7], exponential [8], and finite-time
synchronization [9], are available.

Delays regularly occur in complex networks given the limited speed of signal transfor-
mation or other factors. Various phenomena, such as gravitational time delay, signal prop-
agation over long lines, and human stress response, are inevitable in practical complex dy-
namic networks. Therefore, the study of synchronization in complex networks must focus
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on delays to ensure the stability of a system. Many studies on time delay have been recently
conducted. The fractional-order synchronization of complex network systems subjected
to coupling delay was investigated [10]. Sun et al. [11] theoretically analyzed the feasibility
of a complex dynamic network with time delay and discontinuous internal coupling rela-
tionship to achieve synchronization. Ma et al. [12] proposed several sufficient conditions
that can facilitate synchronization of a single complex network with Markovian jump and
time-varying delay by using a pinning control strategy. Wang et al. [13] obtained suffi-
cient conditions for the synchronization of complex systems with time-varying delay by
adopting the pinning control strategy.

In practical applications, the system is often expected to reach the synchronous state
in a short time. In terms of synchronization speed, exponential synchronization, which
can only be synchronized in an infinite time, has received widespread attention due to
its fast convergence speed. However, the application of the system will be limited when
the system can only be synchronized within an infinite time. Thus, finite-time synchro-
nization of complex networks has attracted considerable attention in recent years. Many
studies have been conducted recently on finite-time synchronization of complex networks
with time delay. Li et al. [14] realized the synchronization of finite and fixed time delays
of a complex dynamic network simultaneously by designing a new controller and using
aperiodic intermittent control and obtained several sufficient conditions for system syn-
chronization through eigenvalue characterization. Zhang and Shen et al. [15] proposed
several new criteria that can ensure multiple complex systems to achieve finite-time syn-
chronization under periodic or aperiodic discontinuous controllers. Li et al. [16] obtained
several sufficient conditions for finite-time synchronization of nonlinearly coupled net-
works with time-varying delay by performing a new analysis. The finite-time non-fragile
synchronization of stochastic complex networks was evaluated in [17]. Xiao and Gan [18]
used a continuous finite-time controller and combined linear feedback with finite-time
control theory to accomplish the finite-time synchronization of a complex dynamic net-
work with delay.

Except for time-varying delay, fluctuation of system parameters, interference of the ex-
ternal environment, and other phenomena are common and unavoidable, thereby possibly
affecting the synchronization performance and stability of a system. In addition, the dif-
ference between component and standard parameters may cause changes in other data.
Therefore, the study of an uncertain system has huge theoretical importance and much
practical value. Few results have been obtained on this issue. For example, in [19], the un-
known disturbance and coupling delay were analyzed by employing fractional-order low-
pass filter and Luenberger-type state observer. Reference [20] solved the robust finite-time
synchronization of an uncertain Markovian complex dynamic network with time-varying
delay and reaction-diffusion terms. By designing a feedback controller with update law,
Mei [21] evaluated a class of finite-time synchronization problems of a drive–response
system that can identify topology structure and uncertain parameters simultaneously and
obtained a sufficient condition that can ensure a system to achieve synchronization.

Collectively, the finite-time synchronization of uncertain complex dynamical networks
with time-varying delay must be investigated in theoretical and practical applications. Few
studies have considered the time-varying delay and uncertainty of a system simultane-
ously. Zhao and Zheng [22] obtained several new results on finite-time parameter iden-
tification and synchronization problems of an uncertain complex dynamic network with
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disturbance and constant time delay. Wang et al. [23] obtained several sufficient condi-
tions for an uncertain complex network with delay by treating many coupling terms as zero
terms to attain a finite-time chaotic synchronization state. Reference [24] combined finite-
time robust tracking theory with composite nonlinear feedback control and obtained a
new criterion of a complex network with external disturbance, parametric uncertainty,
and delay to achieve finite-time synchronization. Chaotic systems are considered in Ref.
[23, 24]. Yang et al. [25] assessed various finite-time cluster synchronization problems of
a T-S fuzzy complex network with nonlinear and probabilistic coupling delays. Zhang and
Han [26] realized the finite-time synchronization of two complex networks with differ-
ent poles, time-varying coupling delays, uncertain parameters, and uncertain topology
through a special method of unilateral coupling control; however, the coupling in the in-
vestigated system was linear.

Given the above-mentioned analysis, the present study investigates the finite-time syn-
chronization problems for uncertain complex dynamical networks with time-varying de-
lays. Considering the nonlinear internal coupling of nodes of complex networks in many
practical models, the internal components must be nonlinear when the network nodes
are used as running components. Therefore, in this paper, the coupling relationship be-
tween nodes in the system is considered as a nonlinear function and satisfies Lipschitz’s
condition. In addition, the uncertain term contained in the system is unknown bounded,
satisfying the matching condition. Several sufficient conditions for the finite-time syn-
chronization of the uncertain complex dynamic network with time-varying delay are ob-
tained by designing practical controllers. Numerical simulation is performed to verify the
effectiveness of the proposed method.

The highlights of this study are presented as follows:
1. A new class of complex dynamic network models with finite-time synchronization

control is investigated. The uncertainty of the nodes, the nonlinear coupling between
different nodes, and the time-varying coupling delay are all included in this model.

2. A non-fragile control method is proposed and new conclusions are obtained on the
basis of the new complex network model. That is, some sufficient conditions for the
systems are obtained to achieve finite-time synchronization, and the upper bound of
the time required to achieve synchronization is also found.

3. For the proposed complex network model with time-varying delay, Jensen’s
inequality and other analysis techniques are used to estimate the maximum time
delay allowed for the synchronization under the condition that the finite-time
synchronization of the system is realized and the parameters are known.

The remainder of this paper is organized as follows. The model of an uncertain complex
dynamic network with nonlinear coupling and some preliminaries is introduced in Sect. 2.
Some sufficient conditions for the system to achieve finite-time synchronization are ob-
tained in Sect. 3. Several numerical examples are given in Sect. 4 to verify the effectiveness
of the theoretical results. Finally, a summary is presented in Sect. 5.

2 Preliminaries
An uncertain complex network with time-varying delay is considered as follows:

ẋi(t) =
(
A + �A(t)

)
xi(t) + f

(
xi(t)

)
+

N∑

j=1

cijg
(
xj(t)

)
+

N∑

j=1

dijg
(
xj
(
t
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– τ (t)
))

+ ui(t), i = 1, 2, . . . , N , (1)

where xi(t) = (xi1(t), xi2(t), . . . , xin(t))T ∈ Rn is the state variable of the ith node, f (x) ∈ Rn

is a continuous differentiable nonlinear vector function describing the dynamic charac-
teristics of nodes, g(x) ∈ Rn is a smooth nonlinear vector function representing the in-
ternal coupling between node state variables, C = (cij)N×N , D = (dij)N×N are externally
coupling parameters that represent the topology structure and coupling strength of the
network. If there is interaction between node i and node j, cij �= 0, dij �= 0, otherwise, cij = 0,
dij = 0. In addition, diagonal elements of the matrices C and D are defined as follows:
cii = –

∑N
j=1,i�=j cij, dii = –

∑N
j=1,i�=j dij.

A is a given constant matrix, and �A(t) is an uncertain matrix but norm bounded, which
satisfies

�A(t) = HF(t)E1, (2)

where H , E1 are known constant matrices with appropriate dimensions, F(t) is unknown
time-varying matrix function, and satisfying that FT (t)F(t) ≤ I , I is an identity matrix with
suitable dimensions.

Remark 1 Many systems can be characterized by model (1) in practical life. For example,
the epidemic disease spread model can be represented by model (1). In this model, ev-
eryone can be seen as a node in the network, and disease-related factors are regarded as
the components of the nodes. The relationship between the components is nonlinear, and
uncertainties are found in the parameters of the system. The influence between people is
nonlinear. In addition, the spread of a virus from person to person and the onset of indi-
vidual diseases will have a certain time delay. Owing to the difference in the strength of
each person’s physical resistance, time delay produced by different individuals is different
and can be regarded as time-varying. The nonlinear coupling is ubiquitous in most prac-
tical systems. Several scholars have investigated the nonlinear coupling between various
factors within the node [10, 15, 16, 27, 28].

Remark 2 Existing studies on the complex dynamic network have rarely considered para-
metric uncertainty and time-varying delay simultaneously. Only certain literature [29–34]
has both investigated parametric uncertainty and time-varying delay. For example, Ref.
[29] evaluated the exponential synchronization of complex networks with uncertain pa-
rameters; Ref. [30] assessed a complex network with uncertain internal coupling matrix;
in addition, Ref. [31, 33] investigated a complex network with uncertain delay; Ref. [32]
analyzed robust synchronization with unmodeled dynamic behavior functions, and Ref.
[34] considered internal and multiple time-varying coupling time delays simultaneously.
However, all of the above-mentioned literature on synchronization was based on infinite
time.

Definition 1 ([35]) The delayed dynamic networks (1) is said to be synchronized in finite
time, if there exists a constant t∗ > 0 (t∗ depends on the initial state vector value x(0) =
(xT

1 (0), xT
2 (0), . . . , xT

N (0))T ), for any t ≥ t∗, such that

lim
t→t∗

N∑

i=1

∥∥xi(t) – s(t)
∥∥ = 0,
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∥∥xi(t) – s(t)
∥∥ = 0, t ≥ t∗ (i = 1, . . . , N)

where s(t) = (s1(t), s2(t), . . . , sn(t))T ∈ Rn is the particular solution of the system ṡ(t) = (A +
�A(t))s(t) + f (s(t)).

Assume that ei(t) = xi(t) – s(t) is the synchronization error. According to system (1), we
can get the error system as follows:

ėi(t) =
(
A + �A(t)

)
ei(t) + f

(
xi(t)

)
– f

(
s(t)

)
+

N∑

j=1

cijφ
(
ej(t)

)

+
N∑

j=1

dijφ
(
ej
(
t – τ (t)

))
+ ui(t). (3)

Note φ(ej(t)) = g(xj(t)) – g(s(t)), φ(ej(t – τ (t))) = g(xj(t – τ (t))) – g(s(t – τ (t))).
ui(t) is the control input function in model (1). This paper designs a controller that en-

ables system (1) to achieve finite-time synchronization:

ui(t) = –h1ei(t) – h2 sign
(
ei(t)

)∣∣ei(t)
∣∣θ –

[
h3

(∫ t

t–τ (t)
eT

i (s)Siei(s) ds
) 1+θ

2

+ h4

(
τm

∫ 0

–τm

∫ t

t+ϑ

eT
i (s)Qiei(s) ds dϑ

) 1+θ
2
]

· ei(t)
‖ei(t)‖2 , (4)

where h1, h2, h3, h4 are positive constants, sign(ei(t)) =
{ –1, ei(t) < 0,

0, ei(t) = 0,
1, ei(t) > 0.

Remark 3 Some literature works have recently investigated such controllers. The finite
and fixed time synchronization of complex networks with delay were evaluated in [14].
Finite-time synchronization of multi-layer nonlinear complex networks was achieved by
using intermittent feedback control in [15], and linear complex networks were assessed
under the same state in [36]. The problem of adaptive finite-time outer synchronization
between two complex networks was solved in [37]. Finite-time synchronization of chaotic
systems was investigated in [38]. However, system uncertainty is disregarded in the above-
mentioned literature.

To end this section, we introduce some assumptions and lemmas for the proof of the
main results in the paper.

Assumption 1 Here τ (t) denotes the internal time-varying delay satisfying

0 ≤ τ0 ≤ τ (t) ≤ τm, μ0 ≤ τ̇ (t) ≤ μm < +∞.

Assumption 2 For the vector-valued function f (t, x(t)), assume that there exist positive
constants L > 0 such that f satisfies the semi-Lipschitz condition

(
y(t) – x(t)

)T(f
(
t, y(t)

)
– f

(
t, x(t)

)) ≤ L
(
y(t) – x(t)

)T(y(t) – x(t)
)
.
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Lemma 1 (See [39] Jensen’s inequality) For any constant matrix Z ∈ Rn×n, Z = ZT > 0, two
scalars g2 ≥ g1 > 0 such that the following integration is well defined, then

–(g2 – g1)
∫ t–g1

t–g2

xT (s)Zx(s) ds ≤ –
(∫ t–g1

t–g2

x(s) ds
)T

Z
(∫ t–g1

t–g2

x(s) ds
)

.

Lemma 2 (See [40]) Assume that m1, m2, . . . , mN ≥ 0. It follows that

N∑

i=1

mq
i ≥

( N∑

i=1

mi

)p

, 0 < p ≤ 1.

Lemma 3 (See [41]) Assume that a continuous, positive-definite function V (t) satisfies the
following differential inequality:

V̇ (t) ≤ –ωV ρ(t), ∀t ≥ t0, V (t0) ≥ 0,

where ω > 0, 0 < ρ < 1 are constants. Then, for any given t0, V (t) satisfies the following
inequality:

⎧
⎨

⎩
V 1–ρ(t) ≤ V 1–ρ(t0) – ω(1 – ρ)(t – t0), t0 ≤ t ≤ t∗,

V (t) = 0, t ≥ t∗,

with t∗ given by t∗ = t0 + V 1–ρ (t0)
ω(1–ρ) .

Lemma 4 (See [42] Schur complement) For a given symmetric matrix S = ST = [ S11 S12
∗ S22

],
where S11 ∈ Rn×n, the following conditions are equivalent:

1. S < 0;
2. S11 < 0, S22 – ST

12S–1
11 S12 < 0;

3. S22 < 0, S11 – S12S–1
22 ST

12 < 0.

3 Main results
This section focuses on the finite-time synchronization of the complex dynamic network
(1) with the control input (4), and some sufficient conditions can be obtained from the
following theorems to ensure that the time-varying delay system (1) achieves finite-time
synchronization.

Theorem 1 If Assumptions 1 and 2 are all established, positive scalars ζi1, ζ1 and ζ2 are
achieved, and the positive symmetric matrices Pi, Si and Qi are assumed, satisfying

⎡

⎢
⎣

Ωi1 0 0
∗ Ωi2 0
∗ ∗ –Qi

⎤

⎥
⎦ < 0, (5)

where

Ωi1 = PiA + AT Pi + ζi1PiHHT Pi +
1
ζi1

ET
1 E1 + 2L1λmax(Pi)I + ζ1

( N∑

j=1

c2
ij

)

PiPT
i
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+
NL2

2
ζ1

I + ζ2

( N∑

j=1

d2
ij

)

PiPT
i + Si – 2h1Pi + τ 2

mQi,

Ωi2 =
NL2

3
ζ2

I –
(
1 – τ̇ (t)

)
Si,

then the error system (3) can realize synchronization under the action of controller (4) at a
finite time t∗,

t∗ =
V 1–θ

2 (0)
M(1 – θ )

,

where M = min(h2
λmin(P)

λ
1+θ

2
max (P)

, h3λmin(P), h4λmin(P)), P = diag(P1, P2, . . . , PN ).

Proof Construct the Lyapunov–Krasovskii functionV (t) =
∑3

i=1 Vi(t), where V1(t) =
∑N

i=1 eT
i (t)Piei(t), V2(t) =

∑N
i=1

∫ t
t–τ (t) eT

i (s)Siei(s) ds, V3(t) = τm
∑N

i=1
∫ 0

–τm

∫ t
t+ϑ

eT
i (s) ×

Qiei(s) ds dϑ .
The derivative of V along the trajectories (3) and the controller (4) is given by

V̇1(t) =
N∑

i=1

2eT
i (t)Piėi(t)

=
N∑

i=1

2eT
i (t)Pi

[
(
A + �A(t)

)
ei(t) +

(
f
(
xi(t)

)
– f

(
s(t)

))
+

N∑

j=1

cijφ
(
ej(t)

)

+
N∑

j=1

dijφ
(
ej
(
t – τ (t)

))
– h1ei(t) – h2 sign

(
ei(t)

)∣∣ei(t)
∣∣θ –

[
h3

(∫ t

t–τ (t)
eT

i (s)

× Siei(s) ds
) 1+θ

2
+ h4

(
τm

∫ 0

–τm

∫ t

t+ϑ

eT
i (s)Qiei(s) ds dϑ

) 1+θ
2
]

· ei(t)
‖ei(t)‖2

]

,

2eT
i (t)Pi

(
A + �A(t)

)
ei(t) = eT

i (t)
[
PiA + AT Pi

]
ei(t) + 2eT

i (t)PiHF(t)E1ei(t),

2eT
i (t)PiHF(t)E1ei(t) ≤ ζi1eT

i (t)PiHHT PT
i ei(t) +

1
ζi1

eT
i (t)ET

1 E1ei(t).

According to Assumption 2, we can get

2eT
i (t)Pi

(
f
(
xi(t)

)
– f

(
s(t)

)) ≤ 2L1λmax(Pi)eT
i (t)ei(t),

N∑

i=1

2eT
i (t)Pi

N∑

j=1

cijφ
(
ej(t)

) ≤
N∑

i=1

[

ζ1eT
i (t)

( N∑

j=1

c2
ij

)

PiPT
i ei(t) +

NL2
2

ζ1
eT

i (t)ei(t)

]

,

N∑

i=1

2eT
i (t)Piui

=
N∑

i=1

2eT
i (t)Pi

[
–h1ei(t) – h2sign

(
ei(t)

)∣∣ei(t)
∣
∣θ –

[
h3

(∫ t

t–τ (t)
eT

i (s)

× Siei(s) ds
) 1+θ

2
+ h4

(
τm

∫ 0

–τm

∫ t

t+ϑ

eT
i (s)Qiei(s) ds dϑ

) 1+θ
2
]

· ei(t)
‖ei(t)‖2

]
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≤ –2h1

N∑

i=1

eT
i (t)Piei(t) – 2

N∑

i=1

[
h2λmin(Pi)

∣
∣ei(t)

∣
∣θ+1 + h3λmin(Pi)

(∫ t

t–τ (t)
eT

i (s)

× Siei(s) ds
) θ+1

2
+ h4λmin(Pi)

(
τm

∫ 0

–τm

∫ t

t+ϑ

eT
i (s)Qiei(s) ds dϑ

) 1+θ
2
]

≤ –2h1

N∑

i=1

eT
i (t)Piei(t) – 2M

N∑

i=1

[(
eT

i (t)Piei(t)
) θ+1

2 +
(∫ t

t–τ (t)
eT

i (s)Siei(s) ds
) θ+1

2

+
(

τm

∫ 0

–τm

∫ t

t+ϑ

eT
i (s)Qiei(s) ds dϑ

) 1+θ
2
]

,

where M = min(h2
λmin(P)

λ
1+θ

2
max (P)

, h3λmin(P), h4λmin(P)). We have

V̇2(t) =
N∑

i=1

[
eT

i (t)Siei(t) –
(
1 – τ̇ (t)

)
eT

i
(
t – τ (t)

)
Siei

(
t – τ (t)

)]
.

According to Lemma 1,

V̇3(t) = τ 2
m

N∑

i=N

eT
i (t)Qiei(t) – τm

N∑

i=1

∫ t

t–τm

eT
i (s)Qiei(s) ds

≤ τ 2
m

N∑

i=N

eT
i (t)Qiei(t) –

N∑

i=1

(∫ t

t–τm

eT
i (s) ds

)T

Qi

(∫ t

t–τm

ei(s) ds
)

,

V̇ (t) ≤
N∑

i=1

eT
i (t)

[

PiA + AT Pi + ζi1PiHHT Pi +
1
ζi1

ET
1 E1 + 2L1λmax(Pi)I + τ 2

mQi

+ ζ1

( N∑

j=1

c2
ij

)

PiPT
i +

NL2
2

ζ1
I + ζ2

( N∑

j=1

d2
ij

)

PiPT
i + Si – 2h1λmin(Pi)I

]

ei(t)

+
N∑

i=1

eT
i
(
t – τ (t)

)
[

NL2
3

ζ2
I –

(
1 – τ̇ (t)

)
Si

]
ei
(
t – τ (t)

)

–
N∑

i=1

(∫ t

t–τm

eT
i (s) ds

)T

Qi

(∫ t

t–τm

ei ds
)

– 2M
N∑

i=1

[(
eT

i (t)Piei(t)
) θ+1

2

+
(∫ t

t–τ (t)
eT

i (s)Siei(s) ds
) θ+1

2
+
(

τm

∫ 0

–τm

∫ t

t+ϑ

eT
i (s)Qiei(s) ds dϑ

) 1+θ
2
]

=
N∑

i=1

ξT
i (t)Ωξi(t) – 2M

N∑

i=1

[
(
eT

i (t)Piei(t)
) θ+1

2 +
(∫ t

t–τ (t)
eT

i (s)Siei(s) ds
) θ+1

2

+
(

τm

∫ 0

–τm

∫ t

t+ϑ

eT
i (s)Qiei(s) ds dϑ

) 1+θ
2
]

,

ξi(t) =
[
eT

i (t) eT
i (t – τ (t)) (

∫ t
t–τ0

eT
i (s) ds)T

]T
, Ω =

⎡

⎢
⎣

Ωi1 0 0
∗ Ωi2 0
∗ ∗ –Qi

⎤

⎥
⎦ ,
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Ωi1 = PiA + AT Pi + ζi1PiHHT Pi +
1
ζi1

ET
1 E1 + 2L1λmax(Pi)I + ζ1

( N∑

j=1

c2
ij

)

PiPT
i

+
NL2

2
ζ1

I + ζ2

( N∑

j=1

d2
ij

)

PiPT
i + Si – 2h1Pi + τ 2

mQi,

Ωi2 =
NL2

3
ζ2

I –
(
1 – τ̇ (t)

)
Si.

According to Lemma 2,

(
eT

i (t)Piei(t)
) θ+1

2 +
(∫ t

t–τ (t)
eT

i (s)Siei(s) ds
) θ+1

2
+
(

τm

∫ 0

–τm

∫ t

t+ϑ

eT
i (s)Qiei(s) ds dϑ

) 1+θ
2

≥
[(

eT
i (t)Piei(t)

)
+
∫ t

t–τ (t)
eT

i (s)Siei(s) ds +
(

τm

∫ 0

–τm

∫ t

t+ϑ

eT
i (s)Qiei(s) ds dϑ

)] θ+1
2

,

V̇ (t) ≤
N∑

i=1

ξT
i (t)Ωξi(t) – 2MV

θ+1
2 (t).

If the inequality (5) holds, then

V̇ (t) ≤ –2MV
θ+1

2 (t).

From Lemma 3, we can conclude that the system (1) can reach synchronization in a finite
time t∗, and the time t∗ is given by

t∗ =
V 1–θ

2 (0)
M(1 – θ )

,

where

V (0) =
N∑

i=1

[
eT

i (0)Piei(0) +
∫ 0

–τ (0)
eT

i (s)Siei(s) ds +
∫ 0

–τm

∫ 0

ϑ

eT
i (s)Qiei(s) ds dϑ

]
. �

Remark 4 Numerous achievements on finite-time synchronization of complex networks
have been accomplished, and few studies have considered parametric uncertainty and
time-varying delay simultaneously. Reference [12] investigated the robust and stochastic
finite-time synchronization of Markovian complex network with reaction-diffusion terms.
Reference [20] discussed a neural network. For the system model studied in Ref. [21], the
internal coupling relationship is linear, which is different from our model and method.
Reference [25] evaluated the cluster synchronization of a fuzzy complex network.

Theorem 2 Assume that there are symmetric positive-definite matrices P̃i, S̃i, Qi and pos-
itive scalars ζi1, ζ1, ζ2 so that the following inequalities hold:

⎡

⎢
⎢⎢
⎢⎢
⎢
⎣

Ω̃i1 P̃iET
1 L2P̃i P̃i τmP̃i

E1P̃i –ζi1I 0 0 0
L2P̃i 0 – ζ1

N I 0 0
P̃i 0 0 –S̃i 0

τmP̃i 0 0 0 –Qi

⎤

⎥
⎥⎥
⎥⎥
⎥
⎦

< 0, (6)
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[
–(1 – τ̇ (t))Si L3S̃i

L3S̃i – ζ2
N I

]

< 0, (7)

–Qi < 0, (8)

where

Ω̃i1 = AP̃i + P̃iAT + ζi1HHT +
2L1I

λmin(P̃i)
+ ζ1

( N∑

j=1

c2
ij

)

I + ζ2

( N∑

j=1

d2
ij

)

I – 2h1P̃i.

Then uncertain complex networks can achieve finite-time synchronization.

Proof According to Lemma 4, the matrix inequality (5) is equal to the inequalities:

⎡

⎢
⎢⎢
⎢⎢
⎢
⎣

Ω̂i1 ET
1 L2I I τmI

E1 –ζi1I 0 0 0
L2I 0 – ζ1

N I 0 0
I 0 0 –S–1

i 0
τmI 0 0 0 –Qi

⎤

⎥
⎥⎥
⎥⎥
⎥
⎦

< 0, (9)

[
–(1 – τ̇ (t))Si L3I

L3I – ζ2
N I

]

< 0, (10)

–Qi < 0. (11)

Here Ω̂i1 = PiA + AT Pi + ζi1PiHHT Pi + 2L1λmax(Pi)I + ζ1(
∑N

j=1 c2
ij)PiPT

i + ζ2(
∑N

j=1 d2
ij)PiPT

i –
2h1Pi.

Premultiplying and postmultiplying both sides of (9)–(10) by diag([P–1
i , I, I, I, I]),

diag([S–1
i , I]), respectively, it is clear that inequalities (9)–(10) are equal to

⎡

⎢
⎢⎢
⎢⎢
⎢
⎣

Ω̌i1 P–1
i ET

1 L2P–1
i P–1

i τmP–1
i

E1P–1
i –ζi1I 0 0 0

L2P–1
i 0 – ζ1

N I 0 0
P–1

i 0 0 –S–1
i 0

τmP–1
i 0 0 0 –Qi

⎤

⎥
⎥⎥
⎥⎥
⎥
⎦

< 0, (12)

[
–(1 – τ̇ (t))Si L3S–1

i

L3S–1
i – ζ2

N I

]

< 0, (13)

where Ω̌i1 = AP–1
i + P–1

i AT +ζi1HHT + 2L1λmax(P–1
i )I +ζ1(

∑N
j=1 c2

ij)I +ζ2(
∑N

j=1 d2
ij)I – 2h1P–1

i .
Let P–1

i = P̃i, S–1
i = S̃i, then (12)–(13) are equal to (6)–(7). �

Remark 5 According to Theorem 1, the maximum value of time delay τm, which ensures
finite-time synchronization is realized in the system, can be calculated, and the maximum
value can be obtained by optimizing LMI (6). At present, some scholars have studied this
problem, but few have applied this method to the problems of finite-time synchronization
in complex networks. The extended dissipative synchronization of complex dynamic net-
works was studied in [43]. Yu [44] proposed a kind of mixed topologies with time delay,
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Shi [45] researched the outer synchronization problem of delayed complex network un-
der pinning control, Wang [46] studied the synchronization problem of two nonidentical
complex-valued neural networks, Huang [47] obtained some sufficient conditions for the
Markovian jump complex networks to achieve finite-time H∞ sampled-data synchroniza-
tion. However, this work did not consider the problem of time-delay related finite-time
synchronization, which is due to the difficulty of controller design.

In the proof of Theorem 1, for the system (1), if P is an identity matrix when constructing
the Lyapunov–Krasovskii function, then the following conclusion can be reached easily.

Corollary 1 Under Assumptions 1 and 2, positive scalars εi1, ε1, ε2 are known. If there
exist positive-definite symmetric matrices Si and Qi satisfy

⎡

⎢
⎣

Ωi1 0 0
0 Ωi2 0
∗ ∗ –Qi

⎤

⎥
⎦ < 0, (14)

where

Ωi1 = A + AT + εi1HHT +
1
εi1

ET
1 E1 + 2L1I + ε1

( N∑

j=1

c2
ij

)

I +
NL2

2
ε1

I

+ ε2

( N∑

j=1

d2
ij

)

I + Si – 2h1I + τ 2
mQi,

Ωi2 =
NL2

3
ε2

I –
(
1 – τ̇ (t)

)
Si.

Then the error system (3) can reach synchronization at finite time. The time can be esti-
mated as

t∗ =
V 1–θ

2 (0)
M(1 – θ )

,

where M = min(h2, h3, h4).

No uncertainty exists in the system when �A(t) = 0, and the equation of state at this
time is

ẋi(t) = Axi(t) + f
(
xi(t)

)
+

N∑

j=1

cijg
(
xj(t)

)
+

N∑

j=1

dijg
(
xj
(
t – τ (t)

))
+ ui(t),

i = 1, 2, . . . , N . (15)

The error state function is

ėi(t) = Aei(t) +
(
f
(
xi(t)

)
– f

(
s(t)

))
+

N∑

j=1

cijφ
(
ej(t)

)
+

N∑

j=1

dijφ
(
ej
(
t

– τ (t)
))

+ ui(t). (16)
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Corollary 2 Suppose that there exist positive-definite matrices Pi, Si and Qi, positive
scalars ε1, ε2 to make the following inequality holds:

⎡

⎢
⎣

Ωi1 0 0
0 Ωi2 0
∗ ∗ –Qi

⎤

⎥
⎦ < 0, (17)

where

Ωi1 = PiA + AT Pi + 2L1λmax(Pi)I + ε1

( N∑

j=1

c2
ij

)

PiPT
i +

NL2
2

ε1
I + ε2

( N∑

j=1

d2
ij

)

PiPT
i

+ Si – 2h1Pi + τ 2
mQi,

Ωi2 =
NL2

3
ε2

I –
(
1 – τ̇ (t)

)
Si.

Then we can draw the conclusion that the error system (16) can realize finite-time syn-
chronization. And the settling time

t∗ =
V 1–θ

2 (0)
M(1 – θ )

, (18)

where M = min(h2
λmin(Pi)

λ
1+θ

2
max (P)

, h3λmin(P), h4λmin(P)).

Remark 6 Finite-time synchronization of complex network models without uncertainties
has been investigated and has obtained considerable results. However, these studies are
different from the model or method proposed in this paper. For example, in the network
model of Ref. [18], the coefficient matrix of the dynamic characteristic function is an iden-
tity matrix, and the coupling relationship between the nodes is a linear matrix. Reference
[28] evaluated a class of neural networks. Reference [48] assessed unilateral coupling of
complex networks. Reference [49] investigated hybrid projective synchronization.

In Theorem 1, we design the controller with indeterminate exponential terms θ , in which
only condition 0 < θ < 1 must be satisfied. However, in some cases, we can directly specify
the exponential value in the controller, so that we can calculate the time required for the
system to achieve synchronization. Especially, when θ = 0, the controller takes the follow-
ing form:

ui(t) = –h1ei(t) – h2 sign
(
ei(t)

)
Π – h3

(∫ t

t–τ (t)
eT

i (s)Siei(s) ds
) 1

2 · ei(t)
‖e(t)‖2

– h4

(
τm

∫ 0

–τm

∫ t

t+ϑ

eT
i (s)Qiei(s) ds dϑ

) 1
2 · ei(t)

‖ei(t)‖2 , (19)

where Π = (1, 1, . . . , 1)T
︸ ︷︷ ︸

n

.
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Corollary 3 Under Assumptions 1 and 2, and when positive scalars εi1, ε1 and ε2 are avail-
able, assume that there exist positive-definite symmetric matrices Pi, Si and Qi, so that

⎡

⎢
⎣

Ωi1 0 0
∗ Ωi2 0
∗ ∗ –Qi

⎤

⎥
⎦ < 0, (20)

where

Ωi1 = PiA + AT Pi + εi1PiHHT Pi +
1
εi1

ET
1 E1 + 2L1λmin(Pi)I + ε1

( N∑

j=1

c2
ij

)

PiPT
i

+
NL2

2
ε1

I + ε2

( N∑

j=1

d2
ij

)

PiPT
i + Si – 2h1Pi + τ 2

mQi,

Ωi2 =
NL2

3
ε2

I –
(
1 – τ̇ (t)

)
Si,

then the error system (3) can achieve synchronization in finite time under the controller
(19):

t∗ =
V 1

2 (0)
M

,

where M = min(h2
λmin(P)

λ
1
2
max(P)

, h3λmin(P), h4λmin(P)).

In the actual application of the system, implementing the controller is affected by dif-
ferent factors, such as hardware and software. Thus, the controller parameters have an
uncertain change, and this change causes the performance of the system to decline or
destroy the original stability. The system becomes fragile when a traditional controller is
used. Thus, we use a non-fragile controller. A good control performance can be main-
tained under the uncertainty that the controller allows through this method. Then the
feasibility of the theory is proven. When the controller is expressed in the following form:

ui(t) = –
(
Ki + �Ki(t)

)
ei(t) – h1 sign

(
ei(t)

)
Π –

[
h2

(∫ t

t–τ (t)
eT

i (s)Si

× ei(s) ds
) 1

2
+ h3

(
τm

∫ 0

–τm

∫ t

t+ϑ

eT
i (s)Qiei(s) ds dϑ

) 1
2
]

· ei(t)
‖ei(t)‖2 , (21)

where Ki ∈ Rn×n is the constant control gain, h1, h2, h3 > 0,and �Ki(t) are the norm-
bounded uncertain matrix of the system, which satisfies �K(t) = HF(t)E2, then, for the
complex dynamic network (1), we can draw the following conclusion.

Theorem 3 Assume that Assumptions 1 and 2 are established, εi1, εi2, ε1 and ε2 are known
positive scalars, and positive-definite matrices Ki, Pi, Si and Qi exist to satisfy the following
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requirements:

⎡

⎢
⎣

Ωi1 0 0
∗ Ωi2 0
∗ ∗ –Qi

⎤

⎥
⎦ < 0, (22)

where

Ωi1 = PiA + AT Pi + εi1PiHHT Pi +
1
εi1

ET
1 E1 + 2L1λmax(Pi)I + ε1

( N∑

j=1

c2
ij

)

PiPT
i

+
NL2

2
ε1

I + ε2

( N∑

j=1

d2
ij

)

PiPT
i + Si – 2PiKi + KT

i Pi + εi2PiHHT Pi

+
1
εi2

ET
2 E2 + τ 2

mQi,

Ωi2 =
NL2

3
ε2

I –
(
1 – τ̇ (t)

)
Si,

then system (1) is synchronized in a finite time, and the time is calculated as

t∗ =
V 1

2 (0)
W

,

whereV (0) =
∑N

i=1 [eT
i (0)Piei(0) +

∫ 0
–τ (0) eT

i (s)Siei(s) ds +
∫ 0

–τm

∫ 0
θ

eT
i (s)Qiei(s) ds dθ ], and W =

min(h1
λmin(P)

λ
1
2
max(P)

, h2λmin(P), h3λmin(P)).

Proof Construct an appropriate Lyapunov–Krasovskii function, V (t) =
∑3

i=1 Vi(t), where
V1(t) =

∑N
i=1 eT

i (t)Piei(t), V2(t) =
∑N

i=1
∫ t

t–τ (t) eT
i (s)Siei(s) ds, V3(t) = τm

∑N
i=N

∫ 0
–τm

∫ t
t+ϑ

eT
i (s)×

Qiei(s) ds dϑ .
Then, combined with the proof of the relevant part of Theorem 1, we can get the fol-

lowing results:

N∑

i=1

2eT
i (t)Piui

=
N∑

i=1

2eT
i (t)Pi

[
–(Ki + �Ki)ei(t) – h1 sign

(
ei(t)

)
Π

– h2

(∫ t

t–τ (t)
eT

i (s)Siei(s) ds
) 1

2 · ei(t)
‖e(t)‖2

– h3

(
τm

∫ 0

–τm

∫ t

t+ϑ

eT
i (s)Qiei(s) ds dϑ

) 1
2 · ei(t)

‖ei(t)‖2

]

≤ –2
N∑

i=1

eT
i (t)

(
PiKi + KT

i Pi + εi2PiHHT Pi +
1
εi2

ET
2 E2

)
ei(t)

– 2W
N∑

i=1

[
(
eT

i (t)Piei(t)
) 1

2 +
(∫ t

t–τ (t)
eT

i (s)Siei(s) ds
) 1

2
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+
(

τm

∫ 0

–τm

∫ t

t+ϑ

eT
i (s)Qiei(s) ds dϑ

) 1
2
]

,

W = min

(
h1

λmin(Pi)

λ
1
2
max(P)

, h2λmin(P), h3λmin(P)
)

,

V̇
(
e(t)

) ≤
N∑

i=1

ξT
i (t)Ωξi(t) – 2W

N∑

i=1

[
(
eT

i (t)Piei(t)
) 1

2 +
(∫ t

t–τ (t)
eT

i (s)Siei(s) ds
) 1

2

+
(

τm

∫ 0

–τm

∫ t

t+ϑ

eT
i (s)Qiei(s) ds dϑ

) 1
2
]

, (23)

where

Ω =

⎡

⎢
⎣

Ωi1 0 0
∗ Ωi2 0
∗ ∗ –Qi

⎤

⎥
⎦ ,

in which

Ωi1 = PiA + AT Pi + εi1PiHHT Pi +
1
εi1

ET
1 E1 + 2L1λmax(Pi)I + ε1

( N∑

j=1

c2
ij

)

PiPT
i

+
NL2

2
ε1

I + ε2

( N∑

j=1

d2
ij

)

PiPT
i + Si – 2PiKi + KT

i Pi + εi2PiHHT Pi

+
1
εi2

ET
2 E2 + τ 2

mQi,

Ωi2 =
NL2

3
ε2

I –
(
1 – τ̇ (t)

)
Si, Ui = PiKi.

Using a proof method similar to that in Theorem 1, we can get

V̇ (t) ≤ –2WV
1
2 (t). (24)

Then we can know the error system (3) will synchronize in finite time t∗,

t∗ =
V 1

2 (0)
W

. �

Remark 7 Let Ui = PiKi. In a computer simulation, the values of the matrices P and U can
be calculated, and the value of the matrix K can be calculated using K = P–1U .

Remark 8 In Theorem 3, we investigate the non-fragile control of a complex network sys-
tem with uncertainty and time delay. In many practical applications, the parameters of
the controller considerably vary. A non-fragile controller can be used to accurately esti-
mate the upper bound of the time required for the system to reach the finite-time state.
In Ref. [17], the author investigated a class of finite-time boundedness synchronization of
stochastic complex networks. In Ref. [25], although the non-fragile controller is consid-
ered, the internal coupling relationship in the complex network model is linear, and only
the matrix is uncertain. Clearly, this situation is a special form of the proposed model.
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In practical systems, uncertainty is ubiquitous. For systems without uncertainty, such
as model (15), system instability may occur given the changes in controller parameters.
Here, we investigate the finite-time synchronization problem of system (15) by using a
non-fragile controller (21).

Corollary 4 For system (15), under Assumptions 1 and 2, if positive-definite symmetric
matrices Ki, Pi, Si and Qi exist, so that

⎡

⎢
⎣

Ωi1 0 0
∗ Ωi2 0
∗ ∗ –Qi

⎤

⎥
⎦ < 0, (25)

where

Ωi1 = PiA + AT Pi + 2L1λmax(Pi)I + ε1

( N∑

j=1

c2
ij

)

PiPT
i +

NL2
2

ε1
I + εi1PiHHT Pi

+ ε2

( N∑

j=1

d2
ij

)

PiPT
i + Si – 2PiKi + KT

i Pi +
1
εi1

ET
2 E2 + τ 2

mQi,

Ωi2 =
NL2

3
ε2

I –
(
1 – τ̇ (t)

)
Si, Ui = PiKi.

Then the error system (16) can achieve finite-time synchronization, the time t∗ is

t∗ =
V 1

2 (0)
W

,

where W = min(h1
λmin(P)

λ
1
2
max(P)

, h2λmin(P), h3λmin(P)).

In certain cases, the time delay in the system is a constant. For such a system, we can
draw the following conclusion.

Corollary 5 If there exist matrices Pi, Ki, Si and Qi, and the inequality (22) is exis-
tent,where τ̇ (t) = 0, then we consider the system (1) is synchronized at time t∗,

t∗ =
V 1

2 (0)
W

,

where

V (0) =
N∑

i=1

[
eT

i (0)Piei(0) +
∫ 0

–τ

eT
i (s)Siei(s) ds +

∫ 0

–τm

∫ 0

θ

eT
i (s)Qiei(s) ds dθ

]
,

W = min

(
h1

λmin(P)

λ
1
2
max(P)

, h2λmin(P), h3λmin(P)
)

.
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Figure 1 The chaotic trajectory of the system (27)

4 Numerical simulation
In this section, a numerical simulation is conducted to verify the main results of the the-
oretical analysis presented above. For a network model with six nodes, the internal di-
mension of each node is three, and the coupling between nodes, time-varying delay, and
uncertainty are considered, and the state function of the system is described as

ẋi(t) =
(
A + �A(t)

)
xi(t) + f

(
xi(t)

)
+

N∑

j=1

cijg
(
xj(t)

)
+

N∑

j=1

dijg
(
xj
(
t

– τ (t)
))

+ ui(t), i = 1, 2, . . . , N . (26)

Remark 9 Taking the epidemic disease spread model described in Remark 1 as an exam-
ple, this paper investigates the finite-time synchronization problem of uncertain complex
networks. Synchronization aims to ensure consistency of the relevant physical indicators
of each patient with those of a healthy person.

The definition of f (x) is given as follows, where

f (x) =

⎛

⎜
⎝

– 3
8 x1(t) + x2(t)x3(t)

(–x2(t) + x3(t))(25 – 10 cos(4.8t))
–x1(t)x2(t) – (15 cos(4.8t) + 12)x2(t) + (13.3 – 14 cos(4.8t))x3(t)

⎞

⎟
⎠ . (27)

The chaotic trajectory of the system (27) can be seen in Fig. 1.
Given the values of the matrix A, C, D, H , E1, and other parameters in the system,

A =

⎡

⎢
⎣

–2 1 0
1 –2 1
0 1 –2

⎤

⎥
⎦ ; H =

⎡

⎢
⎣

0.1 0 1
0 1 0
1 0 –1

⎤

⎥
⎦ ; E1 =

⎡

⎢
⎣

–2 1 1
0 0 0
0 0 0

⎤

⎥
⎦ ;

C =

⎡

⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎣

–2 1 1 0 –1 1
1 –1 1 –1 2 –2
1 1 –2 2 0 –2
0 1 –2 1 –2 2

–1 2 0 –2 0 1
1 –1 –1 2 1 –2

⎤

⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎦

; D =

⎡

⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎣

–2 1 1 0 –1 1
1 –2 1 1 2 –3
1 1 –2 2 0 –2
1 1 –2 0 –2 2
0 2 1 –2 –2 1
1 –1 –1 2 1 –2

⎤

⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎦

;
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Figure 2 The state of all nodes in different dimensions without controller

Figure 3 The error state ei of all nodes when h1 = 3, h2 = 3, h3 = 4, h4 = 5 and θ = 0.3

F(t) = diag([sin(t), cos(2t), sin(2t)]).
The nonlinear vector-valued function in the complex network are described by g(x) =

tanh(x), τ (t) = 1/2 – 1/3e–t . According to Theorem 1 and the LMI toolbox in MATLAB, Pi,
Si and Qi satisfying condition (5) of Theorem 1 can be obtained, and the motion trajectory
of the error system without and with the controller is shown in Figs. 2, 3, 4, respectively.

According to Fig. 3, the system can achieve fast synchronization in a short time by using
the controller (4) when θ = 0.3. At this point, the maximum time delay allowed by the
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Figure 4 The error state of all nodes in different dimensions with the controller (4)

Figure 5 The error state ei of all nodes when h1 = 3, h2 = 3, h3 = 4, h4 = 5 and θ = 0.8

system is 0.692 s. In Fig. 5, θ = 0.8. Hence, the required synchronization time for the system
increases compared with Fig. 3.

Figure 6 shows a faster convergence rate than Fig. 3. Therefore, the required synchro-
nization time for the system can be shortened by appropriately increasing the value of
each parameter hi in the controller.

5 Conclusion
In this study, a finite-time synchronization of uncertain nonlinear complex dynamic net-
works with time-varying delay is investigated. In this network model, the uncertainty and
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Figure 6 The error state ei of all nodes when h1 = 8, h2 = 6, h3 = 8, h4 = 10 and θ = 0.3

coupling time delay of the system are considered simultaneously where the uncertainties
satisfy the matching conditions. An appropriate feedback controller is designed by con-
structing the appropriate Lyapunov–Krasovkii function and matrix inequality, and suffi-
cient conditions are obtained for the system to achieve finite-time synchronization. The
feasibility of the theorem is verified through a computer simulation.

The controller was designed in this paper to act continuously on each node to guar-
antee the finite-time synchronization of the system. However, resource utilization must
still be improved. Therefore, the addition of an event-triggered mechanism will be con-
sidered in future work. The controller and the moment will only be updated when the
trigger condition is met to save communication resources and reduce the frequency of
controller updates. In addition, the method used in this paper is suitable for a moderate
number of network nodes; otherwise, this method will affect the speed of solving matrix
inequality in simulation. Hence, another direction that will be considered in the future is
the acceleration of the matrix solution when the number of network nodes in the system
is large.
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