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Abstract
We state and study a discrete SIR epidemic model with bilinear incidence rate and
constant recovery. We obtain conditions for the existence of the disease-free
equilibrium and endemic equilibria. Theoretic analysis shows that the disease-free
equilibrium is globally asymptotically stable when the basic reproduction number is
less than unity, and the numerical simulations illustrate that it is asymptotically stable
when the number is greater than unity. We also obtain conditions for the stability of
the endemic equilibria. More attention is paid to the existence of the saddle-node
bifurcation, the flip bifurcation, the 1 : 1 resonance, and the Neimark–Sacker
bifurcation. We obtain sufficient conditions for those bifurcations. Our numerical
simulations demonstrate our theoretical results and the complexity of the model.
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1 Introduction
Mathematical models describing the population dynamics of infectious diseases have been
playing an important role in better understanding epidemiological patterns and disease
control for a long time [1]. In some cases a simple mathematical model can reveal the na-
ture of the infectious disease transmission, which plays an important role in the control
and prevention of the infectious diseases. In general, differential equations and difference
equations are two typical mathematical approaches to modeling epidemic dynamical sys-
tems.

In recent years, there has been an increasing interest on discrete population dynam-
ical systems because of their rich dynamics behavior and suitability. On the one hand,
the discrete models exhibit richer dynamical behavior than the continuous models, which
brings more challengeable problems for researches, and more interesting results can be
obtained. For example, the simple logistic model xn+1 = rxn(1 – xn/K), the Ricker model
xn+1 = xner–xn/K , and the Hassell model xn+1 = λxn(1 + axn)–b all exhibit rich dynamical
behavior [2–5]. On the other hand, since epidemiological data are usually collected at
discrete time intervals, it is easier to compare the numerical results of discrete epidemic
model with real data. In addition, the straightforward recurrence relationship of the dif-
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ference equation models is easier to be understood, which is also a prominent advantage
over the difference equation models.

In theoretical epidemiology the Euler discretization has been extensively utilized to
build the discrete epidemic models [1, 6–14]. The main idea is discretizing the existing
continuous models. However, the disadvantage of this method is that it cannot guarantee
the nonnegativity and boundedness of the solutions of the systems in some cases. As a
result, some scholars establish discrete epidemic models by using the probability method
[15–17]. Although the probability method can guarantee the nonnegativity and bound-
edness of the solutions, the model is more complex, and theoretical analysis is difficult.
In this paper, we build a discrete SIR model by applying the Euler discretization. We are
lucky that the solution of our model is nonnegative and bounded.

Theoretical results of discrete epidemic models mainly focus on these aspects, including
the computation of the basic reproduction number [8, 18, 19], the comparison between
continuous-time epidemic models and discrete-time epidemic models [10, 20], the local
stability and global stability of the disease-free equilibrium and endemic equilibrium [6, 7,
9, 11, 15, 16, 21], the extinction, persistence, and permanence of a disease [12, 22–25], pe-
riodic systems [8, 19, 26], bifurcations and chaos phenomena [1, 7, 9, 13, 14, 17, 25, 27, 28],
and so on. In particular, these papers about the bifurcation analysis of discrete epidemic
model mainly involve the conditions on the existence of codimension-one bifurcations,
such as fold bifurcation, flip bifurcation, Neimark–Sacker bifurcation [1, 7, 9, 25, 27, 28],
and so on, which were derived by using the center manifold theorem and bifurcation the-
ory. Here [7] and [9] both focus on the influence of discretization step size on the dynamic
behavior of the system. However, there are few studies on codimension-two bifurcations
[13, 14], for example, bifurcations associated with 1 : 1 strong resonance. In [14], based
on the analysis of various strong resonance, a controller was designed to eliminate the
disease. In this paper, we are more interested in finding conditions of the existence of the
saddle-node bifurcation, the flip bifurcation, the 1 : 1 resonance, and the Neimark–Sacker
bifurcation.

Wang and Ruan [29] have used a continuous-time SIR model tell us that it is unnecessary
to take such a large treatment capacity that endemic equilibria disappear to eradicate the
disease, and the outcome of disease spread may depend on the position of the initial states
for certain range of parameters. We put the continuous-time SIR model in [29] as follows:

dS(t)
dt

= Λ – βS(t)I(t) – dS(t),

dI(t)
dt

= βS(t)I(t) – (d + γ )I(t) – h(I),

dR(t)
dt

= γ I(t) + h(I) – dR(t),

(1.1)

where S(t), I(t), and R(t) denote the numbers of susceptible, infective, and recovered in-
dividuals at time t, respectively, Λ is the recruitment rate, β is the transmission rate, d is
the natural death rate, γ is the spontaneous recovery rate of the infective individuals, and
h(I) is the removal rate of infective individuals due to the treatment of the form

h(I) =

⎧
⎨

⎩

m > 0 for I > 0,

m = 0 for I = 0.
(1.2)
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This means that if the number of infective individuals is greater than 0, then it is possible
for the infective individuals to be cured, leaving the infective class and entering the re-
covered class. If the number of infective individuals were 0, then no infective individuals
would enter the recovered class.

In this paper, we apply the forward Euler scheme to model (1.1) and obtain the following
discrete-time SIR epidemic model:

S(t + 1) = S(t) + Λ – βS(t)I(t) – dS(t),

I(t + 1) = I(t) + βS(t)I(t) – (d + γ )I(t) – h(I),

R(t + 1) = R(t) + γ I(t) + h(I) – dR(t).

(1.3)

Here all parameters have the same meaning as in system (1.1), and h(I) = m ≥ 0. We as-
sume that all the parameters are positive constants except for m. Based on the epidemio-
logical meaning, we require that 1 – d > 0, 1 – d – γ > 0, and Λ > m.

Due to the biological interpretation of system (1.3), only nonnegative solutions are
meaningful to be considered. The following result reveals that the solutions (S(t), I(t),
R(t)) of system (1.3) with non-negative initial value ultimately remain nonnegative and
bounded.

Theorem 1.1 All solutions of system (1.3) with nonnegative initial value remain nonneg-
ative for all t ≥ 0 and are ultimately bounded.

Proof Let N(t) be the number of the total population at time t, that is, N(t) = S(t) + I(t) +
R(t). Adding all equations in (1.3), we obtain the equation for the total population N(t):

N(t + 1) = Λ + (1 – d)N(t). (1.4)

Substituting S(t) = N(t) – I(t) – R(t) into the second equation of model (1.3) leads to the
system

N(t + 1) = Λ + (1 – d)N(t),

I(t + 1) = I(t) + β
(
N(t) – I(t) – R(t)

)
I(t) – (d + γ )I(t) – h(I),

R(t + 1) = R(t) + γ I(t) + h(I) – dR(t).

(1.5)

Obviously, systems (1.5) and (1.3) are equivalent. In the following, we show that the so-
lutions (N(t), I(t), R(t)) of system (1.5) with nonnegative initial value remain nonnegative
and ultimately bounded.

Firstly, by the first equation of system (1.5) we have N(t) = Λ[ 1–(1–d)t

d ] + (1 – d)tN0, which
implies that N(t) ≥ 0 for all t ≥ 0 when the initial value N0 ≥ 0.

Secondly, we show that I(t) is nonnegative for t ≥ 0. In fact, if there exists t1 > 0 such
that I(t1) = 0 and I(t) > 0 for t ∈ (0, t1), then by the second equation of system (1.5) we have
I(t1 + 1) = 0. This implies that I(t) ≥ 0 for all t ≥ 0.

Finally, we prove that R(t) ≥ 0 for t ≥ 0. The third equation of system (1.5) implies that
R(t) = (1 – d)tR(0) + (1 – d)t–1[γ I(0) + h(I)] + (1 – d)t–2[γ I(1) + h(I)] + · · ·+γ I(t – 1) + h(I) > 0
with nonnegative initial value for t ≥ 0.
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Summarizing this analysis, we know that any solution of system (1.5) with nonnegative
initial values remains nonnegative for all t ≥ 0, that is, all solutions of system (1.3) with
nonnegative initial value remain nonnegative for all t ≥ 0.

In the following, we will show that the solutions of system (1.3) are ultimately bounded.
It is clear that equation (1.4) has a unique equilibrium N∗ = Λ

d , which is globally asymp-
totically stable, that is, limt→∞ N(t) = N∗. Therefore

lim sup
t→+∞

(
S(t) + I(t) + R(t)

) ≤ Λ

d
.

It follows that the omega limit set of system (1.3) is contained in the bounded feasible
region

Γ =
{

(S, I, R) : S, I, R ≥ 0, S + I + R ≤ Λ

d

}

.

Obviously, this region is positively invariant with respect to system (1.3), which implies
that system (1.3) is ultimately bounded. �

Since the first two equations of system (1.3) are independent of the third one, it suffices
to consider the first two equations. Thus we replace h(I) with m in system (1.3) and restrict
our attention to the following reduced model:

S(t + 1) = S(t) + Λ – βS(t)I(t) – dS(t),

I(t + 1) = I(t) + βS(t)I(t) – (d + γ )I(t) – m,
(1.6)

where m > 0 when I > 0 and m = 0 when I = 0. Accordingly,

Γ̄ =
{

(S, I) : S, I ≥ 0, S + I <
Λ

d

}

is positively invariant with respect to system (1.6).
The purpose of this paper is to show the dynamics of discrete system (1.6), In partic-

ular, we mainly focus on the various bifurcations that might occur around the equilibria.
The paper is organized as follows. The saddle-node bifurcation, flip bifurcation, Neimark–
Sacker bifurcation, and 1 : 1 resonance are shown in Sect. 2. In Sect. 3, a series of numerical
simulations show that there are bifurcation and chaos in the discrete epidemic model. Fi-
nally, we give some conclusions.

2 Bifurcation analysis
Before bifurcation analysis, we first discuss the existence of the equilibria of system (1.6)
and the global stability of the disease-free equilibrium. Letting R0 = Λβ

d(d+γ ) > 0 and A =
mβ

d(d+γ ) > 0, we have the following result.

Theorem 2.1
(i) System (1.6) always has the disease free equilibrium E0 = ( Λ

d , 0);



Cao et al. Advances in Difference Equations         (2020) 2020:49 Page 5 of 20

(ii) If R0 = 1 + A + 2
√

A, then system (1.6) has one endemic equilibrium E1 = (S1, I1),
where

S1 =
Λ

d + βI1
, I1 =

d
√

A
β

;

(iii) If R0 > 1 + A + 2
√

A, then system (1.6) has two endemic equilibria E2 = (S2, I2) and
E3 = (S3, I3), where Si = Λ

d+βIi
, i = 2, 3, and

I2 =
d

2β

(
R0 – 1 – A –

√
(R0 – 1 – A)2 – 4A

)
,

I3 =
d

2β

(
R0 – 1 – A +

√
(R0 – 1 – A)2 – 4A

)
.

Proof To discuss the existence of equilibria of system (1.6), we need discuss the following
equations:

⎧
⎨

⎩

Λ – βSI – dS = 0,

βSI – (d + γ )I – m = 0.
(2.1)

When I = 0, we have m = 0. By the first equation of (2.1) we obtain S = Λ
d . This implies

that system (1.6) always has the disease-free equilibrium E0 = ( Λ
d , 0).

When I > 0, we have m > 0. The first equation of (2.1) implies that S = Λ
βI+d . Taking

S = Λ
βI+d in the second equation of of (2.1), we obtain the following equation:

β

d
I2 + (A + 1 – R0)I +

m
d + γ

= 0, (2.2)

where R0 = Λβ

d(d+γ ) and A = mβ

d(d+γ ) , that is, the following results hold:
(i) If R0 = 1 + A + 2

√
A, then (2.2) has one root I1 = d

√
A

β
, which implies that system (1.6)

has one endemic equilibrium E1 = (S1, I1), where

S1 =
Λ

d + βI1
, I1 =

d
√

A
β

.

(ii) If R0 > 1 + A + 2
√

A, then (2.2) has two roots I2 = d
2β

(R0 – 1 – A –
√

(R0 – 1 – A)2 – 4A)
and I3 = d

2β
(R0 – 1 – A +

√
(R0 – 1 – A)2 – 4A), respectively. This means that system (1.6)

has two endemic equilibria E2 = (S2, I2) and E3 = (S3, I3), where Si = Λ
d+βIi

, i = 2, 3, and

I2 =
d

2β

(
R0 – 1 – A –

√
(R0 – 1 – A)2 – 4A

)
,

I3 =
d

2β

(
R0 – 1 – A +

√
(R0 – 1 – A)2 – 4A

)
. �

Theorem 2.2 If R0 < 1, then the disease-free equilibrium E0 is globally asymptotically sta-
ble.
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Proof We discuss the global stability of E0 by constructing a Lyapunov function. Define
F : [0, N∗] → [0, N∗] by

F(I) = I(t) + βS(t)I(t) – (d + γ )I(t) – m.

Obviously, F is the mapping derived by the second equation of system (1.6), and 0 is a fixed
point of F . The linear function V (I) = I on [0, N∗] is continuous and positive definite with
respect to 0. Therefore V is a Lyapunov function on the domain of F . For any I ∈ [0, N∗],
we have

�V (I) = I(t) + βS(t)I(t) – (d + γ )I(t) – m – I(t)

= βS(t)I(t) – (d + γ )I(t) – m

≤ (
βS(t) – (d + γ )

)
I(t)

≤
(

Λ

d
β – (d + γ )

)

I(t)

= (d + γ )(R0 – 1)I(t).

Hence, if R0 < 1, then �V (I) < 0 for I ∈ [0, N∗], which implies that limt→∞ I(t) = 0, that is,
limt→∞ S(t) = Λ

d . It follows from Theorem 4.22 in [30] that E0 is globally asymptotically
stable. �

In the following sections, we focus on bifurcations that may occur around the equilibria
points.

2.1 Saddle-node bifurcation and bifurcation with 1 : 1 resonance
The Jacobian matrix at the endemic equilibrium E1 = (S1, I1) is

JE1 =

(
1 – d – βI1 –βS1

βI1 1 – d – γ + βS1

)

.

The corresponding characteristic equation of JE1 is

h1(λ) = λ2 – (2 – d + γ
√

A)λ + 1 – d + γ
√

A = 0.

When R0 = A + 2
√

A + 1, direct computation yields that

h1(1) = 0, h1(–1) = 2(2 – d + γ
√

A), h1(0) = 1 – d + γ
√

A,

which implies that h1(λ) = 0 has eigenvalues λ1 = 1 and λ2 = 1 – d + γ
√

A. If
√

A 	= d
γ

, then
|λ2| 	= 1. The following theorem is the case where the endemic equilibrium E1 is a saddle-
node bifurcation point when R0 = 1 + A + 2

√
A. The existence of the endemic equilibria

E2 and E3 is exhibited in Theorem 2.1, and the stability of both E2 and E3 is proved in the
next section, Therefore we have the following:
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Theorem 2.3 If R0 = 1 + A + 2
√

A and
√

A 	= d
γ

, then system (1.6) will undergo a saddle-
node bifurcation at E1. Moreover, when R0 > 1+A+2

√
A, then system (1.6) has two endemic

equilibria E2 and E3.

In addition, when R0 = 1 + A + 2
√

A and
√

A = d
γ

, we have h1(1) = 0 and h1(0) = 1, which
implies that

h1(λ) = λ2 – 2λ + 1 = 0, (2.3)

that is, in this case, h1(λ) = 0 has the eigenvalues λ1 = λ2 = 1. The following theorem is the
case where the endemic equilibrium E1 is a 1 : 1 resonance point when R0 = 1 + A + 2

√
A

and
√

A = d
γ

.

Theorem 2.4 If R0 = 1 + A + 2
√

A and
√

A = d
γ

, then system (1.6) will undergo a 1 : 1
resonance at E1.

Proof Let u1(t) = S(t) – S1, v1(t) = I(t) – I1, and ρ = β – d(d+γ )3

Λγ 2 . Then system (1.6) becomes

u1(t + 1) =
(

1 –
(

ρ +
d(d + γ )3

Λγ 2

)

I1 – d
)

u1(t) –
(

ρ +
d(d + γ )3

Λγ 2

)

S1v1(t)

–
(

ρ +
d(d + γ )3

Λγ 2

)

u1(t)v1(t),

v1(t + 1) =
(

ρ +
d(d + γ )3

Λγ 2

)

I1u1(t) +
(

1 – d – γ +
(

ρ +
d(d + γ )3

Λγ 2

)

S1

)

v1(t)

+
(

ρ +
d(d + γ )3

Λγ 2

)

u1(t)v1(t).

(2.4)

Furthermore, system (2.4) can be rewritten as

(
u1(t + 1)
v1(t + 1)

)

= A0

(
u1(t)
v1(t)

)

+

(
g1(u1, v1)
g2(u1, v1)

)

, (2.5)

where

A0 =

⎛

⎝
1 – (ρ + d(d+γ )3

Λγ 2 )I1 – d –(ρ + d(d+γ )3

Λγ 2 )S1

(ρ + d(d+γ )3

Λγ 2 )I1 1 – d – γ + (ρ + d(d+γ )3

Λγ 2 )S1

⎞

⎠ ,

and

g1(u1, v1) = –
(

ρ +
d(d + γ )3

Λγ 2

)

u1(t)v1(t), g2(u1, v1) =
(

ρ +
d(d + γ )3

Λγ 2

)

u1(t)v1(t).

Let

P =

(
–(d + γ ) γ –(d+γ )2

d
d d + γ

)

and P–1 =

⎛

⎝
– d+γ

γ

γ –(d+γ )2

dγ

d
γ

d+γ

γ

⎞

⎠ .
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The transformation
(

y1(t)
y2(t)

)

= P

(
u1(t)
v1(t)

)

for system (2.5) yields that

(
y1(t + 1)
y2(t + 1)

)

=

(
1 1
0 1

)(
y1(t)
y2(t)

)

+

(
k1(y1, y2)
k2(y1, y2)

)

, (2.6)

where

k1(y1, y2) =
(

ρ +
d(d + γ )3

Λγ 2

)(

d + γ +
γ – (d + γ )2

d

)(

–
d(d + γ )

γ 2 y2
1

+
γ – 2(d + γ )2

γ 2 y1y2 +
(d + γ )(γ – (d + γ )2)

dγ 2 y2
2

)

,

k2(y1, y2) =
(

ρ +
d(d + γ )3

Λγ 2

)

γ

(

–
d(d + γ )

γ 2 y2
1 +

γ – 2(d + γ )2

γ 2 y1y2

+
(d + γ )(γ – (d + γ )2)

dγ 2 y2
2

)

.

Using Sect. 9.5.2 in [31], we have

a20(ρ) = –2
(

ρ +
d(d + γ )3

Λγ 2

)(

d + γ +
γ – (d + γ )2

d

)(
d(d + γ )

γ 2

)

,

b20(ρ) = –2
(

ρ +
d(d + γ )3

Λγ 2

)

γ

(
d(d + γ )

γ 2

)

,

b11(ρ) =
(

ρ +
d(d + γ )3

Λγ 2

)

γ
γ – 2(d + γ )2

γ 2 .

Furthermore, we have

b20(0) = –2
2d2(d + γ )4

Λγ 3 < 0,

a20(0) + b11(0) – b20(0) = –
d(d + γ )3(dγ (1 – d – γ ) + γ (d + γ )(1 – d))

Λγ 3 < 0.

It follows from Sect. 9.5.2 in [31] that system (1.6) will undergo a 1 : 1 resonance at E1

when R0 = 1 + A + 2
√

A and
√

A = d
γ

. �

In fact, the phenomenon of resonance with a double eigenvalue of 1 is similar to the
Bogdanov–Takens bifurcation of the continuous system with double eigenvalues 0.

2.2 Flip bifurcation and Neimark–Sacker bifurcation
In this section, we first discuss the stability of the endemic equilibrium E2. Obviously, the
Jacobian matrix at the endemic equilibrium E2 = (S2, I2) is as follows:

JE2 =

(
1 – d – βI2 –βS2

βI2 1 – d – γ + βS2

)

,
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and the corresponding characteristic equation of JE2 is

h2(λ) = λ2 – (1 – d – βI2 + 1 – d – γ + βS2)λ + (1 – d)(1 – d – γ ) + (1 – d)βS2

– (1 – d – γ )βI2

= 0.

Because of h2(1) = –d(d + γ )(
√

(R0 – 1 – A)2 – 4A) < 0 when R0 > 1 + A + 2
√

A, the en-
demic equilibrium E2 is unstable, that is, we have the following:

Theorem 2.5 If R0 > 1 + A + 2
√

A, then the endemic equilibrium E2 is unstable.

In the following, we discuss the stability of the endemic equilibrium E3 and the bifurca-
tion that may occur around E3 when the stability of E3 changes. Let

R1 =
–dγ +

√
�1

2d(1 – d)(d + γ )(1 – d – γ )
, R2 =

2(2 – d)γ + 2
√

�2

(2 – d)(2 – d – γ )d(d + γ )

with

�1 = d2γ 2 + 4d(1 – d)(d + γ )(1 – d – γ )
(
A

(
d(1 – d – γ ) + (1 – d)(d + γ )

)2 + d2),

�2 = (2 – d)2γ 2 + (2 – d)(2 – d – γ )d(d + γ )
(
A

(
d + (1 – d)(d + γ )

)2 + (2 – d)2).

It is clear that R1 > 0 and R2 > 0.

Theorem 2.6 If 1 + A + R1 < R0 < 1 + A + R2, then the endemic equilibrium E3 is locally
asymptotically stable, whereas if R0 < 1 + A + R1, or R0 > 1 + A + R2, then the endemic
equilibrium E3 is unstable.

Proof To study the stability of E3, we give the Jacobian matrix at the endemic equilibrium
E3 = (S3, I3):

JE3 =

(
1 – d – βI3 –βS3

βI3 1 – d – γ + βS3

)

,

and the corresponding characteristic equation of JE3 is

h3(λ) = λ2 – (1 – d – βI3 + 1 – d – γ + βS3)λ + (1 – d)(1 – d – γ ) + (1 – d)βS3

– (1 – d – γ )βI3

= 0.

It is clear that

h3(1) = d(d + γ )
√

(R0 – 1 – A)2 – 4A > 0,

h3(–1) = 2(2 – d) + γ (R0 – 1 – A) –
(
d + (1 – d)(d + γ )

)√
(R0 – 1 – A)2 – 4A,

h3(0) = 1 – d +
γ

2
(R0 – 1 – A) –

(1 – d)(d + γ ) + d(1 – d – γ )
2

√
(R0 – 1 – A)2 – 4A.
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By direct computation we have h3(0) < 1 if R0 > 1 + A + R1, h3(0) = 1 if R0 = 1 + A + R1, and
h3(0) > 1 if R0 < 1 + A + R1. In addition, we have h3(–1) > 0 if R0 < 1 + A + R2, h3(–1) = 0 if
R0 = 1 + A + R2, and h3(–1) < 0 if R0 > 1 + A + R2.

Therefore we have h3(–1) > 0 and h3(0) < 1 if 1 + A + R1 < R0 < 1 + A + R2, which implies
that the endemic equilibrium E3 is locally asymptotically stable, whereas if R0 < 1 + A + R1

or R0 > 1 + A + R2, then the endemic equilibrium E3 is unstable. �

In particular, when R0 = 1 + A + R2, h3(λ) = 0 has the eigenvalues λ1 = –1 and

λ2 = 1 – d –
γ d(d + γ )

2(d + (1 – d)(d + γ ))
R2 –

dγ

d + (1 – d)(d + γ )
.

Because of 0 < d < 1, we have |λ2| 	= 1. The following theorem considers the case where
the endemic equilibrium E3 is a flip bifurcation point when R0 = 1 + A + R2.

Theorem 2.7 If R0 = 1 + A + R2, then system (1.6) will undergo a flip bifurcation at E3.
Moreover, the periodic-2 solution bifurcated from the endemic equilibrium E3 is stable.

Proof In the case where R0 = 1 + A + R2 the endemic equilibrium is E3 = (S3, I3), where

S3 =
Λ

d + βI3
, I3 =

d(2 – d)(2 + (d + γ )R2)
2β(d + (1 – d)(d + γ ))

.

Let ε(t) = S(t) – S3, δ(t) = I(t) – I3, and τ (t) = Λ – C with C = d(d+γ )
β

+ m + d(d+γ )
β

R2, where
the parameter τ is a new and dependent variable. The system (1.6) becomes:

ε(t + 1) = (1 – d – βI3)ε(t) –
βC

d + βI3
δ(t) – βε(t)δ(t) –

β

d + βI3
δ(t)τ (t),

δ(t + 1) = βI3ε(t) +
(

1 – d – γ +
βC

d + βI3

)

δ(t) + βε(t)δ(t) +
β

d + βI3
δ(t)τ (t),

τ (t + 1) = τ (t).

(2.7)

Let

M =

⎛

⎜
⎝

–1 – γ –(2 – d – γ ) 0
m21 2 – d 0

0 0 1

⎞

⎟
⎠ and M–1 =

⎛

⎜
⎝

2–d
φ

2–d–γ

φ
0

– m21
φ

–1–γ

φ
0

0 0 1

⎞

⎟
⎠ ,

where

m21 = –
γ d(d + γ )

2(d + (1 – d)(d + γ ))
R2 –

dγ

d + (1 – d)(d + γ )
< 0,

φ = (2 – d – γ )m21 – (1 + γ )(2 – d) < 0.

Using the transformation

⎛

⎜
⎝

x(t)
y(t)
z(t)

⎞

⎟
⎠ = M–1

⎛

⎜
⎝

ε(t)
δ(t)
τ (t)

⎞

⎟
⎠
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for system (2.7) yields that

⎛

⎜
⎝

x(t + 1)
y(t + 1)
z(t + 1)

⎞

⎟
⎠ =

⎛

⎜
⎝

λ2 0 0
0 –1 0
0 0 1

⎞

⎟
⎠

⎛

⎜
⎝

x(t)
y(t)
z(t)

⎞

⎟
⎠ +

⎛

⎜
⎝

g1

g2

0

⎞

⎟
⎠ , (2.8)

where

g1 =
γ

φ
β(1 + γ )m21x2(t) +

((1 + γ )(2 – d) + 2 – d – γ )βγ

φ
x(t)y(t)

+
γβ(2 – d – γ )(2 – d)

φ
y2(t) –

γβm21

φ(d + βI3)
x(t)z(t) –

γβ(2 – d)
φ(d + βI3)

y(t)z(t),

g2 = –
(m21 – 1 – γ )β(1 + γ )

φ
x2(t) –

(m21 – 1 – γ )β
φ

(
(1 + γ )(2 – d) + 2 – d – γ

)
x(t)y(t)

–
(m21 – 1 – γ )β(1 + γ )

φ
(2 – d)(2 – d – γ )y2(t) +

(m21 – 1 – γ )βm21

φ(d + βI3)
x(t)z(t)

+
(m21 – 1 – γ )β(2 – d)

φ(d + βI3)
y(t)z(t).

From the center manifold theory of discrete system we know that there exists a local
manifold of system (2.8) [32]. The local manifold has the expansion

x(t) = b1y2(t) + b2y(t)z(t) + b3z2(t) + o
((∣

∣y(t)
∣
∣ + z(t)

)3).

After substituting the expansion into system (2.8) and using the invariance property of the
local manifold, the straightforward and careful calculation gives

b1 = –
βγ (2 – d)(2 – d – γ )

φ(λ2 – 1)
, b2 =

βγ (2 – d)
φ(d + βI3)(λ2 + 1)

, b3 = 0.

From the third equation of system (2.8) we have that z(t) is always constant. Therefore the
one-dimensional model induced by the center manifold is

y(t + 1) = G1
(
y(t), z

)
,

where

G1
(
y(t), z

)
= –y(t) –

(m21 – 1 – γ )β(1 + γ )
φ

(2 – d)(2 – d – γ )y2(t)

+
(m21 – 1 – γ )β(2 – d)

φ(d + βI3)
y(t)z(t)

+
(m21 – 1 – γ )β2γ

φ2(λ2 – 1)
(
(1 + γ )(2 – d) + 2 – d – γ

)
(2 – d)(2 – d – γ )y3(t)

–
(m21 – 1 – γ )β2γ (2 – d)

φ2(d + βI3)

(
(1 + γ )(2 – d) + 2 – d – γ

λ2 + 1

+
m21(2 – d – γ )

λ2 – 1

)

y2(t)z(t)

+
(m21 – 1 – γ )β2γ m21(2 – d)

φ2(d + βI3)2(λ2 + 1)
y(t)z2(t) + o

((∣
∣v(t)

∣
∣ + δ(t)

)4).
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It is clear that G1(0, z(t)) = 0, ∂G1(0,0)
∂y = –1. In addition, ∂2G(0,0)

∂y∂z = (m21–1–γ )β(2–d)
φ(d+βI3) > 0

since m21 – 1 – γ < 0 and φ < 0, and ∂3G2(0,0)
∂y3 = –12( (m21–1–γ )2β2(1+γ )2(2–d)2(2–d–γ )2

φ2 +
(m21–1–γ )β2γ ((1+γ )(2–d)+2–d–γ )(2–d)(2–d–γ )

φ2(λ2–1) ) < 0 since m21 – 1 – γ < 0 and λ2 – 1 < 0. There-
fore system (1.6) undergoes a flip bifurcation at E3, and the bifurcation solution of period
2 is stable [32]. The proof is completed. �

When R0 = 1 + A + R1 and 2d
γ

< R1 < 4d(1–d–γ )+2d2(d+γ )+4(1–d)(d+γ )
dγ (d+γ ) , we have h3(0) = 1 and

� = (1– d –βI3 + 1 – d –γ +βS3)2 – 4 < 0. This implies that h3(λ) = 0 has a pair of conjugate
complex roots, and their molds both are equal to 1. Furthermore the endemic equilibrium
E3 may be a Neimark–Sacker bifurcation point. Therefore we have the following:

Theorem 2.8 If R0 = 1 + A + R1 and 2d
γ

< R1 < 4d(1–d–γ )+2d2(d+γ )+4(1–d)(d+γ )
dγ (d+γ ) , then system (1.6)

will undergo a Neimark–Sacker bifurcation at E3.

Proof Let x1(t) = S(t) – S3 and y1(t) = I(t) – I3. Then system (1.6) becomes

x1(t + 1) = (1 – d – βI3)x1(t) – βS3y1(t) – βx1(t)y1(t),

y1(t + 1) = βI3x1(t) + (1 – d – γ + βS3)y1(t) + βx1(t)y1(t).
(2.9)

The eigenvalues of the linearized matrix are

λ1,2 =
1
2

(
B1 ±

√

4B2 – B2
1i

)
,

where

B1 = 2 – d +
γ

2
(R0 – 1 – A) –

2d + γ

2
√

(R0 – 1 – A)2 – 4A,

B2 = 1 – d +
γ

2
(R0 – 1 – A) –

2d + γ – d(d + γ )
2

√
(R0 – 1 – A)2 – 4A,

and |λi| = 1 – d + (1 – d)(d + γ )(R0 – 1 – A) – d(1–d–γ )+(1–d)(d+γ )
2 (R0 – 1 – A +

√
(R0 – 1 – A)2 – 4A), i = 1, 2.
Let R0 be the bifurcation parameter, and let R∗

0 = 1 + A + R1. A direct calculation yields
that

λ1,2
(
R∗

0
)

=
1
2

(
B1 ±

√

4B2 – B2
1i

)∣
∣
∣
R0=1+A+R1

=
1
2
(
B ± √

4 – B2i
)
,

∣
∣λ1,2

(
R∗

0
)∣
∣ = 1,

d|λi|
dR0

∣
∣
∣
∣
R0=R∗

0

= –
dγ + 2d(d + γ )(1 – d)(1 – d – γ )R1

(γ R1 – 2d)
< 0,

with B = 2d+2(1–d)2(d+γ )–γ d(d+γ )R1
d(1–d–γ )+(1–d)(d+γ ) .

In addition, λm
1,2 	= 1 for m = 1, 2, 3, 4. Let T =

( 1 0
t21 t22

)
with t22 = (d+βI3)

√
4B2–B2

1
Λβ

> 0 and

t21 = – (d+βI3)( 1
2 B1–1+d+βI3)
Λβ

< 0. By the transformation

(
x1(t)
y1(t)

)

= T

(
x̄(t)
ȳ(t)

)
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we obtain

(
x̄(t + 1)
ȳ(t + 1)

)

=

(
1
2 B1 – 1

2

√
4B2 – B2

1
1
2

√
4B2 – B2

1
1
2 B1

)(
x̄(t)
ȳ(t)

)

+

(
P1(x̄, ȳ)
P2(x̄, ȳ)

)

,

where

P1(x̄, ȳ) = –βt21x̄2 – βt22x̄ȳ,

P2(x̄, ȳ) =
t21 + 1

t22

(
βt21x̄2 + βt22x̄ȳ

)
.

From Theorem 3.5.3 of [31] we see that the existence of Neimark–Sacker bifurcation can
be determined by the quantity θ , where

θ = – Re

[
(1 – 2λ)λ̄2

1 – λ
l11l20

]

–
1
2
|l11|2 – |l02|2 + Re(λ̄l21),

and

l11 =
1
4
[
P1x̄x̄ + P1ȳȳ + i(P2x̄x̄ + P2ȳȳ)

]
,

l20 =
1
8
[
(P1x̄x̄ – P1ȳȳ + 2P2x̄ȳ) + i(P2x̄x̄ – P2ȳȳ – 2P1x̄ȳ)

]
,

l02 =
1
8
[
(P1x̄x̄ – P1ȳȳ – 2P2x̄ȳ) + i(P2x̄x̄ – P2ȳȳ + 2P1x̄ȳ)

]
,

l21 =
1

16
[
(P1x̄x̄x̄ + P1x̄ȳȳ + P2x̄x̄ȳ + P2ȳȳȳ) + i(P2x̄x̄x̄ + P2x̄ȳȳ – P1x̄x̄ȳ – P1ȳȳȳ)

]
.

By a straightforward and tedious calculation we obtain that

θ = θ1 + θ2 + θ3 + θ4 < 0

with

θ1 =
B2

1 – 2B2 + B1B2 – B3
1 – 4B2

2 + 2B2
1B2

2(1 – B1 + B2)
× β2t2

21
8t2

21
× (t21 + 1 – t22)(t21 + 1 + t22)

+
B1 – B2 – B2

1 + 2B1B2

2(1 – B1 + B2)
× β2t21

8t22
× 1 – t2

21 – t2
22

t2
22

< 0,

θ2 = –
1
8
β2t2

21

(

1 +
(1 + t21)2

t2
22

)

< 0,

θ3 = –
1

16
β2

(

(1 + 2t21)2 +
(

t21(1 + t21)
t22

– t22

)2)

< 0,

θ4 = 0.

Using the Neimark–Sacker bifurcation theorem in [31], we obtain that there exists a
Neimark–Sacker bifurcation when R0 passes through R∗

0, which competes the proof. �
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Figure 1 The stability analysis of disease-free equilibrium E0 when R0 > 1, where Λ = 0.1, d = 0.006, r = 0.1,
andm = 0.00001

Figure 2 The existence of the endemic equilibrium E1, E2,
and E3, where Λ = 200, d = 0.07, r = 0.05, andm = 0.1

3 Numerical simulation
To provide some numerical evidence for the qualitative dynamic behavior of the system
(1.6), we will display some bifurcation diagrams to illustrate the analytical results and ex-
plore a new dynamics behavior as the parameters change.

We first show the stability of a disease-free equilibrium E0 when R0 > 1. Letting Λ =
0.1, d = 0.006, r = 0.1, m = 0.00001, and β = 0.0064, we have R0 = 1.0063 > 1 and 1 + A +
2
√

A = 1.0202. Accordingly, we have 1 < R0 < 1 + A + 2
√

A. In this case, Fig. 1(a) shows that
the solutions of system (1.6) with different initial values tend to E0 as t tends to infinity.
Keeping the other parameters the same as in Fig. 1(a) except for β = 0.01, we have R0 =
1.0535 > 1 and 1 + A + 2

√
A = 1.0206, that is, R0 > 1 + A + 2

√
A. In this case, Fig. 1(b)

shows that the solutions of system (1.6) also tend to E0 as t tends to infinity. The numerical
simulations illustrate that the disease-free equilibrium E0 is stable when R0 > 1.

Secondly, we show some examples about the existence of the endemic equilibrium Ei,
i = 1, 2, 3, Let Λ = 200, d = 0.07, r = 0.05, m = 0.1. Taking β as the variable parameter, we
see in Fig. 2 the existence of the endemic equilibrium Ei, i = 1, 2, 3. Then we display the
saddle-node bifurcation around endemic equilibrium E1. Leaving the other parameters
as in Fig. 2 except for m = 0.00001 and β = 0.0001, we have R0 = 2.38095 and 1 + A +
2
√

A = 1.00069. Accordingly, we have R0 > 1 + A + 2
√

A, E1 = (2856.157389, 0.24152), E2 =
(2857.1426, 0.00006), and E3 = (1200.000103, 966.66652). Figure 3 shows that the solutions
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Figure 3 The saddle–node bifurcation of system (1.6) at E1 when R0 = 1 + A + 2
√
A, where Λ = 200, d = 0.07,

r = 0.05,m = 0.00001, and β = 0.0001

Figure 4 The flip bifurcation of system (1.6) when R0 = 1 + A + R2, where Λ = 200, d = 0.007,
β = 0.0011308665, γ = 0.1, andm = 0.1

of system (1.6) with different initial values tend to E3 as t tends to infinity, which implies
that E2 is unstable and E3 is asymptotically stable, that is, E1 is the saddle-node.

Thirdly, flip bifurcation is shown in Fig. 4. We take Λ = 200, d = 0.007, β = 0.0011308665,
γ = 0.1, and m = 0.1; then flip bifurcation occurs at endemic equilibrium E3.

Then we chose Λ = 200, d = 0.00001, β = 0.0050003, γ = 0.99999, and m = 0.01; then
the endemic equilibrium E3 is unstable, and Neimark–Sacker bifurcation happens at E3

(see Fig. 5).
Finally, we chose Λ = 4, d = 0.007, and γ = 0.01 to display the bifurcation diagrams at E2

and E3 in Fig. 6(a) and Fig. 6(b), respectively. Here m and β are the bifurcation parameters.
In addition, the numerical simulations show that the model possesses more complicated

dynamics. For example, if we take Λ = 10, d = 0.007, m = 0.1, and γ = 0.5115, then Fig. 7
shows that system (1.6) undergoes a process from periodic doubling to chaos. As β in-
creases, firstly, the positive equilibrium loses its stability, and a stable two-cycle period
appears, then the two-cycle period looses its stability, and a stable four-cycle period ap-
pears, and, finally, the period doubling process continues to chaos (see Fig. 7).
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Figure 5 The Neimark–Sacker bifurcation of system (1.6) when R0 = 1 + A + R1, where Λ = 200, d = 0.00001,
β = 0.0050003, γ = 0.99999, andm = 0.01

Figure 6 The bifurcation diagram of system (1.6) at the endemic equilibrium, where Λ = 4, d = 0.007, and
γ = 0.01

Figure 7 The chaos behavior of system (1.6), where Λ = 10, d = 0.007,m = 0.1, and γ = 0.5115
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4 Discussion and conclusion
The discrete epidemic model is more suitable to describe the spread of diseases since the
epidemiological data are usually collected in discrete time units, such as daily, weekly,
or monthly. In this paper, we have studied the dynamical behavior of the discrete SIR epi-
demic model (1.3) with bilinear incidence rate and constant recovery by analyzing the dis-
crete model (1.6). We have obtained sufficient conditions for the existence of the disease-
free equilibrium and multiple positive equilibria, the saddle-node bifurcation, the flip bi-
furcation, the 1 : 1 resonance, and the Neimark–Sacker bifurcation. Theoretic analysis
shows that the disease-free equilibrium is globally asymptotically stable when the basic
reproduction number is less than unity, and the numerical simulations illustrate that it is
still asymptotically stable when the number is greater than unity.

Model (1.3) is suitable to describe rotavirus, hand, foot, and mouth disease, influenza,
and so on. These infectious diseases have the following common characteristics: (1) Most
cases are mild; after isolation, some need take a symptomatic treatment, and some can
recover without any treatment. (2) Only the tiny fractions of the cases have serious com-
plications that need take treatment in hospital. Therefore, like rotavirus, hand, foot, and
mouth disease, and influenza, the recovery form of the infective individuals consists of two
parts, the spontaneous recovery and the recovery due to treatment. In this paper, we use
γ I to describe the spontaneous recovery of the infective individuals without any treat-
ment, and use h(I) to describe the recovery of the infective individuals with treatment.
Naturally, the recovery function γ I + h(I) that we use here is a good description of the
recovery of these diseases.

The dynamics of the discrete SIR epidemic model with bilinear incidence rate and con-
stant recovery is much more complicated. We have investigated the stability of the disease-
free and positive equilibria and the bifurcation of the model analytically or numerically.
In fact, the dynamic behavior of (1.3) has interesting practical significance.

Firstly, R0 = Λβ

d(d+γ ) is just the reproduction number of system (1.3) in the absence of the
removal rate of the infective individuals. So, it is not the classic threshold of the epidemic
dynamical models, and it cannot determines whether the disease will die out or not. How-
ever, 1 < R0 < 1 + A + 2

√
A is a significant interval, which characterizes the importance of

treatment for the disease control.
Secondly, the dynamic behavior of the model is different under different conditions

when R0 > 1+A+2
√

A. When 1+A+R1 < R0 < 1+A+R2, the endemic equilibrium E3 is lo-
cally asymptotically stable. When R0 = 1 + A + R1 and 2d

γ
< R1 < 4d(1–d–γ )+2d2(d+γ )+4(1–d)(d+γ )

dγ (d+γ ) ,
the system will undergo a Neimark–Sacker bifurcation. When R0 = 1 + A + R2, the system
will undergo a flip bifurcation. Namely, in the case where the disease persists in popula-
tion, the disease may tend to a certain equilibrium, or it may exist in the form of periodic
shocks.

At last, the theoretical analysis show that in the case R0 > 1 the disease-free equilibrium
and endemic equilibrium not only coexist, but are both stable. This implies that the disease
may still be extinct even if there is a stable endemic equilibrium, that is, if the initial state of
the disease is within the stable domain of the disease free equilibrium, then the disease will
disappear, whereas if the initial state of the disease is within the stable domain of endemic
equilibrium, then the disease will persist.

There are still many challenging problems on the dynamics of the discrete system (1.3).
The numerical simulations demonstrate that the disease-free equilibrium is stable when
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R0 > 1. However, how to prove mathematically strictly the stability of the disease-free equi-
librium E0 when R0 > 1 is a meaningful work. In addition, we also have no effective method
to prove the global stability of the disease-free equilibrium E0 when 1 < R0 < 1 + A + 2

√
A.

We think they may be related to the switching system theory and expect that some ana-
lytical results can be obtained on those problems in the future.

Appendix
Firstly, we prove that R1 ≥ 2

√
A, that is, –dγ +

√
�1

2d(1–d)(d+γ )(1–d–γ ) ≥ 2
√

A with

�1 = d2γ 2 + 4d(1 – d)(d + γ )(1 – d – γ )
(
A

(
d(1 – d – γ ) + (1 – d)(d + γ )

)2 + d2).

To this end, we need verify the following inequality:

–dγ +
√

�1 ≥ 4d(1 – d)(d + γ )(1 – d – γ )
√

A.

In fact, we have (–dγ +
√

�1)2 – 16d2(1 – d)2(d + γ )2(1 – d – γ )2A ≥ 0. Namely,

d2γ 2 – 2dγ
√

�1 + �1 – 16d2(1 – d)2(d + γ )2(1 – d – γ )2A

= 2d2γ 2 – 2dγ
√

�1 + 4d3(1 – d)(d + γ )(1 – d – γ )

– 8d2(1 – d)2(d + γ )2(1 – d – γ )2A

+ 4d3(1 – d)(d + γ )(1 – d – γ )3A + 4d(1 – d)3(d + γ )3(1 – d – γ )A

= 2d2γ 2 – 2dγ
√

�1 + 4d3(1 – d)(d + γ )(1 – d – γ )

+ 4d(1 – d)(d + γ )(1 – d – γ )Aγ 2

= 2d2γ 2 – 2dγ
√

�1 + 4d(1 – d)(d + γ )(1 – d – γ )
(
Aγ 2 + d2).

We further show that d2γ 2 + 2d(1 – d)(d + γ )(1 – d – γ )(Aγ 2 + d2) ≥ dγ
√

�1, that is,

(
d2γ 2 + 2d(1 – d)(d + γ )(1 – d – γ )

(
Aγ 2 + d2))2 – d2γ 2�1

= d4γ 4 + 4d2(1 – d)2(d + γ )2(1 – d – γ )2(Aγ 2 + d2)2

+ 4d3γ 2(1 – d)(d + γ )(1 – d – γ )
(
Aγ 2 + d2)

– d4γ 4 – 4d3γ 2(1 – d)(d + γ )(1 – d – γ )
(
A

(
d(1 – d – γ ) + (1 – d)(d + γ )

)2 + d2)

= 4d2(1 – d)2(d + γ )2(1 – d – γ )2(Aγ 2 + d2)2

+ 4d3γ 2(1 – d)(d + γ )(1 – d – γ )A
[
γ 2 –

(
d(1 – d – γ ) + (1 – d)(d + γ )

)2]

= 4d2(1 – d)2(d + γ )2(1 – d – γ )2(Aγ 2 + d2)2

– 16d4γ 2(1 – d)2(d + γ )2(1 – d – γ )2A.

= 4d2(1 – d)2(d + γ )2(1 – d – γ )2[(Aγ 2 + d2)2 – 4d2γ 2A
]

= 4d2(1 – d)2(d + γ )2(1 – d – γ )2(Aγ 2 – d2)2

≥ 0.
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A summary of these calculations shows that R1 ≥ 2
√

A.
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