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Abstract
Fractional kinetic equations (FKEs) including a wide variety of special functions have
been widely and successfully applied in describing and solving many important
problems of physics and astrophysics. In this paper, we derive the solutions for FKEs
including the class of functions with the help of Sumudu transforms. Many important
special cases are then revealed and analyzed. The use of the class of functions to
obtain the solution of FKEs is fairly general and can be efficiently used to construct
several well-known and novel FKEs.
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1 Introduction
Fractional calculus has been developed and used in different fields of applied science and
engineering. Recently, fractional calculus got more importance due to its wide variety of
applications in numerous topics, such as wave-like equations, the SIRS-SI malaria dis-
ease model, diabetes model, the model of the Ambartsumian equation and the model of
Lienard’s equation [17, 19, 22, 23, 42]. Very recently, the fractional calculus with Mittag-
Leffler law was widely studied due to its significance and applicability in various fields
[20, 21, 24, 41, 43]. During the last decades, FKEs of different models have been success-
fully applied in describing and explaining numerous problems of physics and astrophysics
(see, e.g., [1–3, 5, 13, 16, 18, 28–31, 35–39, 49] and the references therein).

1.1 Fractional kinetic equations
In [15] one determined the fractional differential equation for the rate of change of reac-
tion. The destruction rate and the production rate follow

dM
dt

= –d(Mt) + p(Mt), (1.1)
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where M = M(t) and d = d(M) the rate of reaction and the rate of destruction, re-
spectively. The rate of production is denoted by p = p(M) and Mt(t∗) = M(t – t∗),
t∗ > 0.

By neglecting the spatial fluctuations or in homogeneities in M(t), the particular case of
(1.1) is formed as

dM
dt

= –ciMi(t), (1.2)

with t Mi(t = 0) = M0 is the number of density of species i at time t = 0 and ci > 0. Inte-
grating the standard kinetic equation (1.2), not considering the index i, we get

M(t) – M0 = –c0D–1
t M(t), (1.3)

where 0D–1
t is the particular form of the Riemann–Liouville operator 0D–τ

t defined by

0D–τ
t f (t) =

1
Γ (τ )

∫ t

0
(t – s)τ–1f (s) ds, t > 0,�(τ ) > 0.

The fractional generalized form of the standard kinetic equation (1.3) is given in [15]
as

M(t) – M0 = –cτ
0D–1

t M(t). (1.4)

The solution of (1.4) is

M(t) = M0

∞∑
k=0

(–1)k

Γ (τk + 1)
(ct)τk . (1.5)

Another generalized form of FKE is given in [36] as

M(t) – M0f (t) = –cτ
(

0D–1
t M

)
(t)

(�(τ ) > 0
)
, (1.6)

where M(t), M0 = M(0) is the same as (1.2), c is a constant and f ∈ L(0,∞). The use of the
Laplace transform (LT) to (1.6) (see [36]) gives

L
[
M(t)

]
(p) = M0

F(p)
1 + cτ p–τ

= M0

( ∞∑
n=0

(
–cτ

)np–nτ

)
F(p), (1.7)

where n ∈M0, | c
p | < 1 and the LT ([44]) is defined by

F(p) = L
[
f (t)

]
=

∫ ∞

0
e–ptf (t) dt �(p) > 0. (1.8)
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To proceed our study, we need the definitions of the Mittag-Leffler (M-L) functions Eρ(z)
(see [27]) and Eρ,λ(x) [48]:

Eτ (z) =
∞∑

n=0

zn

Γ (τn + 1)
(
z, τ ∈C; |z| < 0,�(τ ) > 0

)
, (1.9)

Eτ ,η(x) =
∞∑

n=0

xn

Γ (τn + η)
(
z, τ ,η ∈C;�(τ ) > 0,�(η) > 0

)
. (1.10)

For the details as regards FKEs and solutions, one can refer to [14, 28–31, 35–39, 49].

1.2 Class of functions
A class of functions Fλ

ρ is introduced in [34] and is defined by

Fρ,λ(x) =
∞∑

n=0

σ (n)
Γ (ρn + λ)

xn, (1.11)

where ρ,λ ∈C, �(ρ) > 0, |x| < R and the coefficient σ (n) is a bounded arbitrary sequence
of real (or complex) numbers.

1.3 Special cases
• If we set

σ (n) =
(δ)κn

n!
(1.12)

then (1.11) reduces to the generalized M-L function given by Srivastava and Tomovski
[45].

• If we consider σ (n) = (δ)qn
n! , q ∈ (0, 1) ∪N gives Eδ,q

ρ,λ(x) of [40].
• By considering σ (n) = (δ)k

n! , (1.11) turns into the generalized Mittag-Leffler function
defined in [32].

• Choosing σ (n) = 1 we get the well-known generalized M-L function Eρ,λ(x) [48].
For more details as regards the class of functions and its properties, the interesting reader
is referred to [25, 26, 33].

1.4 Sumudu transform
The Sumudu transform is widely used to solve various type of problems in science and
engineering and it was introduced by Watugala (see [46, 47]). For the details of Sumudu
transforms, properties and its applications the interesting reader is referred to [4, 6–12].

The Sumudu transform over the set functions

A =
{

f (t)|∃ M, τ1, τ2 > 0,
∣∣f (t)

∣∣ < Me|t|/τj , if t ∈ (–1)j × [0,∞)
}

is defined by

G(u) = S
[
f (t); u

]
=

∫ ∞

0
f (ut)e–t dt, u ∈ (–τ1, τ2). (1.13)

The main aim of this study is to establish the generalized FKEs involving Fρ,λ(x). Here, we
consider the Sumudu transform methodology to achieve the results.
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2 Solution of generalized fractional kinetic equations involving class of
functions

The solution of the generalized fractional kinetic equations involving is given in this sec-
tion.

Theorem 2.1 If d > 0, υ > 0, ρ,λ, t ∈ C, �(ρ) > 0 and |x| < R. Then the solution of the
equation

N(t) – N0Fρ,λ(t) = –dυ
0D–υ

t N(t) (2.1)

is given by

N(t) = N0

∞∑
n=0

σ (n)Γ (n + 1)
Γ (ρn + λ)

tn–1Eυ,n
(
–dυ tυ

)
, (2.2)

where Ev,n(.) is the generalized Mittag-Leffler function [27].

Proof The Sumudu transform of Riemann–Liouville fractional operator is given by

S
[

0Dυ
t f (t); u

]
= uυG(u), (2.3)

where G(u) is defined in (1.13). Applying the Sumudu transform to both sides of (2.1) gives

S
[
N(t); u

]
= N0S

[
Fρ,λ(t); u

]
– dυS

[
0D–υ

t N(t); u
]
,

N
∗(u) = N0

(∫ ∞

0
e–t

∞∑
n=0

σ (n)
Γ (ρn + λ)

(ut)n dt

)
– dυuυ

N
∗(u),

where S{tμ–1} = uμ–1Γ (μ). Interchanging integration and summation, we get

N
∗(u) + dυuυ

N
∗(u) = N0

∞∑
n=0

σ (n)
Γ (ρn + λ)

(u)n
∫ ∞

0
e–ttn dt

= N0

∞∑
n=0

σ (n)
Γ (ρn + λ)

(u)nΓ (n + 1).

This implies that

N
∗(u) = N0

∞∑
n=0

σ (n)
Γ (ρn + λ)

Γ (n + 1)un
∞∑

r=0

[
–(du)υ

]r . (2.4)

Taking the Sumudu inverse of (2.4), and by using

S–1{uυ ; t
}

=
tυ–1

Γ (υ)
, �(υ) > 0,

we get

S–1(
N(t)

)
= N0

∞∑
n=0

σ (n)Γ (n + 1)
Γ (ρn + λ)

S–1

{ ∞∑
r=0

dυru(n+υr)

}
,
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N(t) = N0

∞∑
n=0

σ (n)
Γ (ρn + λ)

Γ (n + 1)

{ ∞∑
r=0

(–1)rdυr t(n+υr)–1

Γ (n + υr)

}

= N0

∞∑
n=0

σ (n)
Γ (ρn + λ)

tn–1

{ ∞∑
r=0

(–1)rdυr tυr

Γ (n + υr)

}
.

In view of Eq. (1.9), we obtain the desired result. �

Theorem 2.2 If d > 0, υ > 0, ρ,λ, t ∈ C, �(ρ) > 0 and |x| < R, then the solution of the
equation

N(t) – N0Fρ,λ
(
dυ tυ

)
= –dυ

0D–υ
t N(t) (2.5)

is given by

N(t) = N0

∞∑
n=0

σ (n)Γ (n + 1)
Γ (ρn + λ)

(
dυ

)
tυ–1Eυ,n

(
–dυ tυ

)
. (2.6)

Proof This theorem can be proved like Theorem 2.1. So the details are omitted. �

Theorem 2.3 If d > 0, υ > 0, ρ,λ, t ∈ C, �(ρ) > 0, a �= d and |x| < R, then the solution of the
equation

N(t) – N0Fρ,λ
(
dυ tυ

)
= –aυ

0D–υ
t N(t) (2.7)

is given by

N(t) = N0

∞∑
n=0

σ (n)Γ (n + 1)
Γ (ρn + λ)

(
dυ

)
tυ–1Eυ,n

(
–aυ tυ

)
. (2.8)

Proof Theorem 2.3 can easily be derived from Theorem 2.2, so the details are omitted. �

If we choose σ (n) = (γ )κn
Γ (n+1) then we get the fractional kinetic equation involving a gener-

alized Mittag-Leffler function [45]

Corollary 2.1 If d > 0, υ > 0, ρ,λ, t ∈ C, �(ρ) > 0 and |x| < R, then the solution of the
equation

N(t) – N0Eγ ,κ
ρ,λ (t) = –dυ

0D–υ
t N(t) (2.9)

is given by

N(t) = N0

∞∑
n=0

(γ )κn

Γ (ρn + λ)
tn–1Eυ,n

(
–dυ tυ

)
. (2.10)

If we choose σ (n) = (γ )n,q
Γ (n+1) then we get the fractional kinetic equation involving the gen-

eralized Mittag-Leffler function [40]
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Corollary 2.2 If d > 0, υ > 0, ρ,λ, t ∈ C, �(ρ) > 0 and |x| < R, then the solution of the
equation

N(t) – N0Eγ ,q
ρ,λ(t) = –dυ

0D–υ
t N(t) (2.11)

is given by

N(t) = N0

∞∑
n=0

(γ )n,q

Γ (ρn + λ)
tn–1Eυ,n

(
–dυ tυ

)
. (2.12)

If we choose σ (n) = (γ )n
Γ (n+1) then we get the fractional kinetic equation involving the gen-

eralized Mittag-Leffler function [32]

Corollary 2.3 If d > 0, υ > 0, ρ,λ, t ∈ C, �(ρ) > 0 and |x| < R, then the solution of the
equation

N(t) – N0Eγ

ρ,λ(t) = –dυ
0D–υ

t N(t) (2.13)

is given by

N(t) = N0

∞∑
n=0

(γ )n

Γ (ρn + λ)
tn–1Eυ,n

(
–dυ tυ

)
. (2.14)

If we choose σ (n) = 1 then we get the fractional kinetic equation involving the general-
ized Mittag-Leffler function [48]

Corollary 2.4 If d > 0, υ > 0, ρ,λ, t ∈ C, �(ρ) > 0 and |x| < R, then the solution of the
equation

N(t) – N0Eρ,λ(t) = –dυ
0D–υ

t N(t) (2.15)

is given by

N(t) = N0

∞∑
n=0

Γ (n + 1)
Γ (ρn + λ)

tn–1Eυ,n
(
–dυ tυ

)
. (2.16)

Remark 2.1 By choosing different values for σ (n), we can deduce many results from The-
orem 2.1. Similarly, from Theorem 2.2 and Theorem 2.3, one can deduce many known and
new solutions of the fractional kinetic equation involving a variety of special functions.

3 Graphical results and discussion
Figures 1 and 2 shows the 2D plots of solutions of (2.2) for λ = 1 and λ = 2, respec-
tively, with parametric values N0 = 2, ρ = 1, d = 3, σ (n) = 1 and for different values of
ν = 1, 0.8, 0.6. We observe that for λ = 2 the growth rate is slow as compared to λ = 1
when ν approaches to 1.
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Figure 1 Solution of (2.2) for λ = 1

Figure 2 Solution of (2.2) for λ = 2

Figure 3 Mesh-plot of (2.2) for λ = 1, 0.3 < t < 2

Figure 4 Mesh-plot of (2.2) for λ = 1, 0.5 < t < 3

In Figs. 3 and 4 3D plots are shown for the time interval 0.3 < t < 1.8 which give the valid
region of convergence of solutions for 0 ≤ ν ≤ 1 and also the time interval 0.5 < t < 3 gives
the valid region of convergence of solutions for 1.5 ≤ ν ≤ 2 of (2.2) for λ = 1, respectively.
Likewise the valid region of convergence of (2.2) for λ = 2 is shown in Figs. 5 and 6.
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Figure 5 Mesh-plot of (2.2) for λ = 2, 0.4 < t < 2.4

Figure 6 Mesh-plot of (2.2) for λ = 2, 0.6 < t < 4

Figure 7 Solution of (2.6) for λ = 1

Figure 8 Solution of (2.6) for λ = 2

Figures 7 and 8 show the 2D plots of solutions of (2.6) for λ = 1 and λ = 2, respec-
tively, with parametric values N0 = 2, ρ = 1, d = 3, σ (n) = 1 and for different values of
ν = 1, 0.8, 0.6. We observe that for λ = 1 the growth rate is slow as compared to λ = 2
when ν approaches 1.
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Figure 9 Mesh-plot of (2.6) for λ = 1, 0.4 < t < 2

Figure 10 Mesh-plot of (2.6) for λ = 1, 0.5 < t < 3

Figure 11 Mesh-plot of (2.6) for λ = 2, 0.8 < t < 2

Figure 12 Mesh-plot of (2.6) for λ = 2, 0.9 < t < 4

Figures 9 and 10 represent 3D plots where the time interval 0.3 < t < 1.8 gives the valid
region of convergence of solutions for 0 ≤ ν ≤ 1 and the time interval 0 < t < 3 gives the
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valid region of convergence of solutions for 1.3 ≤ ν ≤ 2 for λ = 1 of (2.6), respectively.
Likewise the valid regions of convergence of (2.6) for λ = 2 for different values of λ and ν

are shown in Figs. 11 and 12. The dark portion in all figures shows the beginning of the
divergence of a solution.

The graphical results demonstrate that the region of convergence of solutions depends
continuously on the fractional parameter ν as well as on λ. Hence, by examining the be-
havior of the solutions for different parameters and time intervals it is observed that N(t)
is negative as well as positive.

4 Conclusion
The fractional kinetic equation involving the class of functions is studied using the
Sumudu transform technique. The results achieved here are rather general in nature and
one can find various new and known solutions of FKEs containing a different type of spe-
cial function. The behavior of the obtained solutions is studied with the help of graphs.
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