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Abstract
This paper is concerned with a non-zero sum mixed differential game problem
described by a backward stochastic differential equation. Here the term “mixed”
means that this game problem contains a deterministic control v1 of Player 1 and a
random control process v2 of Player 2. By virtue of the classical variational method, a
necessary condition and an Arrow’s sufficient condition for the mixed stochastic
differential game problem are presented. A linear–quadratic mixed differential game
problem is discussed, and the corresponding Nash equilibrium point is explicitly
expressed by the solution of mean-field forward–backward stochastic differential
equation. The most distinguishing feature, compared with the existing literature, is
that the optimal state process of the linear–quadratic game satisfies a linear
mean-field backward stochastic differential equation. Finally, a home mortgage and
wealth management problem is given to illustrate our theoretical results.

Keywords: Arrow’s sufficient optimality condition; Mean-field backward stochastic
differential equation; Non-zero sum mixed differential game; Open-loop equilibrium
point

1 Introduction
Differential game theory involves multiple individuals (also called players or agents) deci-
sion making in the context of dynamical systems. The study of differential game was orig-
inally stated by Isaacs [1], and then summed up and developed by Basar and Olsder [2].
The stochastic differential game plays an important role in lots of fields. Many researchers
investigated this problem under various setups.

Compared with the development of forward stochastic differential equation (SDE), the
study of the backward stochastic differential equation (BSDE) has been going on in the
past three decades. The linear case started from Bismut [3] and the basic framework for
the nonlinear situation was given by Pardoux and Peng [4]. The theory of BSDE itself has
interesting properties, due to these, it is highly desirable to consider the game problem.
Hamadène and Lepeltier [5] discussed a stochastic zero sum differential game problem,
and investigated the existence of saddle point under Isaacs’ condition. Moreover, their
results of this problem depend on the solution of BSDE. Based on [5], Wang and Yu [6]
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studied a new non-zero sum stochastic differential game of BSDE, and established a nec-
essary condition and a sufficient condition in the form of a maximum principle for an
open-loop equilibrium point. Furthermore, for the same stochastic differential system as
in [6], Wang and Yu [7] dealt with the partial information case. In addition, Shi and Wang
[8] studied a non-zero sum stochastic differential game of BSDE with time-delayed gen-
erator. Wang et al. [9] discussed asymmetric information linear–quadratic (LQ) non-zero
sum differential game of BSDE, and gave the feedback Nash equilibrium points. About
other applications of BSDE, please refer to Zhang [10], Li et al. [11], El Karoui et al. [12],
and Yong and Zhou [13] for more information. For other developments about mean-field
type game, please refer to [14–16]. Different from the above literature, our work has new
features as follows:

– The game problem contains two types of control. One is a deterministic control
which can impose a deterministic action v1 ∈ U1

ad , the other one is a random control
process that can impose a random action v2 ∈ U2

ad .
– In an LQ problem, the equilibrium point (u1, u2) is expressed by Ep (see (18) in

Sect. 3) and the optimal state satisfies a linear mean-field BSDE.
– In the LQ problem, by introducing mean-field BSDE, which naturally arises from the

study of mixed differential games driven by BSDE without mean-field term, we obtain
an explicit form of the equilibrium point.

– In the LQ problem, the equilibrium point (u1, u2) is uniquely obtained by the solution
of mean-field forward–backward SDE (19). Due to the above new features, it is
difficult to get the existence and uniqueness of (19) in general. We can prove that (19)
admits a unique solution under some detailed cases (see Sect. 3).

This paper is inspired by [17], where mixed optimal control of forward SDE rather than
BSDE was discussed. Since the construction and property of BSDE are essentially different
from those of SDE, the non-zero sum mixed stochastic differential game of BSDE captures
different scenarios. See, e.g., Sect. 3 for more information.

The rest of this paper is organized as follows. In Sect. 2, we formulate the model of the
non-zero mixed stochastic differential game of BSDE. In Sect. 3, we give the necessary and
sufficient conditions for the open-loop equilibrium point of a mixed differential game. In
Sect. 4, we use the theoretical results to study an LQ game problem of BSDE, and give an
explicit feedback form of equilibrium point. As a practical application, we consider a home
mortgage and wealth management problem, and we work out one numerical example with
certain particular coefficients in Sect. 5. In Sect. 6, we give some concluding remarks.

2 Problem formulation and preliminaries
Throughout this paper, we let (Ω ,F , P) be a standard probability space with a natural fil-
tration {Ft , t ≥ 0} generated by an Ft-adapted, d-dimensional standard Brownian motion
{ωt , t ≥ 0}. We denote by R

k the k-dimensional Euclidean space, and by | · | and 〈·, ·〉 the
norm and the inner product in Euclidean space, respectively. We also denote by Sn the set
of symmetric n × n matrices with real elements, by C([0, T];Rk) the space of Rk-valued
continuous functions on [0, T], and by M� and M–1 the transpose and the reverse of M,
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respectively. For convenience, we introduce several spaces which are used in this paper:

L∞(
0, T ;Rk) =

{
ϕ : [0, T] → R

k∣∣ esssup
t∈[0,T]

|ϕt| < ∞
}

,

Lp(0, T ;Rk) =
{
ϕ : [0, T] →R

k
∣∣
∣
∫ T

0
|ϕt|p dt < ∞

}
, 1 ≤ p < ∞,

L2
F

(
0, T ;Rk) =

{
ϕ : [0, T] × Ω →R

k
∣∣
∣ϕ is F-progressively measurable and satisfies

E

∫ T

0
|ϕt|2 dt < ∞

}
,

L2
FT

(
Ω ;Rk) =

{
ξ : Ω →R

k|ξ is FT -measurable random variable and satisfies

E|ξ |2 < ∞}
,

L2
F

(
Ω , C

(
[0, T];Rk)) =

{
ϕ : [0, T] × Ω →R

k∣∣ϕ is F-adapted, continuous and

satisfies E
[

sup
t∈[0,T]

|ϕt|2
]

< ∞
}

.

In this paper, we consider a controlled BSDE

⎧
⎨

⎩
–dyv1,v2

t = g(t, yv1,v2
t , zv1,v2

t , v1t , v2t) dt – zv1,v2
t dwt ,

yv1,v2
T = ξ ,

(1)

where g : [0, T]×R
n ×R

n×d ×R
l1 ×R

l2 →R
n, ξ ∈ L2

FT
(Ω ;Rn), v1 is a deterministic control

of Player 1, and v2 is a random control process of Player 2. The game system means that
these two players work together to achieve a goal ξ at the terminal time T .

Let Ui be a nonempty convex subset of Rli , i = 1, 2. We introduce the admissible control
set

U1
ad =

{
v1 ∈ L2(0, T ;Rl1

)|v1t ∈ U1, t ∈ [0, T]
}

,

U2
ad =

{
v2 ∈ L2

F
(
0, T ;Rl2

)|v2t ∈ U2, t ∈ [0, T]
}

.

Assumption 1 g(·, y, z, v1, v2) is continuously differentiable in (y, z, v1, v2). Moreover, the
partial derivatives gy, gz , gv1 and gv2 of g with respect to y, z, v1 and v2 are uniformly
bounded.

If v1 and v2 are admissible controls and Assumption 1 holds, it follows from [4] that
BSDE (1) admits a unique solution (yv1,v2 , zv1,v2 ) ∈ L2

F (0, T ;Rn) × L2
F (0, T ;Rn×d). The non-

zero sum mixed stochastic differential game for the two players is that, besides ensuring
to achieve the joint pre-given goal ξ at the terminal time T , the two players have their own
benefits, described by the cost functional

Ji(v1, v2) = E

[∫ T

0
li
(
t, yv1,v2

t , zv1,v2
t , v1t , v2t

)
dt + hi

(
yv1,v2

0
)]

, (2)



Zhang Advances in Difference Equations         (2020) 2020:37 Page 4 of 18

where li: [0, T] ×R
n ×R

n×d ×R
l1 ×R

l2 →R, and hi : Rn →R (i = 1, 2) are given contin-
uous functions satisfying the condition

E

∫ T

0

∣
∣li

(
t, yv1,v2

t , zv1,v2
t , v1t , v2t

)∣∣dt < +∞, for all (v1, v2) ∈ U1
ad × U2

ad. (3)

Suppose that each player hopes to minimize his/her cost functional Ji(v1, v2) by select-
ing an appropriate admissible control vi (i = 1, 2). Then the problem is to find a pair of
admissible controls (u1, u2) ∈ U1

ad × U2
ad such that

⎧
⎨

⎩
J1(u1, u2) = minv1∈U1

ad
J1(v1, u2),

J2(u1, u2) = minv2∈U2
ad

J2(u1, v2).
(4)

If there exists (u1, u2) satisfying (4), we call it an (open-loop) equilibrium point, and de-
note the corresponding state trajectory by (y, z). We call the above problem a backward
non-zero sum mixed stochastic differential game. For simplicity, we denote it by Problem
(BNZM).

3 Necessary and sufficient conditions for the mixed equilibrium point
Define the Hamiltonian function H1 : [0, T] ×R

n ×R
n×d ×R

l1 ×R
l2 ×R

n →R by

H1(t, y, z, v1, v2, p1) = l1(t, y, z, v1, v2) –
〈
p1, g(t, y, z, v1, v2)

〉
,

and H2 : [0, T] ×R
n ×R

n×d ×R
l1 ×R

l2 ×R
n →R by

H2(t, y, z, v1, v2, p2) = l2(t, y, z, v1, v2) –
〈
p2, g(t, y, z, v1, v2)

〉
,

where pi (i = 1, 2) satisfies the following adjoint equation:

⎧
⎨

⎩
–dpit = Hiy(t, yt , zt , u1t , u2t , pit) dt + Hiz(t, yt , zt , u1t , u2t , pit) dωt ,

pi0 = –hiy(y0),
(5)

with Hiy and Hiz be the partial derivatives of H with respect to y and z, respectively.
Now we give the basic assumptions on the cost functional.

Assumption 2 li(·, y, z, v1, v2) is continuously differentiable in (y, z, v1, v2), and hi is contin-
uously differentiable with respect to y (i = 1, 2). Moreover, there exists a constant C such
that the partial derivatives liy, liz and livi (i = 1, 2) are bounded by C(1 + |y|+ |z|+ |v1|+ |v2|).

Assumption 3 For each (v1, v2) ∈ U1
ad × U2

ad , li(·, yv1,v2 , zv1,v2 , v1, v2) ∈ L1
F (0, T ;R), li is dif-

ferentiable in (y, z), and hi (i = 1, 2) is differentiable with respect to y.

Under Assumptions 1–2, it is well known that for (5) there exists a unique solution pi ∈
L2
F (0, T ;Rn) (i = 1, 2), for any given (u1, u2).
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3.1 Necessary condition
Let (v1, v2) ∈ L2(0, T ;Rl1 ) × L2

F (0, T ;Rl2 ) be given such that (u1 + v1, u2 + v2) ∈ U1
ad × U2

ad .
For any 0 ≤ ε ≤ 1, we take the variational controls uε

1 = u1 + εv1 and uε
2 = u2 + εv2.

Since U1
ad and U2

ad are convex, (uε
1, uε

2) ∈ U1
ad × U2

ad . As illustrated before, we denote by
(yuε

1 , zuε
1 ) and (yuε

2 , zuε
2 ) the corresponding state trajectories of game system (1) along with

the controls (uε
1, u2) and (u1, uε

2), respectively. Introduce the variational equation

⎧
⎪⎪⎨

⎪⎪⎩

–dξit = [gy(t, yt , zt , u1t , u2t)ξit + gz(t, yt , zt , u1t , u2t)ηit

+ gvi (t, yt , zt , u1t , u2t)vit] dt – ηit dwt ,

ξiT = 0, i = 1, 2.

(6)

It is easy to see that (6) admits a unique solution (ξ ,η) ∈ L2
F (0, T ;Rn) × L2

F (0, T ;Rn×d)
under Assumptions 1–2.

The following lemmas are immediate results of Lemma 2.2 and Lemma 2.3 in Wang and
Yu [7], which play a role in deriving a necessary condition of Problem (BNZM).

Lemma 3.1 If Assumptions 1–2 hold, then we have

lim
ε→0

sup
0≤t≤T

E

∣∣∣
∣
yuε

t – yt

ε
– ξt

∣∣∣
∣

2

= 0,

lim
ε→0

E

∫ T

0

∣∣
∣∣
zuε

t – zt

ε
– ηt

∣∣
∣∣

2

dt = 0.

Since (u1, u2) is an equilibrium point of problem (BNZM),

ε–1[J1
(
uε

1, u2
)

– J1(u1, u2)
] ≥ 0,

ε–1[J2
(
u1, uε

2
)

– J2(u1, u2)
] ≥ 0.

(7)

A lemma follows from (7), Lemma 3.1 and Taylor’s expansion.

Lemma 3.2 Under Assumptions 1–2, we get

E

{∫ T

0

[
liy(t, yt , zt , u1t , u2t)ξit + liz(t, yt , zt , u1t , u2t)ηit

+ livi (t, yt , zt , u1t , u2t)vit
]

dt + hiy(y0)ξi0

}
≥ 0.

Proposition 3.1 Let Assumptions 1–2 hold. Suppose that (u1, u2) is an equilibrium point
of Problem (BNZM) and (y, z) is the corresponding state trajectory. Then we have

E
〈
H1v1 (t, yt , zt , u1t , u2t , p1t), v1 – u1t

〉 ≥ 0,
〈
H2v2 (t, yt , zt , u1t , u2t , p2t), v2 – u2t

〉 ≥ 0,
(8)

for any (v1, v2) ∈ U1 × U2, where pi (i = 1, 2) is the solution of (5).
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Proof Applying Itô’s formula to 〈ξi, pi〉, we get

E
[
ξi0hiy(y0)

]

= –E
∫ T

0

[〈
ξit , liy(t, yt , zt , u1t , u2t)

〉
+

〈
ηit , liz(t, yt , zt , u1t , u2t)

〉

+
〈
pit , gvi (t, yt , zt , u1t , u2t)vit

〉]
dt, i = 1, 2. (9)

According to Lemma 3.2, (7) and (9), we obtain

E

∫ T

0

{〈[
l1v1 (t, yt , zt , u1t , u2t) – p1tgv1 (t, yt , zt , u1t , u2t)

]
, v1t

〉

+
〈[

l2v2 (t, yt , zt , u1t , u2t) – p2tgv2 (t, yt , zt , u1t , u2t)
]
, v2t

〉
dt

} ≥ 0,

which implies the desired conclusion. Thus, the proof is complete. �

Remark 1 It is worth noting that the necessary condition (8) is different from the cases of
[6, 7]. The difference has interesting application in LQ non-zero sum mixed differential
game of BSDE. See, e.g., Theorems 4.1–4.2 below for more details.

3.2 Sufficient condition
Proposition 3.2 Let Assumption 1 and Assumption 3 hold. Let (u1, u2) ∈ U1

ad × U2
ad be

given such that liy(·, y, z, u1, u2) and liz(·, y, z, u1, u2) ∈ L2
F (0, T) (i = 1, 2). Suppose that the

adjoint equation (5) admits a solution pi ∈ L2
F (0, T ;Rn) (i = 1, 2), and

H1(t, yt , zt , u1t , u2t , p1t) = min
v1∈U1

H1(t, yt , zt , v1, u2t , p1t),

H2(t, yt , zt , u1t , u2t , p2t) = min
v2∈U2

H2(t, yt , zt , u1t , v2, p2t),
(10)

hold for all t ∈ [0, T]. Moreover, suppose that, for all (t, y, z) ∈ [0, T] ×R
n ×R

n×d ,

H̃1(t, y, z) = min
v1∈U1

H1(t, y, z, v1, u2t , p1t),

H̃2(t, y, z) = min
v2∈U2

H2(t, y, z, u1t , v2, p2t),
(11)

exist and are convex in (y, z), and hi is convex in y (i = 1, 2). Then (u1, u2) is an equilibrium
point of Problem (BNZM).

The proof of Proposition 3.2 is similar to the case that v1 and v2 are random control pro-
cesses. We omit the proof here for simplicity. The interested reader is referred to Arrow
and Kurz [18] and Wang and Yu [6] for details. This sufficient condition can be called
Arrow’s sufficient optimality condition for the equilibrium point of Problem (BNZM).

Remark 2 Arrow’s sufficient optimality condition provides a valuable tool to certify equi-
librium point and generalizes Mangasarian sufficient condition (the sufficiency version of
Pontryagin’s maximum principle, which is restricted to some control problems).
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In the rest of this section, we use a special case of Problem (BNZM) to show that (10)
and (11) are really needed.

Example 3.1 Consider the controlled BSDE (n = d = l1 = l2 = 1)

⎧
⎨

⎩
–dyv1,v2

t = (2v1t + v2t) dt – zv1,v2
t dwt ,

yv1,v2
T = ξ ,

with U1 = U2 = [0, +∞) and

J1(v1, v2) = E

∫ T

0
min

{
v2

1t – 3v1t , 1
}

dt + yv1,v2
0 ,

J2(v1, v2) = E

∫ T

0
min

{
v2

2t – 3v2t , 1
}

dt + yv1,v2
0 .

The problem is to find the open-loop equilibrium point (u1, u2). In this example, the
Hamiltonian function and the adjoint equation are

H1(t, y, z, v1, v2, p1) = min
{

v2
1 – 3v1, 1

}
– p1(2v1 + v2),

H2(t, y, z, v1, v2, p2) = min
{

v2
2 – 3v2, 1

}
– p2(2v1 + v2),

and

dpit = 0, pi0 = –1, i = 1, 2.

Solving the ordinary differential equation (ODE), we obtain p1t = p2t = –1, t ∈ [0, T]. Sub-
stituting it into the Hamiltonian function, we get

H1(t, y, z, v1, v2, p1) =

⎧
⎨

⎩
v2

1 – v1 + v2, v1 ∈ [0, 3+
√

13
2 ),

2v1 + v2 + 1, v1 ∈ [ 3+
√

13
2 , +∞),

and

H2(t, y, z, v1, v2, p2) =

⎧
⎨

⎩
v2

2 – 2v2 + 2v1, v2 ∈ [0, 3+
√

13
2 ),

2v1 + v2 + 1, v2 ∈ [ 3+
√

13
2 , +∞).

It is easy to check that Hi(t, y, z, v1, v2, pi) is neither a convex nor a concave function of
the control vi on the whole time horizon [0, +∞), i = 1, 2. On the other hand, let (u1t =
1
2 , u2t = 1), t ∈ [0, T]. It is clear that

H̃1t = min
v1∈U1

H1(t, y, z, v1, u2t , p1t) =
3
4

,

H̃2t = min
v2∈U2

H2(t, y, z, u1t , v2, p2t) = 0.

Now all the assumptions required in Proposition 3.2 are satisfied, then (u1t , u2t) = ( 1
2 , 1),

t ∈ [0, T] is an open-loop equilibrium point.
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4 An LQ case of Problem (BNZM)
This section focuses on solving an LQ case of Problem (BNZM). Applying Propositions
3.1–3.2, we obtain an explicit form of the equilibrium point.

Consider a linear BSDE
⎧
⎨

⎩
–dyv1,v2

t = [Atyv1,v2
t + B1tv1t + B2tv2t + Ctzv1,v2

t ] dt – zv1,v2
t dwt ,

yv1,v2
T = ξ ,

(12)

where A, B1, B2 and C are given deterministic matrix-valued functions with proper di-
mensions.

The class of admissible controls for (12) is

V1
ad =

{
v1 ∈ L2(0, T ;Rl1

)|v1t ∈R
l1 , t ∈ [0, T]

}
,

V2
ad =

{
v2 ∈ L2

F
(
0, T ;Rl2

)|v2t ∈ R
l2 , t ∈ [0, T]

}
.

Assumption 4 The coefficients of (12) satisfy

A ∈ L1(0, T ;Rn×n), Bi ∈ L2(0, T ;Rn×li
)
, C ∈ L2(0, T ;Rn×n), i = 1, 2.

Let Assumption 4 hold. According to Pardoux and Peng [4], for fixed (v1, v2) ∈ V1
ad ×

V2
ad and any ξ ∈ L2

FT
(Ω ,Rn), BSDE (12) has a unique adapted solution (yv1,v2 , zv1,v2 ) ∈

L2
F (0, T ;Rn) × L2

F (0, T ;Rn×d). Moreover, by a dual technique similar to [12], we have

yt = E

[
ξxT

t +
∫ T

t
(B1sv1s + B2sv2s)xs

t ds
∣∣
∣Ft

]
(13)

with

xs
t = exp

{∫ s

t

(
Ar –

1
2

C2
r

)
dr +

∫ s

t
Cr dwr

}
≥ 0. (14)

Define the cost functional of the players

Ji(v1, v2) =
1
2
E

{∫ T

0

[(
yv1,v2

t
)�Qityv1,v2

t +
(
zv1,v2

t
)�Kitzv1,v2

t

+ v�
it Ritvit

]
dt +

(
yv1,v2

0
)�Giyv1,v2

0

}
, i = 1, 2.

(15)

Assumption 5 The weighting coefficients in the cost functional (15) satisfy

⎧
⎨

⎩
Qi ∈ L1(0, T ;Sn), Ki ∈ L∞(0, T ;Sn),

Ri ∈ L∞(0, T ;Sli ), Gi ∈ S
n,

and there exists a constant α > 0 such that for t ∈ [0, T]

Gi ≥ 0, Ri ≥ αI, i = 1, 2.
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The LQ case of Problem (BNZM) is to find a pair of (u1, u2) ∈ V1
ad × V2

ad such that

⎧
⎨

⎩
J1(u1, u2) = minv1∈V1

ad
J1(v1, u2),

J2(u1, u2) = minv2∈V2
ad

J2(u1, v2).
(16)

If there exists a pair of (u1, u2) satisfying (16), then (u1, u2) is called an equilibrium point
of the game. For simplicity, we denote the above problem by problem (MLQ).

According to Proposition 3.1, if (u1, u2) is an equilibrium point of Problem (MLQ), then
the candidate equilibrium point is of the form

⎧
⎨

⎩
u1t = R–1

1t B�
1tEp1t ,

u2t = R–1
2t B�

2tp2t ,

where the adjoint process pi satisfies

⎧
⎨

⎩
dpv1,v2

it = [A�
t pit – Qityv1,v2

t ] dt + [C�
t pit – Kitzv1,v2

t ] dwt ,

pv1,v2
i0 = –Giyv1,v2

0 , i = 1, 2.
(17)

From Proposition 3.2, we can prove that (u1, u2) is an open-loop equilibrium point of the
game.

We summarize the above deduction in the following theorem.

Theorem 4.1 If (u1, u2) is an open-loop equilibrium point of Problem (MLQ), then

⎧
⎨

⎩
u1t = R–1

1t B�
1tEp1t ,

u2t = R–1
2t B�

2tp2t ,
(18)

where pi is the solution to the mean-field forward–backward SDE

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

–dyt = [Atyt + B1tR–1
1t B�

1tEp1t + B2tR–1
2t B�

2tp2t + Ctzt] dt – zt dwt ,

dp1t = [A�
t p1t – Q1tyt] dt + [C�

t p1t – K1tzt] dwt ,

dp2t = [A�
t p2t – Q2tyt] dt + [C�

t p2t – K2tzt] dwt ,

yT = ξ , p10 = –G1y0, p20 = –G2y0.

(19)

Equation (18) is also sufficient for (u1, u2) to be an open-loop equilibrium point of Problem
(MLQ).

Remark 3 The equilibrium point u1 in (18) is expressed by Ep1 rather than p1, this inter-
esting phenomenon is due to the fact that v1 is a deterministic control. It is very different
from the existing literature; see, e.g., [6].

Note that, since (19) contains the expectation of p1, we are uncertain whether (19) ad-
mits a unique solution except for some special cases.

In the following, we will use three steps to give the explicit form of Nash equilibrium
point of Problem (MLQ). Throughout Sect. 3, we always assume the following.
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Assumption 6

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

α1B1R–1
1 B�

1 = B1R–1
1 B�

1 α1,

α2B2R–1
2 B�

2 = B2R–1
2 B�

2 α2,

B1R–1
1 B�

1 = B2R–1
2 B�

2 ,

C = 0.

(20)

Step 1: Existence and uniqueness of (21).
Under Assumption 6, we have

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

–dyt = [Atyt + B1tR–1
1t B�

1tEp1t + B2tR–1
2t B�

2tp2t] dt – zt dwt ,

dp1t = [A�
t p1t – Q1tyt] dt – K1tzt dwt ,

dp2t = [A�
t p2t – Q2tyt] dt – K2tzt dwt ,

yT = ξ , p10 = –G1y0, p20 = –G2y0.

(21)

Taking the expectation on both sides of (21), we get

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

–dEyt = [AtEyt + B1tR–1
1t B�

1tEp1t + B2tR–1
2t B�

2tEp2t] dt,

dEp1t = [A�
t Ep1t – Q1tEyt] dt,

dEp2t = [A�
t Ep2t – Q2tEyt] dt,

EyT = Eξ , Ep10 = –G1Ey0, Ep20 = –G2Ey0.

(22)

According to Assumption 6, we can get the existence and uniqueness of (22). In fact, we
introduce an auxiliary equation

⎧
⎪⎪⎨

⎪⎪⎩

dYt = [–AtYt – B1tR–1
1t B�

1tPt] dt,

dPt = [A�
t Pt – (Q1t + Q2t)Yt] dt,

YT = Eξ , P0 = –[G1 + G2]Y0,

(23)

where Y = Ey and P = Ep1 + Ep2.
If (Ey,Ep1,Ep2) is a solution to (22), then (Y , P) is a solution to (23). On the other hand,

let (Y , P) be a solution to (23). Introduce an ODE

⎧
⎪⎪⎨

⎪⎪⎩

dP1t = [A�
t P1t – Q1tYt] dt,

dP2t = [A�
t P2t – Q2tYt] dt,

P10 = –G1Y0, P20 = –G2Y0,

(24)

which has a unique solution (P1, P2) with P1 + P2 = P. Furthermore, we can prove that
(Y , P1, P2) is a solution to (22). It implies that the existence and uniqueness of (22) is equiv-
alent to that of (23).

It is easy to check that (23) has a unique solution (Y , P) under Assumptions 4–6 (see Yu
and Ji [19]). Then we know that for (22) there exists a unique solution (Ey,Ep1,Ep2). For
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fixed Ep1, from (21), we have

⎧
⎪⎪⎨

⎪⎪⎩

–dyt = [Atyt + B1tR–1
1t B�

1tEp1t + B2tR–1
2t B�

2tp2t] dt – zt dwt ,

dp2t = [A�
t p2t – Q2tyt] dt – K2tzt dwt ,

yT = ξ , p20 = –G2y0.

(25)

Under Assumptions 4–6, it is clear that fully coupled forward–backward SDE (25) has a
unique solution (y, z, p2) (see, e.g., Theorem 2.3 in [19]). So does (21).

Step 2: The relationship between y and (Ep1,Ep2).
To get the feedback equilibrium point, we have to establish the relationship between y

and (Ep1,Ep2). Noticing the terminal condition of (22), we set

Ep1t = α1tEyt + β1t , Ep2t = α2tEyt + β2t . (26)

Introduce the two ODEs

⎧
⎪⎪⎨

⎪⎪⎩

α̇1t – α1tAt – A�
t α1t – α1tB1tR–1

1t B�
1tα1t – α1tB2tR–1

2t B�
2tα2t + Q1t = 0,

β̇1t – A�
t β1t – α1tB1tR–1

1t B�
1tβ1t – α1tB2tR–1

2t B�
2tβ2t = 0,

α10 = –G1, β10 = 0,

(27)

and

⎧
⎪⎪⎨

⎪⎪⎩

α̇2t – α2tAt – A�
t α2t – α2tB1tR–1

1t B�
1tα1t – α2tB2tR–1

2t B�
2tα2t + Q2t = 0,

β̇2t – A�
t β2t – α2tB1tR–1

1t B�
1tβ1t – α2tB2tR–1

2t B�
2tβ2t = 0,

α20 = –G2, β20 = 0.

(28)

Lemma 4.1 Under Assumption 6, there exists a unique solution (α1,β1,α2,β2) to (27) and
(28).

Proof Let α = α1 + α2. It follows from Assumption 6 that

⎧
⎨

⎩
α̇t – αtAt – A�

t αt – αtB1tR–1
1t B�

1tαt + Q1t + Q2t = 0,

α0 = –(G1 + G2).
(29)

Since (29) is a standard Riccati equation, it has a unique solution α. Introduce two auxiliary
equations

⎧
⎨

⎩

˙̃α1t – α̃1tAt – A�
t α̃1t – B1tR–1

1t B�
1tαtα̃1t + Q1t = 0,

˙̃α10 = –G1, t ∈ (0, T],
(30)

and
⎧
⎨

⎩

˙̃α2t – α̃2tAt – A�
t α̃2t – B2tR–1

2t B�
2tαtα̃2t + Q2t = 0,

˙̃α20 = –G2, t ∈ (0, T],
(31)
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where α is the solution to (29). Obviously, (30) and (31) have unique solutions α̃1 and α̃2,
respectively. In addition, we can check that α1 and α2 in (27) and (28) are also the solutions
to (30) and (31), respectively. From the uniqueness of solution of (30) and (31), it follows
that

α̃1 = α1, α̃2 = α2,

which implies in turn that the first equations of (27) and (28) have the unique solutions α1

and α2, respectively.
Let β = β1 + β2 and β0 = 0. We have

⎧
⎨

⎩
β̇t – A�

t βt – αtB1tR–1
1t B�

1tβt = 0,

β0 = 0,
(32)

where α is the solution to (29). Note that (32) has a unique solution β . Introduce

˙̃
β1t – A�

t β̃1t – α1tB2tR–1
2t B�

2tβt = 0, β̃10 = 0, t ∈ (0, T], (33)

and

˙̃
β2t – A�

t β̃2t – α2tB1tR–1
1t B�

1tβt = 0, β̃20 = 0, t ∈ (0, T], (34)

where α1, α2 and β are the solutions to (30), (31) and (32), respectively. Similarly, we can
prove that the second equations of (27) and (28) also have unique solutions β1 and β2

satisfying

β̃1 = β1, β̃2 = β2.

Based on the arguments above, we can derive the unique analytical expressions for α1, α2,
β1, β2. Then the proof is completed. �

Step 3: The relationship between y and p2.
Similarly, we set

p2t = Σtyt + ΓtEyt + Φt (35)

with Σ0 = –G2, Γ0 = 0, Φ0 = 0.
Applying Itô’s formula to p2 in (35), we get

dp2t =
{[

Σ̇t – ΣtAt – ΣtB2tR–1
2t B�

2tΣt
]
yt

+
[
Γ̇t – ΣtB1tR–1

1t B�
1tα1t – ΣtB2tR–1

2t B�
2tΓt

– ΓtAt – ΓtB1tR–1
1t B�

1tα1t – ΓtB2tR–1
2t B�

2t(Σt + Γt)
]
Eyt – ΣtB1tR–1

1t B�
1tβ1t

+ Φ̇t – ΣtB2tR–1
2t B�

2tΦt – ΓtB1tR–1
1t B�

1tβ1t – ΓtB2tR–1
2t B�

2tΦt
}

dt

+ Σtzt dwt . (36)
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Plugging (35) into (21) yields

dp2t =
{[

A�
t Σt – Q2t

]
yt + A�

t ΓtEyt + A�
t ΓtEyt + A�

t Φt
}

dt – K2tzt dwt . (37)

Comparing (36) and (37), we obtain

⎧
⎨

⎩
Σ̇t – ΣtAt – A�

t Σt – ΣtB2tR–1
2t B�

2tΣt + Q2t = 0,

Σ0 = –G2,
(38)

⎧
⎪⎪⎨

⎪⎪⎩

Γ̇t – ΓtAt – A�
t Γt – (Σt + Γt)B1tR–1

1t B�
1tα1t

– ΣtB2tR–1
2t B�

2tΓt – ΓtB2tR–1
2t B�

2t(Σt + Γt) = 0,

Γ0 = 0,

(39)

and

⎧
⎪⎪⎨

⎪⎪⎩

Φ̇t – A�
t Φt – ΣtB1tR–1

1t B�
1tβ1t – ΣtB2tR–1

2t B�
2tΦt

– ΓtB1tR–1
1t B�

1tβ1t – ΓtB2tR–1
2t B�

2tΦt = 0,

Φ0 = 0,

(40)

where (α1,β1) is the solution to (27). According to [20], the Riccati equations (38) and (39)
admit unique solutions Σ and Γ , respectively. From (26) and (35), we have

α2 = Σ + Γ , β2 = Φ .

Since (28) has a unique solution (α2,β2), for (40) there exists a unique solution Φ . Thus,
the feedback equilibrium point (u1, u2) of problem (MLQ) is uniquely defined by

⎧
⎨

⎩
u1t = R–1

1t B�
1tα1tEyt + R–1

1t B�
1tβ1t ,

u2t = R–1
2t B�

2t[Σtyt + ΓtEyt + Φt].

Substituting (26) and (35) into (21), we obtain

yt = E

[
ξxT +

∫ T

t
fsxs ds

∣∣
∣Ft

]
, (41)

and

Eyt = Eξe–
∫ T

t gr dr +
∫ T

t
hse

∫ t
s gr dr ds, (42)

where

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

fs = B1sR–1
1s B�

1s[α1s + Γs]Eys + B1sR–1
1s B�

1s[β1s + Φs],

xs = exp{∫ s
t [Ar + B1rR–1

1r B�
1rΣr] dr}, s ∈ [t, T],

gt = –At – B1tR–1
1t B�

1t[α1t + α2t],

ht = –B1tR–1
1t B�

1t[β1t + β2t].
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We summarize the above deduction in the following theorem.

Theorem 4.2 Let Assumption 6 hold, the feedback equilibrium point (u1, u2) of problem
(MLQ) is uniquely defined by

⎧
⎨

⎩
u1t = R–1

1t B�
1tα1tEyt + R–1

1t B�
1tβ1t ,

u2t = R–1
2t B�

2t[Σtyt + ΓtEyt + Φt],
(43)

where α1, β1, Σ , Γ , Φ , y and Ey are given by (27), (38), (39), (40), (41) and (42), respectively.

Remark 4 We emphasize that the equilibrium point u1 depends on Ey, and u2 depends
on y and Ey. The main reason of this phenomenon is that v1 is a deterministic control and
v2 is a random control process. This is very different from the case that both v1 and v2 are
random control processes (see, e.g., [6, 7]).

5 A home mortgage and wealth management problem
In this section, we study a problem about home mortgage and investment management.
This model is inspired by [21], which studied an early assessment of residential mortgage
performance in China. Judging from the interest rate difference of various products in
China at present, it is reasonable to invest idle funds into some stable wealth management
products and return bank loans owed, which can bring certain wealth benefits to buyers
and improve the buyers’ quality of life. Furthermore, the ability to repay bank loans is af-
fected by factors such as market interest rate, buyers’ age, education level, annual income,
and building form. We suppose a home buyer intends to repay the bank v1 per month, and
the home buyer hires a portfolio manager to invest in a risk-free asset and a risky asset.
The price processes of the risk-free asset and the risky asset are given by

dI1t = rtI1t dt and dI2t = μtI2t dt + σtI2t dwt ,

respectively.
Now suppose the home buyer plans to attain a terminal wealth goal ξ , which is FT -

measure, non-negative, square-integrable random variable. Then the wealth yt is modeled
by

⎧
⎨

⎩
dyt = {rtyt + atzt – v1t – v2t}dt + zt dwt ,

yT = ξ ,
(44)

where zt = πtσt , at = (μt – rt)σ –1
t , πt is the amount that the portfolio manager invests in the

risk asset, v1 is the strategy of repaying home mortgage, v2 is the instantaneous consump-
tion rate of the portfolio manager. From another perspective, the home buyer is another
portfolio manager. We assume that the market coefficients rt , μt , σt are deterministic and
bounded processes, and σ –1

t is also bounded. Note that the strategy of repaying home
mortgage is deterministic over a certain period of time. Here, we set

H1
ad =

{
v1 ∈ L2(0, T ;R)|v1t > 0, t ∈ [0, T]

}
,

H2
ad =

{
v2 ∈ L2

F (0, T ;R)|v2t > 0, t ∈ [0, T]
}

,
(45)
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every element of Hi is called an admissible control. The coefficients of (44) satisfy As-
sumption 4, then we get

yt = E

[
ξζT +

∫ T

t
(v1s + v2s)ζs ds

∣
∣∣Ft

]
, (46)

where
⎧
⎨

⎩
dζs = –rsζs ds – asζs dws, t ≤ s ≤ T ,

ζt = 1.
(47)

From (47), we get

ζs = exp

{∫ s

t

[
–rτ –

1
2

a2
τ

]
dτ –

∫ s

t
aτ dwτ

}
≥ 0. (48)

Furthermore, if the terminal condition ξ is non-negative, then from (46) and (48), we get
the solution of (44) is larger than zero. We define the associated cost functional of the
portfolio managers

Ji(v1, v2) = –E
∫ T

0
Cie–βt ln vit dt + θiy0, i = 1, 2, (49)

where β is a discount factor, Ci and θi (i = 1, 2) are positive constants. In (49), the first
term measures the total utility from vi (i = 1, 2), and the last term represents the initial
reserve. That is to say, the home buyer desires to maximize the expected utility as well as
to minimize the initial reserve. Then our problem is to find an equilibrium point (u1, u2) ∈
H1

ad ×H2
ad such that

⎧
⎨

⎩
J1(u1, u2) = minv1∈H1

ad
J1(v1, u2),

J2(u1, u2) = minv2∈H2
ad

J2(u1, v2).
(50)

We use Proposition 3.1 to guess a candidate equilibrium point

⎧
⎨

⎩
u1t = C1e–βt(Ep1t)–1,

u2t = C2e–βt(p2t)–1,
(51)

and the adjoint process pit satisfies

⎧
⎨

⎩
dpit = –rtpit dt – atpit dwt ,

pi0 = θi, i = 1, 2.
(52)

Solving (52), we get

Ep1t = θ1 exp

{∫ t

0
–rs ds

}
> 0, (53)
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Figure 1 One trajectory of u1 and u2

p2t = θ2 exp

{∫ t

0

[
–rs –

1
2

a2
s

]
ds –

∫ t

0
as dws

}
> 0. (54)

From the assumption of C1, β , θ1, and rt , we see that u1 is square integrable. Applying a
standard exponential martingale property to u2, we can check that u2 is square integrable.
Then we get (u1, u2) ∈ H1

ad × H2
ad . Assumption 3 is weaker than Assumption 2, and all

the conditions in Proposition 3.2 are satisfied, then Proposition 3.2 implies that (u1, u2)
is an equilibrium point of the home mortgage and wealth management problem. Putting
(u1, u2) into (46) and (49), we get the corresponding initial wealth and related utilities,
respectively.

We illustrate the above theoretical results by working out one numerical example with
certain particular coefficients. Let rt = 3t, at = 2t, β = 0.01, C1 = 1, C2 = 2, θ1 = 1, θ2 = 2.

Applying the Runge–Kutta method and the Monte Carlo method, we obtain the dy-
namic simulation of (·, w, u1, u2). For simplicity, we only draw the trajectory of (u1, u2),
shown in Fig. 1.

6 Conclusion
Motivated by the lack of theory and some interesting financial and economic phenomena,
in this paper, we study a non-zero sum mixed differential game of BSDE. We establish a
necessary condition and an Arrow sufficient condition for open-loop equilibrium point.
There are two contributions worthy of being highlighted. One is that the equilibrium point
(u1, u2) can be explicitly expressed under some detailed conditions. The other one is that
the mixed feedback equilibrium point (u1, u2) not only depends on the optimal state but
also depends on its expectation (see (43)). Due to these features, this paper differs from
the existing literature.

Here, we only study the non-zero sum mixed differential game of BSDE under com-
plete information. Extension of our problem formulation to other type of mixed stochas-
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tic differential game problem promises to be interesting research topics, e.g., the mixed
stochastic differential game of BSDE with partial information, and the mixed stochastic
differential game of backward stochastic differential delay equation. We will consider these
topics in our future research.
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