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studied a new non-zero sum stochastic di�erential game of BSDE, and established a nec-

essary condition and a su�cient condition in the form of a maximum principle for an

open-loop equilibrium point. Furthermore, for the same stochastic di�erential system as

in [6], Wang and Yu [7] dealt with the partial information case. In addition, Shi and Wang

[8] studied a non-zero sum stochastic di�erential game of BSDE with time-delayed gen-

erator. Wang et al. [9] discussed asymmetric information linear…quadratic (LQ) non-zero

sum di�erential game of BSDE, and gave the feedback Nash equilibrium points. About

other applications of BSDE, please refer to Zhang [10], Li et al. [11], El Karoui et al. [12],

and Yong and Zhou [13] for more information. For other developments about mean-“eld

type game, please refer to [14…16]. Di�erent from the above literature, our work has new

features as follows:

– The game problem contains two types of control. One is a deterministic control
which can impose a deterministic action v1 ∈ U1

ad , the other one is a random control
process that can impose a random action v2 ∈ U2

ad .
– In an LQ problem, the equilibrium point (u1,u2) is expressed by Ep (see (18) in

Sect. 3) and the optimal state satisfies a linear mean-field BSDE.
– In the LQ problem, by introducing mean-field BSDE, which naturally arises from the

study of mixed differential games driven by BSDE without mean-field term, we obtain
an explicit form of the equilibrium point.

– In the LQ problem, the equilibrium point (u1,u2) is uniquely obtained by the solution
of mean-field forward–backward SDE (19). Due to the above new features, it is
difficult to get the existence and uniqueness of (19) in general. We can prove that (19)
admits a unique solution under some detailed cases (see Sect. 3).

This paper is inspired by [17], where mixed optimal control of forward SDE rather than

BSDE was discussed. Since the construction and property of BSDE are essentially di�erent

from those of SDE, the non-zero sum mixed stochastic di�erential game of BSDE captures

di�erent scenarios. See, e.g., Sect.3 for more information.

The rest of this paper is organized as follows. In Sect.2, we formulate the model of the

non-zero mixed stochastic di�erential game of BSDE. In Sect.3, we give the necessary and

su�cient conditions for the open-loop equilibrium point of a mixed di�erential game. In

Sect.4, we use the theoretical results to study an LQ game problem of BSDE, and give an

explicit feedback form of equilibrium point. As a practical application, we consider a home

mortgage and wealth management problem, and we work out one numerical example with

certain particular coe�cients in Sect.5. In Sect.6, we give some concluding remarks.

2 Problem formulation and preliminaries
Throughout this paper, we let (Ω,F ,P) be a standard probability space with a natural “l-

tration {Ft,t ≥ 0} generated by anFt-adapted,d-dimensional standard Brownian motion

{ωt,t ≥ 0}. We denote byRk the k-dimensional Euclidean space, and by| · | and 〈·, ·〉 the

norm and the inner product in Euclidean space, respectively. We also denote byS
n the set

of symmetric n × n matrices with real elements, byC([0,T ];Rk) the space ofRk-valued

continuous functions on [0,T ], and byM� and M…1the transpose and the reverse ofM,
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respectively. For convenience, we introduce several spaces which are used in this paper:

L∞(
0,T ;Rk) =

{
ϕ : [0,T ] → R

k∣∣ esssup
t∈[0,T ]

|ϕt| < ∞
}
,

Lp(0,T ;Rk) =
{
ϕ : [0,T ] →R

k
∣∣
∣
∫ T

0
|ϕt|p dt < ∞

}
, 1≤ p < ∞,

L2
F

(
0,T ;Rk) =

{
ϕ : [0,T ] × Ω →R

k
∣∣
∣ϕ isF -progressively measurable and satis“es

E

∫ T

0
|ϕt|2 dt < ∞

}
,

L2
FT

(
Ω;Rk) =

{
ξ : Ω →R

k|ξ isFT -measurable random variable and satis“es

E|ξ |2 < ∞}
,

L2
F

(
Ω,C

(
[0,T ];Rk)) =

{
ϕ : [0,T ] × Ω →R

k∣∣ϕ isF -adapted, continuous and

satis“esE
[

sup
t∈[0,T ]

|ϕt|2
]

< ∞
}
.

In this paper, we consider a controlled BSDE

⎧
⎨

⎩
…dyv1,v2

t = g(t,yv1,v2
t ,zv1,v2

t ,v1t,v2t) dt …zv1,v2
t dwt,

yv1,v2
T = ξ ,

(1)

whereg: [0,T ] ×R
n ×R

n×d ×R
l1 ×R

l2 →R
n, ξ ∈ L2

FT
(Ω;Rn),v1 is a deterministic control

of Player 1, andv2 is a random control process of Player 2. The game system means that

these two players work together to achieve a goalξ at the terminal time T .

Let Ui be a nonempty convex subset ofRli , i = 1,2. We introduce the admissible control

set

U1
ad =

{
v1 ∈ L2(0,T ;Rl1

)|v1t ∈ U1,t ∈ [0,T ]
}
,

U2
ad =

{
v2 ∈ L2

F
(
0,T ;Rl2

)|v2t ∈ U2,t ∈ [0,T ]
}
.

Assumption 1 g(·,y,z,v1,v2) is continuously di�erentiable in (y,z,v1,v2). Moreover, the

partial derivativesgy, gz, gv1 and gv2 of g with respect to y, z, v1 and v2 are uniformly

bounded.

If v1 and v2 are admissible controls and Assumption1 holds, it follows from [4] that

BSDE (1) admits a unique solution (yv1,v2,zv1,v2) ∈ L2
F (0,T ;Rn)× L2

F (0,T ;Rn×d). The non-

zero sum mixed stochastic di�erential game for the two players is that, besides ensuring

to achieve the joint pre-given goalξ at the terminal timeT , the two players have their own

bene“ts, described by the cost functional

Ji(v1,v2) = E

[∫ T

0
li
(
t,yv1,v2

t ,zv1,v2
t ,v1t,v2t

)
dt + hi

(
yv1,v2

0

)]
, (2)
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whereli: [0,T ] ×R
n ×R

n×d ×R
l1 ×R

l2 →R, andhi :Rn →R (i = 1,2) are given contin-

uous functions satisfying the condition

E

∫ T

0

∣
∣li

(
t,yv1,v2

t ,zv1,v2
t ,v1t,v2t

)∣∣dt < +∞, for all (v1,v2) ∈ U1
ad × U2

ad. (3)

Suppose that each player hopes to minimize his/her cost functionalJi(v1,v2) by select-

ing an appropriate admissible controlvi (i = 1,2). Then the problem is to “nd a pair of

admissible controls (u1,u2) ∈ U1
ad × U2

ad such that

⎧
⎨

⎩
J1(u1,u2) = minv1∈U1

ad
J1(v1,u2),

J2(u1,u2) = minv2∈U2
ad

J2(u1,v2).
(4)

If there exists (u1,u2) satisfying (4), we call it an (open-loop) equilibrium point, and de-

note the corresponding state trajectory by (y,z). We call the above problem a backward

non-zero sum mixed stochastic di�erential game. For simplicity, we denote it byProblem
(BNZM).

3 Necessary and sufficient conditions for the mixed equilibrium point
De“ne the Hamiltonian function H1 : [0,T ] ×R

n ×R
n×d ×R

l1 ×R
l2 ×R

n →R by

H1(t,y,z,v1,v2,p1) = l1(t,y,z,v1,v2) …
〈
p1,g(t,y,z,v1,v2)

〉
,

andH2 : [0,T ] ×R
n ×R

n×d ×R
l1 ×R

l2 ×R
n →R by

H2(t,y,z,v1,v2,p2) = l2(t,y,z,v1,v2) …
〈
p2,g(t,y,z,v1,v2)

〉
,

wherepi (i = 1,2) satis“es the following adjoint equation:

⎧
⎨

⎩
…dpit = Hiy(t,yt,zt,u1t,u2t,pit) dt + Hiz(t,yt,zt,u1t,u2t,pit) dωt,

pi0 = …hiy(y0),
(5)

with Hiy andHiz be the partial derivatives ofH with respect toy and z, respectively.

Now we give the basic assumptions on the cost functional.

Assumption 2 li(·,y,z,v1,v2) is continuously di�erentiable in (y,z,v1,v2), andhi is contin-

uously di�erentiable with respect toy (i = 1,2). Moreover, there exists a constantC such

that the partial derivativesliy, liz and livi (i = 1,2) are bounded byC(1+|y|+ |z|+ |v1|+ |v2|).

Assumption 3 For each (v1,v2) ∈ U1
ad × U2

ad, li(·,yv1,v2,zv1,v2,v1,v2) ∈ L1
F (0,T ;R), li is dif-

ferentiable in (y,z), andhi (i = 1,2) is di�erentiable with respect toy.

Under Assumptions1…2, it is well known that for (5) there exists a unique solutionpi ∈
L2
F (0,T ;Rn) (i = 1,2), for any given (u1,u2).
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3.1 Necessary condition
Let (v1,v2) ∈ L2(0,T ;Rl1) × L2

F (0,T ;Rl2) be given such that (u1 + v1,u2 + v2) ∈ U1
ad × U2

ad.

For any 0≤ ε ≤ 1, we take the variational controlsuε
1 = u1 + εv1 anduε

2 = u2 + εv2.

SinceU1
ad andU2

ad are convex, (uε
1,uε

2) ∈ U1
ad × U2

ad. As illustrated before, we denote by

(yuε
1,zuε

1) and (yuε
2,zuε

2) the corresponding state trajectories of game system (1) along with

the controls (uε
1,u2) and (u1,uε

2), respectively. Introduce the variational equation

⎧
⎪⎪⎨

⎪⎪⎩

…dξit = [gy(t,yt,zt,u1t,u2t)ξit + gz(t,yt,zt,u1t,u2t)ηit

+ gvi (t,yt,zt,u1t,u2t)vit] dt …ηit dwt,

ξiT = 0, i = 1,2.

(6)

It is easy to see that (6) admits a unique solution (ξ ,η) ∈ L2
F (0,T ;Rn) × L2

F (0,T ;Rn×d)

under Assumptions1…2.

The following lemmas are immediate results of Lemma 2.2 and Lemma 2.3 in Wang and

Yu [7], which play a role in deriving a necessary condition of Problem (BNZM).

Lemma 3.1 If Assumptions 1–2 hold, then we have

lim
ε→0

sup
0≤t≤T

E

∣∣∣
∣
yuε

t …yt

ε
…ξt

∣∣∣
∣

2

= 0,

lim
ε→0

E

∫ T

0

∣∣
∣∣
zuε

t …zt

ε
…ηt

∣∣
∣∣

2

dt = 0.

Since (u1,u2) is an equilibrium point of problem (BNZM),

ε…1[J1
(
uε

1,u2
)

…J1(u1,u2)
] ≥ 0,

ε…1[J2
(
u1,uε

2

)
…J2(u1,u2)

] ≥ 0.
(7)

A lemma follows from (7), Lemma3.1and Taylor•s expansion.

Lemma 3.2 Under Assumptions 1–2, we get

E

{∫ T

0

[
liy(t,yt,zt,u1t,u2t)ξit + liz(t,yt,zt,u1t,u2t)ηit

+ livi (t,yt,zt,u1t,u2t)vit
]

dt + hiy(y0)ξi0

}
≥ 0.

Proposition 3.1 Let Assumptions 1–2 hold. Suppose that (u1,u2) is an equilibrium point
of Problem (BNZM) and (y,z) is the corresponding state trajectory. Then we have

E
〈
H1v1(t,yt,zt,u1t,u2t,p1t),v1 …u1t

〉 ≥ 0,
〈
H2v2(t,yt,zt,u1t,u2t,p2t),v2 …u2t

〉 ≥ 0,
(8)

for any (v1,v2) ∈ U1 × U2, where pi (i = 1,2)is the solution of (5).
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Proof Applying Itô•s formula to〈ξi,pi〉, we get

E
[
ξi0hiy(y0)

]

= …E
∫ T

0

[〈
ξit, liy(t,yt,zt,u1t,u2t)

〉
+

〈
ηit, liz(t,yt,zt,u1t,u2t)

〉

+
〈
pit,gvi (t,yt,zt,u1t,u2t)vit

〉]
dt, i = 1,2. (9)

According to Lemma3.2, (7) and (9), we obtain

E

∫ T

0

{〈[
l1v1(t,yt,zt,u1t,u2t) …p1tgv1(t,yt,zt,u1t,u2t)

]
,v1t

〉

+
〈[

l2v2(t,yt,zt,u1t,u2t) …p2tgv2(t,yt,zt,u1t,u2t)
]
,v2t

〉
dt

} ≥ 0,

which implies the desired conclusion. Thus, the proof is complete. �

Remark 1 It is worth noting that the necessary condition (8) is di�erent from the cases of

[6, 7]. The di�erence has interesting application in LQ non-zero sum mixed di�erential

game of BSDE. See, e.g., Theorems4.1…4.2below for more details.

3.2 Sufficient condition
Proposition 3.2 Let Assumption 1 and Assumption 3 hold. Let (u1,u2) ∈ U1

ad × U2
ad be

given such that liy(·,y,z,u1,u2) and liz(·,y,z,u1,u2) ∈ L2
F (0,T) (i = 1,2).Suppose that the

adjoint equation (5) admits a solution pi ∈ L2
F (0,T ;Rn) (i = 1,2),and

H1(t,yt,zt,u1t,u2t,p1t) = min
v1∈U1

H1(t,yt,zt,v1,u2t,p1t),

H2(t,yt,zt,u1t,u2t,p2t) = min
v2∈U2

H2(t,yt,zt,u1t,v2,p2t),
(10)

hold for all t ∈ [0,T ]. Moreover, suppose that, for all (t,y,z) ∈ [0,T ] ×R
n ×R

n×d,

H̃1(t,y,z) = min
v1∈U1

H1(t,y,z,v1,u2t,p1t),

H̃2(t,y,z) = min
v2∈U2

H2(t,y,z,u1t,v2,p2t),
(11)

exist and are convex in (y,z), and hi is convex in y (i = 1,2).Then (u1,u2) is an equilibrium
point of Problem (BNZM).

The proof of Proposition3.2is similar to the case thatv1 and v2 are random control pro-

cesses. We omit the proof here for simplicity. The interested reader is referred to Arrow

and Kurz [18] and Wang and Yu [6] for details. This su�cient condition can be called

Arrow•s su�cient optimality condition for the equilibrium point of Problem (BNZM).

Remark 2 Arrow•s su�cient optimality condition provides a valuable tool to certify equi-

librium point and generalizes Mangasarian su�cient condition (the su�ciency version of

Pontryagin•s maximum principle, which is restricted to some control problems).
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In the rest of this section, we use a special case of Problem (BNZM) to show that (10)
and (11) are really needed.

Example 3.1 Consider the controlled BSDE (n = d = l1 = l2 = 1)

⎧
⎨

⎩
…dyv1,v2

t = (2v1t + v2t) dt …zv1,v2
t dwt,

yv1,v2
T = ξ ,

with U1 = U2 = [0,+∞) and

J1(v1,v2) = E

∫ T

0
min

{
v2

1t … 3v1t, 1
}

dt + yv1,v2
0 ,

J2(v1,v2) = E

∫ T

0
min

{
v2

2t … 3v2t, 1
}

dt + yv1,v2
0 .

The problem is to “nd the open-loop equilibrium point (u1,u2). In this example, the
Hamiltonian function and the adjoint equation are

H1(t,y,z,v1,v2,p1) = min
{

v2
1 … 3v1, 1

}
…p1(2v1 + v2),

H2(t,y,z,v1,v2,p2) = min
{

v2
2 … 3v2, 1

}
…p2(2v1 + v2),

and

dpit = 0, pi0 = …1,i = 1,2.

Solving the ordinary di�erential equation (ODE), we obtainp1t = p2t = …1,t ∈ [0,T ]. Sub-
stituting it into the Hamiltonian function, we get

H1(t,y,z,v1,v2,p1) =

⎧
⎨

⎩
v2

1 …v1 + v2, v1 ∈ [0, 3+
√

13
2 ),

2v1 + v2 + 1, v1 ∈ [ 3+
√

13
2 , +∞),

and

H2(t,y,z,v1,v2,p2) =

⎧
⎨

⎩
v2

2 … 2v2 + 2v1, v2 ∈ [0, 3+
√

13
2 ),

2v1 + v2 + 1, v2 ∈ [ 3+
√

13
2 , +∞).

It is easy to check thatHi(t,y,z,v1,v2,pi) is neither a convex nor a concave function of
the control vi on the whole time horizon [0,+∞), i = 1,2. On the other hand, let (u1t =
1
2,u2t = 1), t ∈ [0,T ]. It is clear that

H̃1t = min
v1∈U1

H1(t,y,z,v1,u2t,p1t) =
3
4

,

H̃2t = min
v2∈U2

H2(t,y,z,u1t,v2,p2t) = 0.

Now all the assumptions required in Proposition3.2are satis“ed, then (u1t,u2t) = (1
2, 1),

t ∈ [0,T ] is an open-loop equilibrium point.
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4 An LQ case of Problem (BNZM)
This section focuses on solving an LQ case of Problem (BNZM). Applying Propositions

3.1…3.2, we obtain an explicit form of the equilibrium point.

Consider a linear BSDE

⎧
⎨

⎩
…dyv1,v2

t = [Atyv1,v2
t + B1tv1t + B2tv2t + Ctzv1,v2

t ] dt …zv1,v2
t dwt,

yv1,v2
T = ξ ,

(12)

where A, B1, B2 and C are given deterministic matrix-valued functions with proper di-

mensions.

The class of admissible controls for (12) is

V1
ad =

{
v1 ∈ L2(0,T ;Rl1

)|v1t ∈R
l1,t ∈ [0,T ]

}
,

V2
ad =

{
v2 ∈ L2

F
(
0,T ;Rl2

)|v2t ∈ R
l2,t ∈ [0,T ]

}
.

Assumption 4 The coe�cients of ( 12) satisfy

A ∈ L1(0,T ;Rn×n), Bi ∈ L2(0,T ;Rn×li
)
, C ∈ L2(0,T ;Rn×n), i = 1,2.

Let Assumption4 hold. According to Pardoux and Peng [4], for “xed (v1,v2) ∈ V1
ad ×

V2
ad and anyξ ∈ L2

FT
(Ω,Rn), BSDE (12) has a unique adapted solution (yv1,v2,zv1,v2) ∈

L2
F (0,T ;Rn) × L2

F (0,T ;Rn×d). Moreover, by a dual technique similar to [12], we have

yt = E

[
ξxT

t +
∫ T

t
(B1sv1s + B2sv2s)xs

t ds
∣∣
∣Ft

]
(13)

with

xs
t = exp

{∫ s

t

(
Ar …

1
2

C2
r

)
dr +

∫ s

t
Cr dwr

}
≥ 0. (14)

De“ne the cost functional of the players

Ji(v1,v2) =
1
2
E

{∫ T

0

[(
yv1,v2

t
)�Qityv1,v2

t +
(
zv1,v2

t
)�Kitzv1,v2

t

+ v�
it Ritvit

]
dt +

(
yv1,v2

0

)�Giyv1,v2
0

}
, i = 1,2.

(15)

Assumption 5 The weighting coe�cients in the cost functional (15) satisfy

⎧
⎨

⎩
Qi ∈ L1(0,T ;Sn), Ki ∈ L∞(0,T ;Sn),

Ri ∈ L∞(0,T ;Sli ), Gi ∈ S
n,

and there exists a constantα > 0 such that fort ∈ [0,T ]

Gi ≥ 0, Ri ≥ αI, i = 1,2.
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The LQ case of Problem (BNZM) is to “nd a pair of (u1,u2) ∈ V1
ad × V2

ad such that

⎧
⎨

⎩
J1(u1,u2) = minv1∈V1

ad
J1(v1,u2),

J2(u1,u2) = minv2∈V2
ad

J2(u1,v2).
(16)

If there exists a pair of (u1,u2) satisfying (16), then (u1,u2) is called an equilibrium point

of the game. For simplicity, we denote the above problem byproblem (MLQ).
According to Proposition3.1, if (u1,u2) is an equilibrium point of Problem (MLQ), then

the candidate equilibrium point is of the form

⎧
⎨

⎩
u1t = R…1

1t B�
1tEp1t,

u2t = R…1
2t B�

2tp2t,

where the adjoint processpi satis“es

⎧
⎨

⎩
dpv1,v2

it = [A�
t pit …Qityv1,v2

t ] dt + [C�
t pit …Kitzv1,v2

t ] dwt,

pv1,v2
i0 = …Giyv1,v2

0 , i = 1,2.
(17)

From Proposition3.2, we can prove that (u1,u2) is an open-loop equilibrium point of the

game.

We summarize the above deduction in the following theorem.

Theorem 4.1 If (u1,u2) is an open-loop equilibrium point of Problem (MLQ), then

⎧
⎨

⎩
u1t = R…1

1t B�
1tEp1t,

u2t = R…1
2t B�

2tp2t,
(18)

where pi is the solution to the mean-field forward–backward SDE

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

…dyt = [Atyt + B1tR…1
1t B�

1tEp1t + B2tR…1
2t B�

2tp2t + Ctzt] dt …zt dwt,

dp1t = [A�
t p1t …Q1tyt] dt + [C�

t p1t …K1tzt] dwt,

dp2t = [A�
t p2t …Q2tyt] dt + [C�

t p2t …K2tzt] dwt,

yT = ξ , p10 = …G1y0, p20 = …G2y0.

(19)

Equation (18) is also su�cient for ( u1,u2) to be an open-loop equilibrium point of Problem
(MLQ).

Remark 3 The equilibrium point u1 in (18) is expressed byEp1 rather than p1, this inter-

esting phenomenon is due to the fact thatv1 is a deterministic control. It is very di�erent

from the existing literature; see, e.g., [6].

Note that, since (19) contains the expectation ofp1, we are uncertain whether (19) ad-
mits a unique solution except for some special cases.

In the following, we will use three steps to give the explicit form of Nash equilibrium

point of Problem (MLQ). Throughout Sect.3, we always assume the following.
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Assumption 6

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

α1B1R…1
1 B�

1 = B1R…1
1 B�

1 α1,

α2B2R…1
2 B�

2 = B2R…1
2 B�

2 α2,

B1R…1
1 B�

1 = B2R…1
2 B�

2 ,

C = 0.

(20)

Step 1: Existence and uniqueness of (21).
Under Assumption6, we have

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

…dyt = [Atyt + B1tR…1
1t B�

1tEp1t + B2tR…1
2t B�

2tp2t] dt …zt dwt,

dp1t = [A�
t p1t …Q1tyt] dt …K1tzt dwt,

dp2t = [A�
t p2t …Q2tyt] dt …K2tzt dwt,

yT = ξ , p10 = …G1y0, p20 = …G2y0.

(21)

Taking the expectation on both sides of (21), we get

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

…dEyt = [AtEyt + B1tR…1
1t B�

1tEp1t + B2tR…1
2t B�

2tEp2t] dt,

dEp1t = [A�
t Ep1t …Q1tEyt] dt,

dEp2t = [A�
t Ep2t …Q2tEyt] dt,

EyT = Eξ , Ep10 = …G1Ey0, Ep20 = …G2Ey0.

(22)

According to Assumption6, we can get the existence and uniqueness of (22). In fact, we

introduce an auxiliary equation

⎧
⎪⎪⎨

⎪⎪⎩

dYt = […AtYt …B1tR…1
1t B�

1tPt] dt,

dPt = [A�
t Pt … (Q1t + Q2t)Yt] dt,

YT = Eξ , P0 = …[G1 + G2]Y0,

(23)

whereY = Ey andP = Ep1 + Ep2.

If (Ey,Ep1,Ep2) is a solution to (22), then (Y ,P) is a solution to (23). On the other hand,

let (Y ,P) be a solution to (23). Introduce an ODE

⎧
⎪⎪⎨

⎪⎪⎩

dP1t = [A�
t P1t …Q1tYt] dt,

dP2t = [A�
t P2t …Q2tYt] dt,

P10 = …G1Y0, P20 = …G2Y0,

(24)

which has a unique solution (P1,P2) with P1 + P2 = P. Furthermore, we can prove that

(Y ,P1,P2) is a solution to (22). It implies that the existence and uniqueness of (22) is equiv-

alent to that of (23).

It is easy to check that (23) has a unique solution (Y ,P) under Assumptions4…6 (see Yu

and Ji [19]). Then we know that for (22) there exists a unique solution (Ey,Ep1,Ep2). For
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“xed Ep1, from (21), we have

⎧
⎪⎪⎨

⎪⎪⎩

…dyt = [Atyt + B1tR…1
1t B�

1tEp1t + B2tR…1
2t B�

2tp2t] dt …zt dwt,

dp2t = [A�
t p2t …Q2tyt] dt …K2tzt dwt,

yT = ξ , p20 = …G2y0.

(25)

Under Assumptions4…6, it is clear that fully coupled forward…backward SDE (25) has a

unique solution (y,z,p2) (see, e.g., Theorem 2.3 in [19]). So does (21).

Step 2: The relationship between y and (Ep1,Ep2).
To get the feedback equilibrium point, we have to establish the relationship betweeny

and (Ep1,Ep2). Noticing the terminal condition of (22), we set

Ep1t = α1tEyt + β1t, Ep2t = α2tEyt + β2t. (26)

Introduce the two ODEs

⎧
⎪⎪⎨

⎪⎪⎩

α̇1t …α1tAt …A�
t α1t …α1tB1tR…1

1t B�
1tα1t …α1tB2tR…1

2t B�
2tα2t + Q1t = 0,

β̇1t …A�
t β1t …α1tB1tR…1

1t B�
1tβ1t …α1tB2tR…1

2t B�
2tβ2t = 0,

α10 = …G1, β10 = 0,

(27)

and

⎧
⎪⎪⎨

⎪⎪⎩

α̇2t …α2tAt …A�
t α2t …α2tB1tR…1

1t B�
1tα1t …α2tB2tR…1

2t B�
2tα2t + Q2t = 0,

β̇2t …A�
t β2t …α2tB1tR…1

1t B�
1tβ1t …α2tB2tR…1

2t B�
2tβ2t = 0,

α20 = …G2, β20 = 0.

(28)

Lemma 4.1 Under Assumption 6, there exists a unique solution (α1,β1,α2,β2) to (27) and
(28).

Proof Let α = α1 + α2. It follows from Assumption6 that

⎧
⎨

⎩
α̇t …αtAt …A�

t αt …αtB1tR…1
1t B�

1tαt + Q1t + Q2t = 0,

α0 = …(G1 + G2).
(29)

Since (29) is a standard Riccati equation, it has a unique solutionα. Introduce two auxiliary

equations

⎧
⎨

⎩

˙̃α1t …α̃1tAt …A�
t α̃1t …B1tR…1

1t B�
1tαtα̃1t + Q1t = 0,

˙̃α10 = …G1, t ∈ (0,T ],
(30)

and

⎧
⎨

⎩

˙̃α2t …α̃2tAt …A�
t α̃2t …B2tR…1

2t B�
2tαtα̃2t + Q2t = 0,

˙̃α20 = …G2, t ∈ (0,T ],
(31)
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whereα is the solution to (29). Obviously, (30) and (31) have unique solutions̃α1 and α̃2,

respectively. In addition, we can check thatα1 andα2 in (27) and (28) are also the solutions

to (30) and (31), respectively. From the uniqueness of solution of (30) and (31), it follows

that

α̃1 = α1, α̃2 = α2,

which implies in turn that the “rst equations of (27) and (28) have the unique solutionsα1

andα2, respectively.

Let β = β1 + β2 andβ0 = 0. We have

⎧
⎨

⎩
β̇t …A�

t βt …αtB1tR…1
1t B�

1tβt = 0,

β0 = 0,
(32)

whereα is the solution to (29). Note that (32) has a unique solutionβ. Introduce

˙̃
β1t …A�

t β̃1t …α1tB2tR…1
2t B�

2tβt = 0, β̃10 = 0, t ∈ (0,T ], (33)

and

˙̃
β2t …A�

t β̃2t …α2tB1tR…1
1t B�

1tβt = 0, β̃20 = 0, t ∈ (0,T ], (34)

whereα1, α2 andβ are the solutions to (30), (31) and (32), respectively. Similarly, we can

prove that the second equations of (27) and (28) also have unique solutionsβ1 and β2

satisfying

β̃1 = β1, β̃2 = β2.

Based on the arguments above, we can derive the unique analytical expressions forα1, α2,

β1, β2. Then the proof is completed. �

Step 3: The relationship between y and p2.
Similarly, we set

p2t = Σtyt + ΓtEyt + Φt (35)

with Σ0 = …G2, Γ0 = 0,Φ0 = 0.

Applying Itô•s formula top2 in (35), we get

dp2t =
{[

Σ̇t …ΣtAt …ΣtB2tR…1
2t B�

2tΣt
]
yt

+
[
Γ̇t …ΣtB1tR…1

1t B�
1tα1t …ΣtB2tR…1

2t B�
2tΓt

…ΓtAt …ΓtB1tR…1
1t B�

1tα1t …ΓtB2tR…1
2t B�

2t(Σt + Γt)
]
Eyt …ΣtB1tR…1

1t B�
1tβ1t

+ Φ̇t …ΣtB2tR…1
2t B�

2tΦt …ΓtB1tR…1
1t B�

1tβ1t …ΓtB2tR…1
2t B�

2tΦt
}

dt

+ Σtzt dwt. (36)



Zhang Advances in Difference Equations         (2020) 2020:37 Page 13 of 18

Plugging (35) into (21) yields

dp2t =
{[

A�
t Σt …Q2t

]
yt + A�

t ΓtEyt + A�
t ΓtEyt + A�

t Φt
}

dt …K2tzt dwt. (37)

Comparing (36) and (37), we obtain

⎧
⎨

⎩
Σ̇t …ΣtAt …A�

t Σt …ΣtB2tR…1
2t B�

2tΣt + Q2t = 0,

Σ0 = …G2,
(38)

⎧
⎪⎪⎨

⎪⎪⎩

Γ̇t …ΓtAt …A�
t Γt … (Σt + Γt)B1tR…1

1t B�
1tα1t

…ΣtB2tR…1
2t B�

2tΓt …ΓtB2tR…1
2t B�

2t(Σt + Γt) = 0,

Γ0 = 0,

(39)

and

⎧
⎪⎪⎨

⎪⎪⎩

Φ̇t …A�
t Φt …ΣtB1tR…1

1t B�
1tβ1t …ΣtB2tR…1

2t B�
2tΦt

…ΓtB1tR…1
1t B�

1tβ1t …ΓtB2tR…1
2t B�

2tΦt = 0,

Φ0 = 0,

(40)

where (α1,β1) is the solution to (27). According to [20], the Riccati equations (38) and (39)

admit unique solutionsΣ andΓ , respectively. From (26) and (35), we have

α2 = Σ + Γ , β2 = Φ.

Since (28) has a unique solution (α2,β2), for (40) there exists a unique solutionΦ. Thus,

the feedback equilibrium point (u1,u2) of problem (MLQ) is uniquely de“ned by

⎧
⎨

⎩
u1t = R…1

1t B�
1tα1tEyt + R…1

1t B�
1tβ1t,

u2t = R…1
2t B�

2t[Σtyt + ΓtEyt + Φt].

Substituting (26) and (35) into (21), we obtain

yt = E

[
ξxT +

∫ T

t
fsxs ds

∣∣
∣Ft

]
, (41)

and

Eyt = Eξe…
∫ T

t gr dr +
∫ T

t
hse

∫ t
s gr dr ds, (42)

where

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

fs = B1sR…1
1s B�

1s[α1s + Γs]Eys + B1sR…1
1s B�

1s[β1s + Φs],

xs = exp{∫ s
t [Ar + B1rR…1

1r B�
1rΣr] dr}, s ∈ [t,T ],

gt = …At …B1tR…1
1t B�

1t[α1t + α2t],

ht = …B1tR…1
1t B�

1t[β1t + β2t].
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We summarize the above deduction in the following theorem.

Theorem 4.2 Let Assumption 6 hold, the feedback equilibrium point (u1,u2) of problem
(MLQ) is uniquely defined by

⎧
⎨

⎩
u1t = R…1

1t B�
1tα1tEyt + R…1

1t B�
1tβ1t,

u2t = R…1
2t B�

2t[Σtyt + ΓtEyt + Φt],
(43)

where α1,β1,Σ ,Γ ,Φ, y and Ey are given by (27), (38), (39), (40), (41) and (42), respectively.

Remark 4 We emphasize that the equilibrium pointu1 depends onEy, and u2 depends
on y andEy. The main reason of this phenomenon is thatv1 is a deterministic control and
v2 is a random control process. This is very di�erent from the case that bothv1 andv2 are
random control processes (see, e.g., [6, 7]).

5 A home mortgage and wealth management problem
In this section, we study a problem about home mortgage and investment management.
This model is inspired by [21], which studied an early assessment of residential mortgage
performance in China. Judging from the interest rate di�erence of various products in
China at present, it is reasonable to invest idle funds into some stable wealth management
products and return bank loans owed, which can bring certain wealth bene“ts to buyers
and improve the buyers• quality of life. Furthermore, the ability to repay bank loans is af-
fected by factors such as market interest rate, buyers• age, education level, annual income,
and building form. We suppose a home buyer intends to repay the bankv1 per month, and
the home buyer hires a portfolio manager to invest in a risk-free asset and a risky asset.
The price processes of the risk-free asset and the risky asset are given by

dI1t = rtI1t dt and dI2t = μtI2t dt + σtI2t dwt,

respectively.
Now suppose the home buyer plans to attain a terminal wealth goalξ , which is FT -

measure, non-negative, square-integrable random variable. Then the wealthyt is modeled
by

⎧
⎨

⎩
dyt = {rtyt + atzt …v1t …v2t}dt + zt dwt,

yT = ξ ,
(44)

wherezt = πtσt , at = (μt …rt)σ…1
t ,πt is the amount that the portfolio manager invests in the

risk asset,v1 is the strategy of repaying home mortgage,v2 is the instantaneous consump-
tion rate of the portfolio manager. From another perspective, the home buyer is another
portfolio manager. We assume that the market coe�cientsrt , μt , σt are deterministic and
bounded processes, andσ…1

t is also bounded. Note that the strategy of repaying home
mortgage is deterministic over a certain period of time. Here, we set

H1
ad =

{
v1 ∈ L2(0,T ;R)|v1t > 0,t ∈ [0,T ]

}
,

H2
ad =

{
v2 ∈ L2

F (0,T ;R)|v2t > 0,t ∈ [0,T ]
}
,

(45)
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every element ofHi is called an admissible control. The coe�cients of (44) satisfy As-

sumption 4, then we get

yt = E

[
ξζT +

∫ T

t
(v1s + v2s)ζs ds

∣
∣∣Ft

]
, (46)

where

⎧
⎨

⎩
dζs = …rsζs ds …asζs dws, t ≤ s ≤ T ,

ζt = 1.
(47)

From (47), we get

ζs = exp

{∫ s

t

[
…rτ …

1
2

a2
τ

]
dτ …

∫ s

t
aτ dwτ

}
≥ 0. (48)

Furthermore, if the terminal conditionξ is non-negative, then from (46) and (48), we get

the solution of (44) is larger than zero. We de“ne the associated cost functional of the

portfolio managers

Ji(v1,v2) = …E
∫ T

0
Cie…βt ln vit dt + θiy0, i = 1,2, (49)

where β is a discount factor,Ci and θi (i = 1,2) are positive constants. In (49), the “rst

term measures the total utility fromvi (i = 1,2), and the last term represents the initial

reserve. That is to say, the home buyer desires to maximize the expected utility as well as

to minimize the initial reserve. Then our problem is to “nd an equilibrium point (u1,u2) ∈
H1

ad ×H2
ad such that

⎧
⎨

⎩
J1(u1,u2) = minv1∈H1

ad
J1(v1,u2),

J2(u1,u2) = minv2∈H2
ad

J2(u1,v2).
(50)

We use Proposition3.1to guess a candidate equilibrium point

⎧
⎨

⎩
u1t = C1e…βt(Ep1t)…1,

u2t = C2e…βt(p2t)…1,
(51)

and the adjoint processpit satis“es

⎧
⎨

⎩
dpit = …rtpit dt …atpit dwt,

pi0 = θi, i = 1,2.
(52)

Solving (52), we get

Ep1t = θ1 exp

{∫ t

0
…rs ds

}
> 0, (53)
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Figure 1 One trajectory of u1 and u2

p2t = θ2 exp

{∫ t

0

[
…rs …

1
2

a2
s

]
ds …

∫ t

0
as dws

}
> 0. (54)

From the assumption ofC1, β, θ1, and rt , we see thatu1 is square integrable. Applying a
standard exponential martingale property tou2, we can check thatu2 is square integrable.
Then we get (u1,u2) ∈ H1

ad × H2
ad. Assumption3 is weaker than Assumption2, and all

the conditions in Proposition3.2 are satis“ed, then Proposition3.2 implies that (u1,u2)
is an equilibrium point of the home mortgage and wealth management problem. Putting
(u1,u2) into (46) and (49), we get the corresponding initial wealth and related utilities,
respectively.

We illustrate the above theoretical results by working out one numerical example with
certain particular coe�cients. Let rt = 3t, at = 2t, β = 0.01,C1 = 1, C2 = 2, θ1 = 1, θ2 = 2.

Applying the Runge…Kutta method and the Monte Carlo method, we obtain the dy-
namic simulation of (·,w,u1,u2). For simplicity, we only draw the trajectory of (u1,u2),
shown in Fig.1.

6 Conclusion
Motivated by the lack of theory and some interesting “nancial and economic phenomena,
in this paper, we study a non-zero sum mixed di�erential game of BSDE. We establish a
necessary condition and an Arrow su�cient condition for open-loop equilibrium point.
There are two contributions worthy of being highlighted. One is that the equilibrium point
(u1,u2) can be explicitly expressed under some detailed conditions. The other one is that
the mixed feedback equilibrium point (u1,u2) not only depends on the optimal state but
also depends on its expectation (see (43)). Due to these features, this paper di�ers from
the existing literature.

Here, we only study the non-zero sum mixed di�erential game of BSDE under com-
plete information. Extension of our problem formulation to other type of mixed stochas-
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tic di�erential game problem promises to be interesting research topics, e.g., the mixed
stochastic di�erential game of BSDE with partial information, and the mixed stochastic
di�erential game of backward stochastic di�erential delay equation. We will consider these
topics in our future research.
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