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1 Introduction
In this paper, we consider the existence and uniqueness of the solution of the following
fractional boundary value problem:

⎧
⎪⎪⎨

⎪⎪⎩

Dα
0+ u(t) + f (t, u(t), u(t)) + g(t, u(t), u(t)) – b = 0, t ∈ (0, 1),

u(0) = u′(0) = · · · = u(n–2)(0) = 0,

Dβ

0+ u(1) =
∑m–2

i=1 ξiDβ

0+ u(ηi) + λ,

(1.1)

where b > 0, Dα
0+ and Dβ

0+ are the Riemann–Liouville fractional derivatives with n – 1 < α ≤
n, n – 2 < β ≤ n – 1, n ≥ 2 (n ∈ N), α – β – 1 > 0, 0 < ξi,ηi < 1, i = 1, 2, 3, . . . , m – 2, m ≥ 3,
∑m–2

i=1 ξiη
α–β–1
i < 1. f , g : (0, 1) × (–∞, +∞) × (–∞, +∞) → (–∞, +∞) are continuous, and

f , g may be singular at t = 0, 1, λ is a parameter.
The problem (1.1) with λ = 0 has been investigated by many authors [1–8]. Li et al. [1]

considered the following fractional three-point boundary value problem:

⎧
⎨

⎩

Dα
0+ u(t) + f (t, u(t)) = 0, 0 < t < 1,

u(0) = 0, Dβ

0+ u(1) = aDβ

0+ u(ξ ),
(1.2)

where 1 < α ≤ 2, 0 ≤ β ≤ 1, 0 ≤ a ≤ 1 and ξ ∈ (0, 1). The authors firstly derived the cor-
responding Green’s function of the problem (1.2). Based on the above result, the problem
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(1.2) is reduced to an equivalent integral equation. By using the Banach contraction map-
ping principle and a nonlinear alternative of Leray–Schauder type, the authors obtained
the existence and multiplicity theorems of positive solutions for the problem (1.2). Sub-
sequently, Peng and Zhou [2] studied the existence of positive solutions for the problem
(1.2), the main tools adopted in [2] are topological degree theory and bifurcation tech-
niques. In fact, in [3], Kaufmann and Mboumi have considered the fractional two-point
boundary value problem (1.2) when a = 0 and β = 1. Furthermore, Lv [4] considered the
positive solutions of the following m-point boundary value problem:

⎧
⎨

⎩

Dα
0+ u(t) + f (t, u(t)) = 0, t ∈ [0, 1],

u(0) = 0, Dβ

0+ u(1) =
∑m–2

i=1 ξiDβ

0+ u(ηi),
(1.3)

where 1 < α ≤ 2, 0 ≤ β ≤ 1, α – β – 1 ≥ 0, 0 < ξi,ηi < 1, i = 1, 2, 3, . . . , m – 2, m ≥ 3, and
∑m–2

i=1 ξiη
α–β–1
i < 1. Lv studied the existence of minimal and maximal positive solutions

for the problem (1.3). Moreover, Lv [5] used the fixed point theorem to study m-point
fractional problem with the p-Laplacian operator.

In [9], Sang and Ren studied the following fractional boundary value problem:

⎧
⎪⎪⎨

⎪⎪⎩

–Dα
0+ u(t) = f (t, u(t), u(t)) + g(t, u(t), u(t)) – b, t ∈ (0, 1), n – 1 < α ≤ n,

u(i)(0) = 0, i = 0, . . . , n – 2,

Dβ

0+ u(1) = 0, 1 ≤ β ≤ n – 2,

(1.4)

where n ≥ 3, b > 0 is a constant, f , g : [0, 1] × (–∞, +∞) × (–∞, +∞) −→ (–∞, +∞) are
continuous functions. The problem (1.4) includes the well-known elastic beam equation
and fractional problems considered in [10–16].

Very recently, Wang et al. [17] discussed the following higher-order three-point frac-
tional problem:

⎧
⎪⎪⎨

⎪⎪⎩

–Dα
0+ u(t) = f (t, u(t), u(t)) + g(t, u(t)), t ∈ (0, 1), n – 1 < α ≤ n,

u(i)(0) = 0, i = 0, . . . , n – 2,

Dν
0+ u(1) = bDν

0+ u(ξ ), n – 2 ≤ ν ≤ n – 1,

(1.5)

where n ∈ N, n ≥ 2, 0 ≤ b ≤ 1, and 0 < ξ < 1. f (t, u, v) may be singular at t = 0, 1 and v = 0,
g(t, u) may be singular at t = 0, 1. By the properties of the Green function and two fixed
point theorems for sum-type operator, the authors derived sufficient conditions for the
existence and uniqueness of positive solutions to the problem (1.5).

On the other hand, fractional boundary value problems with parameters have received
considerable attention [18–27]. Tan, Tan and Zhou [18] considered the existence of posi-
tive solutions for fractional differential equations with a parameter as follows:

⎧
⎪⎪⎨

⎪⎪⎩

–Dα
0+ x(t) = f1(t, x(t), x(t)) + f2(t, x(t)), t ∈ (0, 1),

x(0) = x′(0) = · · · = x(k)(0) = 0, 0 ≤ k ≤ n – 2,

x(1) =
∑m–2

i=1 αix(ξi) + λ, m ≥ 3,

(1.6)

where n–1 < α ≤ n, n ≥ 2, f1 : [0, 1]× [0,∞)× [0,∞) → [0,∞), f2 : [0, 1]× [0,∞) → [0,∞)
are continuous, 0 < ξ1 < ξ2 < · · · < ξm–2 < 1,

∑m–2
i=1 αiξ

α–β–1
i < 1, and λ is a parameter. In



Sang and He Advances in Difference Equations         (2020) 2020:51 Page 3 of 17

[19, 20], the authors studied nonlinear boundary value problem with boundary condi-
tions u(0) –

∑m
i=1 aiu(ti) = λ1 and u(1) –

∑m
i=1 biu(ti) = λ2. In addition, Graef and Kong

[21] considered the boundary value problem with fractional q-derivatives, and studied
the existence of positive solutions according to different ranges of parameter. Moreover,
Li et al. [22] considered infinite point boundary value problem for fractional differential
equations with perturbed parameter. In [24], Lee and Park considered non-local problems
with the boundary value condition u(1) –

∫ 1
0 g(s)u(s) ds = b. In [25], Wang and Guo stud-

ied fractional differential equations with boundary condition x(1) =
∫ 1

0 k(s)g(x(s)) ds + μ.
Jia and Liu [26] discussed the effect of the mixed boundary condition m2u(1) + n2u′(1) =
∫ 1

0 g(s)u(s) ds + a.
In this paper, we first consider the Green function of the m-point boundary value prob-

lem (1.1) with a parameter. Then we define a new set, which is not a subset of a cone. So
we extend the results of the cone mapping established in [17, 18] to the non-cone cases.
Finally, we will consider the singularity of f , g and provide some sufficient conditions to
guarantee that the problem (1.1) has a unique solution and construct two iterative se-
quences of solutions.

The rest of this paper is structured as follows. In Sect. 2, we will give some definitions
and related lemmas to prove the main result. In Sect. 3, the existence and uniqueness of
the solution to the problem (1.1) is proved, and an example supporting conclusion is given.

2 Preliminaries and related lemmas
In this section, we will provide some necessary basic definitions and lemmas to prove our
main theorem, which can be found in [28–32].

Throughout our article, we define its base space as a Banach space. Let E be a Banach
space, and θ be the zero element of E. If there are (1) x ∈ P, λ ≥ 0 ⇒ λx ∈ P and (2) x ∈ P,
–x ∈ P ⇒ x = θ , then we call that a nonempty closed convex set P ⊂ E is a cone. Define
an ordered relation in E: x ≤ y if and only if y – x ∈ P. If there exists a positive constant N
such that, for all x, y ∈ E, θ ≤ x ≤ y ⇒ ‖x‖ ≤ N‖y‖, then P is called a normal cone. Given
h > θ , we denote Ph by

Ph = {x ∈ E | there exist λ > 0,μ > 0 such that λh ≤ x ≤ μh}.

Let e ∈ P with θ ≤ e ≤ h, denote

Ph,e = {x ∈ E|x + e ∈ Ph}.

Definition 2.1 ([28, 29]) If B(x, y) is increasing in x, and decreasing in y, then B : Ph,e ×
Ph,e → E is a mixed monotone operator. i.e., for every ui, vi ∈ Ph,e (i = 1, 2), with u1 ≥ v1,
u2 ≤ v2, implies B(u1, u2) ≥ B(v1, v2).

Definition 2.2 ([31, 32]) The Riemann–Liouville fractional derivative of order α > 0 of a
function h ∈ C[0, 1] is defined by

Dα
0+ h(t) =

1
Γ (n – α)

(
d
dt

)n ∫ t

0
h(s)(t – s)n–α–1 ds,
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where n = [α] + 1. The Riemann-Liouville fractional integral of order α > 0 is given by

Iα
0+ h(t) =

1
Γ (α)

∫ t

0
(t – s)α–1h(s) ds.

Definition 2.3 ([32]) Let β > –1, α > 0 and t > 0. Then

Dα
0+ tβ =

Γ (β + 1)
Γ (β – α + 1)

tβ–α .

Lemma 2.1 ([7]) Let u ∈ C[0, 1] ∩ L1[0, 1], α > 0, then

Iα
0+ Dα

0+ u(t) = u(t) + c1tα–1 + c2tα–2 + · · · + cntα–n,

where ci ∈R, i = 1, 2, . . . , n and n = [α] + 1.

Lemma 2.2 Let h(t) ∈ C(0, 1)∩L1(0, 1), then the following fractional boundary value prob-
lem:

⎧
⎪⎪⎨

⎪⎪⎩

Dα
0+ u(t) + h(t) = 0, 0 < t < 1,

u(0) = u′(0) = · · · = u(n–2)(0) = 0,

Dβ

0+ u(1) =
∑m–2

i=1 ξiDβ

0+ u(ηi) + λ,

(2.1)

has a unique solution

u(t) =
∫ 1

0
G(t, s)h(s) ds + λ

Γ (α – β)tα–1

AΓ (α)
,

where n – 1 < α ≤ n, n – 2 < β ≤ n – 1, n ≥ 2, m ≥ 3,

G(t, s) = G1(t, s) + G2(t, s),

in which

G1(t, s) =
1

Γ (α)

⎧
⎨

⎩

tα–1(1 – s)α–β–1 – (t – s)α–1, 0 ≤ s ≤ t ≤ 1,

tα–1(1 – s)α–β–1, 0 ≤ t ≤ s ≤ 1,

and

G2(t, s) =
1

AΓ (α)

⎧
⎨

⎩

tα–1 ∑
0≤s≤ηi

ξi[ηα–β–1
i (1 – s)α–β–1 – (ηi – s)α–β–1], 0 ≤ t, s ≤ 1,

tα–1 ∑
ηi≤s≤1 ξiη

α–β–1
i (1 – s)α–β–1, 0 ≤ t, s ≤ 1,

with

A = 1 –
m–2∑

i=1

ξiη
α–β–1
i .
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Proof Using Lemma 2.1, we get

u(t) = –Iα
0+ h(t) + c1tα–1 + c2tα–2 + · · · + cntα–n.

From condition u(0) = u′(0) = · · · = u(n–2)(0) = 0, we obtain cn = cn–1 = · · · = c2 = 0. Thus

u(t) = –Iα
0+ h(t) + c1tα–1.

By Definition 2.3, we deduce that

Dβ

0+ u(t) = –Iα–β

0+ h(t) + Dβ

0+ tα–1c1

= –Iα–β

0+ h(t) +
Γ (α)c1

Γ (α – β)
tα–β–1

= –
∫ t

0

(t – s)α–β–1h(s)
Γ (α – β)

ds +
Γ (α)c1

Γ (α – β)
tα–β–1.

From the boundary value condition Dβ

0+ u(1) =
∑m–2

i=1 ξiDβ

0+ u(ηi) + λ, we have

Dβ

0+ u(1) = –
∫ 1

0

(1 – s)α–β–1h(s)
Γ (α – β)

ds +
Γ (α)c1

Γ (α – β)

=
m–2∑

i=1

ξiDβ

0+ u(ηi) + λ,

which yields

c1 =
Γ (α – β)

Γ (α)

(m–2∑

i=1

ξiDβ

0+ u(ηi) + λ +
∫ 1

0

(1 – s)α–β–1h(s)
Γ (α – β)

ds

)

.

Thus

u(t) = –Iα
0+ h(t) +

Γ (α – β)
Γ (α)

(m–2∑

i=1

ξiDβ

0+ u(ηi) + λ

)

tα–1

+
1

Γ (α)

∫ 1

0
(1 – s)α–β–1h(s)tα–1 ds

= –
1

Γ (α)

∫ t

0
(t – s)α–1h(s) ds +

Γ (α – β)
Γ (α)

(m–2∑

i=1

ξiDβ

0+ u(ηi) + λ

)

tα–1

+
1

Γ (α)

∫ 1

0
(1 – s)α–β–1h(s)tα–1 ds.

Moreover, we have

m–2∑

i=1

ξiDβ

0+ u(ηi) =
m–2∑

i=1

ξi
(
–Iα–β

0+ h(ηi) + Dβ

0+ηα–1
i c1

)

= –
m–2∑

i=1

ξi

∫ ηi

0

(ηi – s)α–β–1h(s)
Γ (α – β)

ds +
m–2∑

i=1

ξi
Γ (α)ηα–β–1

i
Γ (α – β)

c1
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= –
m–2∑

i=1

ξi

∫ ηi

0

(ηi – s)α–β–1h(s)
Γ (α – β)

ds

+
m–2∑

i=1

ξi

(m–2∑

i=1

ξiDβ

0+ u(ηi) + λ +
∫ 1

0

(1 – s)α–β–1h(s)
Γ (α – β)

ds

)

η
α–β–1
i .

It follows that

m–2∑

i=1

ξiDβ

0+ u(ηi) = –
1
A

m–2∑

i=1

ξi

∫ ηi

0

(ηi – s)α–β–1h(s)
Γ (α – β)

ds +
λ

A

m–2∑

i=1

ξiη
α–β–1
i

+
1
A

∫ 1

0

(1 – s)α–β–1h(s)
∑m–2

i=1 ξiη
α–β–1
i

Γ (α – β)
ds,

where

A = 1 –
m–2∑

i=1

ξiη
α–β–1
i .

Therefore, the boundary value problem (2.1) has the unique solution

u(t) = –
1

Γ (α)

∫ t

0
(t – s)α–1h(s) ds +

1
Γ (α)

∫ 1

0
(1 – s)α–β–1tα–1h(s) ds

–
1

AΓ (α)

m–2∑

i=1

ξi

∫ ηi

0
(ηi – s)α–β–1tα–1h(s) ds

+
∑m–2

i=1 ξiη
α–β–1
i

AΓ (α)

∫ 1

0
(1 – s)α–β–1tα–1h(s) ds +

Γ (α – β)tα–1λ

AΓ (α)

=
∫ 1

0
G1(t, s)h(s) ds +

∫ 1

0
G2(t, s)h(s) ds +

Γ (α – β)tα–1λ

AΓ (α)

=
∫ 1

0
G(t, s)h(s) ds +

Γ (α – β)tα–1λ

AΓ (α)
.

The proof is complete. �

Lemma 2.3 Let

C(s) =
1
A

∑

0≤s≤ηi

ξi
[
η

α–β–1
i (1 – s)α–β–1 – (ηi – s)α–β–1] +

∑

s≥ηi

ξiη
α–β–1
i (1 – s)α–β–1

and

D =
1
A

(

1 +
m–2∑

i=1

ξi
(
1 – η

α–β–1
i

)
)

.

Then the function G(t, s) defined in Lemma 2.2 satisfies

C(s)tα–1 ≤ Γ (α)G(t, s) ≤ Dtα–1,

where t, s ∈ [0, 1].
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Lemma 2.4 ([9]) Let P ⊂ E be a normal cone, and let M, N : Ph,e × Ph,e −→ E be two mixed
monotone operators. Suppose that

(L1) for all t ∈ [0, 1] and x, y ∈ Ph,e, there exists ψ(t) ∈ (t, 1) such that

M
(
tx + (t – 1)e, t–1y +

(
t–1 – 1

)
e
) ≥ ψ(t)M(x, y) +

(
ψ(t) – 1

)
e;

(L2) for all t ∈ [0, 1] and x, y ∈ Ph,e,

N
(
tx + (t – 1)e, t–1y +

(
t–1 – 1

)
e
) ≥ tN(x, y) + (t – 1)e;

(L3) M(h, h) ∈ Ph,e and N(h, h) ∈ Ph,e;
(L4) for all x, y ∈ Ph,e, there exists a constant δ > 0 such that

M(x, y) ≥ δN(x, y) + (δ – 1)e.

Then the operator equation M(x, x) + N(x, x) + e = x has a unique solution x∗ in Ph,e, for any
initial values x0, y0 ∈ Ph,e, we can get the following iterative sequences:

xn = M(xn–1, yn–1) + N(xn–1, yn–1) + e,

yn = M(yn–1, xn–1) + N(yn–1, xn–1) + e, n = 1, 2, . . . ,

we have xn → x∗ and yn → x∗ in E as n → ∞.

3 Main result
In this section, we will consider the existence and uniqueness of the solution to the bound-
ary value problem (1.1).

For convenience in the proof, we work in a Banach space E = C[0, 1]. Let P ⊂ E be defined
by P = {u ∈ E|u(t) ≥ 0, t ∈ [0, 1]}, it is clear that P is a normal cone. Let

e(t) =
btα–1

(α – β)Γ (α)
–

btα–1

αΓ (α)
+

btα–1(
∑m–2

i=1 ξiη
α–β–1
i –

∑m–2
i=1 ξiη

α–β

i )
A(α – β)Γ (α)

.

Theorem 3.1 Assume that
(C1) f , g : (0, 1) × [–e∗, +∞) × [–e∗, +∞) → (–∞, +∞) are continuous and f , g may be

singular at t = 0, 1, where e∗ = max{e(t) : t ∈ [0, 1]}. For t ∈ [0, 1], g(t, 0, H) ≥ 0 with
g(t, 0, H) 
≡ 0 where H ≥ b

AΓ (α)(α–β) ;
(C2) for fixed t ∈ [0, 1] and y ∈ [–e∗, +∞), f (t, x, y), g(t, x, y) are increasing in

x ∈ [–e∗, +∞); for fixed t ∈ [0, 1] and x ∈ [–e∗, +∞), f (t, x, y), g(t, x, y) are
decreasing in y ∈ [–e∗, +∞);

(C3) for μ ∈ (0, 1) and t ∈ [0, 1], there exists ψ(μ) ∈ (μ, 1) such that
(a) f (t,μx + (μ – 1)ρ,μ–1y + (μ–1 – 1)ρ) ≥ ψ(μ)f (t, x, y),
(b) g(t,μx + (μ – 1)ρ,μ–1y + (μ–1 – 1)ρ) ≥ μg(t, x, y),
where x, y ∈ [–e∗, +∞), ρ ∈ [0, e∗];

(C4) for all t ∈ [0, 1], x, y ∈ [–e∗, +∞), there exists δ > 0 such that

f (t, x, y) ≥ δg(t, x, y) +
δ2Γ (α – β)

C(s)A
;
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(C5)
∫ 1

0 f (s, H , 0) ds < ∞ and
∫ 1

0 g(s, H , 0) ds < ∞. Then, for every λ ∈ (0, δ], the problem
(1.1) has a unique nontrivial solution u∗ in Ph,e, where h(t) = Htα–1, for all t ∈ [0, 1].
We can construct two iterative sequences:

ωn(t) =
∫ 1

0
G(t, s)

(
f
(
s,ωn–1(s), τn–1(s)

)
+ g

(
s,ωn–1(s), τn–1(s)

))
ds – e(t)

+
Γ (α – β)tα–1λ

AΓ (α)
, n = 1, 2, . . . ,

τn(t) =
∫ 1

0
G(t, s)

(
f
(
s, τn–1(s),ωn–1(s)

)
+ g

(
s, τn–1(s),ωn–1(s)

))
ds – e(t)

+
Γ (α – β)tα–1λ

AΓ (α)
, n = 1, 2, . . . ,

for any initial values ω0, τ0 ∈ Ph,e, the sequences {ωn(t)}, {τn(t)} approximate u∗,
that is, ωn → u∗ and τn → u∗ as n → ∞.

Proof By Lemma 2.2, we obtain

∫ 1

0
G(t, s) ds =

∫ 1

0
G1(t, s) ds +

∫ 1

0
G2(t, s) ds

=
tα–1

(α – β)Γ (α)
–

tα–1

αΓ (α)
+

tα–1(
∑m–2

i=1 ξiη
α–β–1
i –

∑m–2
i=1 ξiη

α–β

i )
A(α – β)Γ (α)

.

For all t ∈ [0, 1],

0 < e(t) =
btα–1

(α – β)Γ (α)
–

btα

αΓ (α)
+

btα–1(
∑m–2

i=1 ξiη
α–β–1
i –

∑m–2
i=1 ξiη

α–β

i )
A(α – β)Γ (α)

≤ btα–1

(α – β)Γ (α)
+

btα–1 ∑m–2
i=1 ξiη

α–β–1
i

A(α – β)Γ (α)

=
btα–1

A(α – β)Γ (α)
≤ Htα–1 = h(t),

where H ≥ b
A(α–β)Γ (α) . Hence, 0 < e(t) ≤ h(t) and Ph,e = {u ∈ E|u + e ∈ Ph}. By Lemma 2.3,

the solution to problem (1.1) has the following expression:

u(t) =
∫ 1

0
G(t, s)

(
f
(
s, u(s), u(s)

)
+ g

(
s, u(s), u(s)

)
– b

)
ds +

Γ (α – β)tα–1λ

AΓ (α)

=
∫ 1

0
G(t, s)f

(
s, u(s), u(s)

)
ds +

∫ 1

0
G(t, s)g

(
s, u(s), u(s)

)
ds

– b
∫ 1

0
G(t, s) ds +

Γ (α – β)tα–1λ

AΓ (α)

=
∫ 1

0
G(t, s)f

(
s, u(s), u(s)

)
ds +

∫ 1

0
G(t, s)g

(
s, u(s), u(s)

)
ds +

Γ (α – β)tα–1λ

AΓ (α)

–
(

btα–1

(α – β)Γ (α)
–

btα

αΓ (α)
+

btα–1(
∑m–2

i=1 ξiη
α–β–1
i –

∑m–2
i=1 ξiη

α–β

i )
A(α – β)Γ (α)

)
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=
∫ 1

0
G(t, s)f

(
s, u(s), u(s)

)
ds +

∫ 1

0
G(t, s)g

(
s, u(s), u(s)

)
ds +

Γ (α – β)tα–1λ

AΓ (α)
– e(t)

=
∫ 1

0
G(t, s)f

(
s, u(s), u(s)

)
ds – e(t) +

∫ 1

0
G(t, s)g

(
s, u(s), u(s)

)
ds – e(t)

+
Γ (α – β)tα–1λ

AΓ (α)
+ e(t).

For every t ∈ [0, 1], u, v ∈ Ph,e, we define the following operators:

M(u, v)(t) =
∫ 1

0
G(t, s)f

(
s, u(s), v(s)

)
ds – e(t),

N(u, v)(t) =
∫ 1

0
G(t, s)g

(
s, u(s), v(s)

)
ds – e(t) +

Γ (α – β)tα–1λ

AΓ (α)
.

Clearly, u(t) is the solution to problem (1.1), if and only if u(t) is the fixed point of the
operator M(u, v)(t) + N(u, v)(t) + e(t). Therefore, if it can be proved that the operators M,
N satisfy all the conditions of the Lemma 2.4, then the conclusion of Theorem 3.1 holds.

(1) By (C3), for t ∈ [0, 1], μ ∈ (0, 1), x, y ∈ Ph,e, and ρ ∈ [0, e∗], we have

f
(
t,μ–1x +

(
μ–1 – 1

)
ρ,μy + (μ – 1)ρ

) ≤ ψ(μ)–1f (t, x, y),

g
(
t,μ–1x +

(
μ–1 – 1

)
ρ,μy + (μ – 1)ρ

) ≤ μ–1g(t, x, y).

For all u, v ∈ Ph,e, there exists 0 < m < 1 such that mh – e ≤ u, v ≤ 1
m h – e, where

h(t) = Htα–1. From h(t) ≥ e(t), we get
(m – 1)e ≤ mh – e ≤ u, v ≤ 1

m h – e ≤ 1
m h + ( 1

m – 1)e. Thus

f
(
t, u(t), v(t)

) ≤ f
(

t,
1
m

h(t) +
(

1
m

– 1
)

e, (m – 1)e
)

≤ ψ(m)–1f
(
t, h(t), 0

)

= ψ(m)–1f
(
t, Htα–1, 0

) ≤ ψ(m)–1f (t, H , 0),

g
(
t, u(t), v(t)

) ≤ g
(

t,
1
m

h(t) +
(

1
m

– 1
)

e, (m – 1)e
)

≤ 1
m

g
(
t, h(t), 0

)

=
1
m

g
(
t, Htα–1, 0

) ≤ 1
m

g(t, H , 0).

In view of (C5), we get

∫ 1

0
G(t, s)f

(
s, u(s), v(s)

)
ds ≤

∫ 1

0
G(t, s)ψ(m)–1f (s, H , 0) ds

≤ Dtα–1ψ(m)–1

Γ (α)

∫ 1

0
f (s, H , 0) ds < ∞,

∫ 1

0
G(t, s)g

(
s, u(s), v(s)

)
ds ≤

∫ 1

0
G(t, s)

1
m

g(s, H , 0) ds

≤ Dtα–1

mΓ (α)

∫ 1

0
g(s, H , 0) ds < ∞.
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Therefore

M(u, v)(t) =
∫ 1

0
G(t, s)f

(
s, u(s), v(s)

)
ds – e(t) < ∞,

N(u, v)(t) =
∫ 1

0
G(t, s)g

(
s, u(s), v(s)

)
ds – e(t) +

Γ (α – β)tα–1λ

AΓ (α)
< ∞,

that is, M, N are well-defined.
(2) From (C2), for every ui, vi ∈ Ph,e (i = 1, 2) with u1 ≥ u2, v1 ≤ v2, we have

M(u1, v1)(t) =
∫ 1

0
G(t, s)f

(
s, u1(s), v1(s)

)
ds – e(t)

≥
∫ 1

0
G(t, s)f

(
s, u2(s), v2(s)

)
ds – e(t) = M(u2, v2)(t),

N(u1, v1)(t) =
∫ 1

0
G(t, s)g

(
s, u1(s), v1(s)

)
ds – e(t) +

Γ (α – β)tα–1λ

AΓ (α)

≥
∫ 1

0
G(t, s)g

(
s, u2(s), v2(s)

)
ds – e(t) +

Γ (α – β)tα–1λ

AΓ (α)

= N(u2, v2)(t).

Hence, M and N are two mixed monotone operators.
(3) By (C3), for μ ∈ (0, 1), t ∈ [0, 1], there exists ψ(μ) ∈ (μ, 1) such that

M
(
μu + (μ – 1)e,μ–1v +

(
μ–1 – 1

)
e
)
(t)

=
∫ 1

0
G(t, s)f

(
s,μu(s) + (μ – 1)e,μ–1v(s) +

(
μ–1 – 1

)
e
)

ds – e(t)

≥ ψ(μ)
∫ 1

0
G(t, s)f

(
s, u(s), v(s)

)
ds – e(t)

= ψ(μ)
∫ 1

0
G(t, s)f

(
s, u(s), v(s)

)
ds – e(t) + ψ(μ)e(t) – ψ(μ)e(t)

= ψ(μ)M(u, v)(t) +
(
ψ(μ) – 1

)
e(t)

and

N
(
μu + (μ – 1)e,μ–1v +

(
μ–1 – 1

)
e
)
(t)

=
∫ 1

0
G(t, s)g

(
s,μu(s) + (μ – 1)e,μ–1v(s) +

(
μ–1 – 1

)
e
)

ds

– e(t) +
Γ (α – β)tα–1λ

AΓ (α)

≥ μ

∫ 1

0
G(t, s)g

(
s, u(s), v(s)

)
ds – e(t) +

μΓ (α – β)tα–1λ

AΓ (α)
+ μe(t) – μe(t)

= μN(u, v)(t) + (μ – 1)e(t).
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(4) For all t ∈ [0, 1], combining with (C1) and (C2), we have

M(h, h)(t) + e(t) =
∫ 1

0
G(t, s)f

(
s, h(s), h(s)

)
ds

=
∫ 1

0
G(t, s)f

(
s, Hsα–1, Hsα–1)ds

≤
∫ 1

0

Dtα–1

Γ (α)
f (s, H , 0) ds

=
D

Γ (α)

∫ 1

0
f (s, H , 0) ds · tα–1

=
D

HΓ (α)

∫ 1

0
f (s, H , 0) ds · h(t)

and

M(h, h)(t) + e(t) =
∫ 1

0
G(t, s)f

(
s, h(s), h(s)

)
ds

=
∫ 1

0
G(t, s)f

(
s, Hsα–1, Hsα–1)ds

≥
∫ 1

0

C(s)tα–1

Γ (α)
f (s, 0, H) ds

=
1

HΓ (α)

∫ 1

0
C(s)f (s, 0, H) ds · h(t).

From (C1), (C2) and (C4), for s ∈ [0, 1], we derive that

f (s, H , 0) ≥ f (s, 0, H) ≥ δg(s, H , 0) +
Γ (α – β)δ2

AC(s)
≥ 0.

Thus

∫ 1

0
f (s, H , 0) ds ≥

∫ 1

0
f (s, 0, H) ds ≥

∫ 1

0

(

δg(s, H , 0) +
Γ (α – β)δ2

AC(s)

)

ds ≥ 0.

Let

l1 =
D

HΓ (α)

∫ 1

0
f (s, H , 0) ds,

l2 =
1

HΓ (α)

∫ 1

0
C(s)f (s, 0, H) ds.

Therefore l2h(t) ≤ M(h, h)(t) + e(t) ≤ l1h(t), that is, M(h, h) ∈ Ph,e. Similarly, we
obtain

N(h, h)(t) + e(t) =
∫ 1

0
G(t, s)g

(
s, h(s), h(s)

)
ds +

Γ (α – β)tα–1λ

AΓ (α)

=
∫ 1

0
G(t, s)g

(
s, Hsα–1, Hsα–1)ds +

Γ (α – β)tα–1λ

AΓ (α)
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≤
∫ 1

0

Dtα–1

Γ (α)
g(s, H , 0) ds +

Γ (α – β)tα–1λ

AΓ (α)

=
(

D
Γ (α)

∫ 1

0
g(s, H , 0) ds +

Γ (α – β)λ
AΓ (α)

)

tα–1

=
(

D
HΓ (α)

∫ 1

0
g(s, H , 0) ds +

Γ (α – β)λ
HAΓ (α)

)

h(t)

and

N(h, h)(t) + e(t) =
∫ 1

0
G(t, s)g

(
s, h(s), h(s)

)
ds +

Γ (α – β)tα–1λ

AΓ (α)

=
∫ 1

0
G(t, s)g

(
s, Hsα–1, Hsα–1)ds +

Γ (α – β)tα–1λ

AΓ (α)

≥
∫ 1

0

C(s)tα–1

Γ (α)
g(s, 0, H) ds

=
1

Γ (α)

∫ 1

0
C(s)g(s, 0, H) ds · tα–1

=
1

HΓ (α)

∫ 1

0
C(s)g(s, 0, H) ds · h(t).

Let

l3 =
1

HΓ (α)

∫ 1

0
C(s)g(s, 0, H) ds,

l4 =
D

HΓ (α)

∫ 1

0
g(s, H , 0) ds +

Γ (α – β)λ
HAΓ (α)

.

Thus l3h(t) ≤ N(h, h)(t) + e(t) ≤ l4h(t), that is, N(h, h) ∈ Ph,e.
(5) For all u, v ∈ Ph,e, t ∈ [0, 1] and λ ∈ (0, δ], by (C4), we have

M(u, v)(t) =
∫ 1

0
G(t, s)f

(
s, u(s), v(s)

)
ds – e(t)

≥
∫ 1

0
G(t, s)

(

δg
(
t, u(s), v(s)

)
+

δ2Γ (α – β)
C(s)A

)

ds – e(t)

= δ

∫ 1

0
G(t, s)g

(
t, u(s), v(s)

)
ds +

∫ 1

0
G(t, s)

δ2Γ (α – β)
C(s)A

ds – e(t)

≥ δ

∫ 1

0
G(t, s)g

(
t, u(s), v(s)

)
ds + δ

∫ 1

0

C(s)tα–1

Γ (α)
· δΓ (α – β)

C(s)A
ds – e(t)

≥ δ

∫ 1

0
G(t, s)g

(
t, u(s), v(s)

)
ds + δ

Γ (α – β)tα–1λ

AΓ (α)
– e(t) + δe(t) – δe(t)

= δN(u, v)(t) + (δ – 1)e(t).

Thus M(u, v)(t) ≥ δN(u, v)(t) + (δ – 1)e(t). Consequently, all the conditions of
Lemma 2.4 are satisfied, and the conclusion of Theorem 3.1 holds. �

Next, we will use an example to illustrate our main result.
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Example 3.1 Consider the following boundary value problem:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

D
3
2
0+ u(t) + 2√

1–t2 + (u(t) + 6
25Γ ( 3

2 )
+ 1) 1

3 + (u(t) + 6
25Γ ( 3

2 )
+ 1) 1

2 + 40Γ ( 5
4 )

3

+ (u(t) + 6
25Γ ( 3

2 )
+ 1)– 1

5 + (u(t) + 6
25Γ ( 3

2 )
+ 1)–1 – 10 = 0,

u(0) = 0,

D
1
2
0+ u(1) = 1

10 D
1
2
0+ u( 1

4 ) + 1
10 D

1
2
0+ u( 1

2 ) + 1
10 D

1
2
0+ u( 3

4 ) + λ,

(3.1)

where λ ∈ (0, 1
2 ] is a positive parameter. Then the problem (3.1) has a unique solution.

Proof The problem (3.1) can be viewed as the problem (1.1) when n = 2, α = 3
2 , β = 1

4 ,
b = 10, η1 = 1

4 , η2 = 1
2 , η3 = 3

4 , ξ1 = ξ2 = ξ3 = 1
10 . Then we have

A ≈ 0.7521 > 0

and

C(s) ≥ 1
A

[
1

10
· 1

4

1
4

(1 – s)
1
4 +

1
10

· 1
2

1
4

(1 – s)
1
4 +

1
10

· 3
4

1
4

(1 – s)
1
4 –

1
10

(
1
4

– s
) 1

4

–
1

10

(
1
2

– s
) 1

4
–

1
10

(
3
4

– s
) 1

4
]

≥ 1
40

.

A direct calculation yields

H ≥ 32
2Γ ( 3

2 )

and

e(t) =
6

25Γ ( 3
2 )

tα–1 ≤ Htα–1 = h(t).

Thus

e∗ =
6

25Γ ( 3
2 )

.

Let

f (t, u, v) =
1√

1 – t2
+

(

u(t) +
6

25Γ ( 3
2 )

+ 1
) 1

2
+

(

v(t) +
6

25Γ ( 3
2 )

+ 1
)– 1

5
+

40Γ ( 5
4 )

3
,

g(t, u, v) =
1√

1 – t2
+

(

u(t) +
6

25Γ ( 3
2 )

+ 1
) 1

3
+

(

v(t) +
6

25Γ ( 3
2 )

+ 1
)–1

.

It is easy to check that f , g : (0, 1) × [– 6
25Γ ( 3

2 )
, +∞) × [– 6

25Γ ( 3
2 )

, +∞) → (–∞, +∞) are con-
tinuous, f (t, u, v), g(t, u, v) are increasing in u and decreasing in v, and f , g are singular at
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t = 1. For t ∈ [0, 1], g(t, 0, H) = 1√
1–t2 + ( 6

25Γ ( 3
2 )

+ 1) 1
3 + (H + 6

25Γ ( 3
2 )

+ 1)–1 > 0. Thus, (C1) and
(C2) are satisfied.

For μ ∈ (0, 1), u, v ∈ Ph,e, ρ ∈ [0, 6
25Γ ( 3

2 )
], there exists ψ(μ) ∈ (μ, 1) such that

f
(
t,μu + (μ – 1)ρ,μ–1v +

(
μ–1 – 1

)
ρ
)

=
1√

1 – t2
+

(

μu + (μ – 1)ρ +
6

25Γ ( 3
2 )

+ 1
) 1

2

+
(

μ–1v +
(
μ–1 – 1

)
ρ +

6
25Γ ( 3

2 )
+ 1

)– 1
5

+
40Γ ( 5

4 )
3

≥ 1√
1 – t2

+
(

μu + (μ – 1)
6

25Γ ( 3
2 )

+
6

25Γ ( 3
2 )

+ 1
) 1

2

+
(

μ–1v +
(
μ–1 – 1

) 6
25Γ ( 3

2 )
+

6
25Γ ( 3

2 )
+ 1

)– 1
5

+
40Γ ( 5

4 )
3

=
1√

1 – t2
+

(

μu + μ
6

25Γ ( 3
2 )

+ 1
) 1

2
+

(

μ–1v + μ–1 6
25Γ ( 3

2 )
+ 1

)– 1
5

+
40Γ ( 5

4 )
3

≥ μ
1
2√

1 – t2
+ μ

1
2

(

u +
6

25Γ ( 3
2 )

+
1
μ

) 1
2

+ μ
1
5

(

v +
6

25Γ ( 3
2 )

+ μ

)– 1
5

+
40μ

1
2 Γ ( 5

4 )
3

≥ μ
1
2√

1 – t2
+ μ

1
2

(

u +
6

25Γ ( 3
2 )

+ 1
) 1

2
+ μ

1
2

(

v +
6

25Γ ( 3
2 )

+ 1
)– 1

5
+

40μ
1
2 Γ ( 5

4 )
3

= ψ(μ)f (t, u, v),

where ψ(μ) = μ
1
2 . Moreover, we deduce that

g
(
t,μu + (μ – 1)ρ,μ–1v +

(
μ–1 – 1

)
ρ
)

=
1√

1 – t2
+

(

μu + (μ – 1)ρ +
6

25Γ ( 3
2 )

+ 1
) 1

3

+
(

μ–1v +
(
μ–1 – 1

)
ρ +

6
25Γ ( 3

2 )
+ 1

)–1

≥ 1√
1 – t2

+
(

μu + (μ – 1)
6

25Γ ( 3
2 )

+
6

25Γ ( 3
2 )

+ 1
) 1

3

+
(

μ–1v +
(
μ–1 – 1

) 6
25Γ ( 3

2 )
+

6
25Γ ( 3

2 )
+ 1

)–1

=
1√

1 – t2
+ μ

1
3

(

u +
6

25Γ ( 3
2 )

+
1
μ

) 1
3

+ μ

(

v +
6

25Γ ( 3
2 )

+ μ

)–1

≥ μ√
1 – t2

+ μ

(

u +
6

25Γ ( 3
2 )

+ 1
) 1

3
+ μ

(

v +
6

25Γ ( 3
2 )

+ 1
)–1

= μg(t, u, v).
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Thus, (C3) is satisfied. Furthermore, for u, v ∈ Ph,e, letting δ = 1
2 , we have

f (t, u, v) =
1√

1 – t2
+

(

u(t) +
6

25Γ ( 3
2 )

+ 1
) 1

2
+

(

v(t) +
6

25Γ ( 3
2 )

+ 1
)– 1

5
+

40Γ ( 5
4 )

3

≥ 1√
1 – t2

+
(

u(t) +
6

25Γ ( 3
2 )

+ 1
) 1

3
+

(

v(t) +
6

25Γ ( 3
2 )

+ 1
)–1

+
40Γ ( 5

4 )
3

≥ 1
2

[
1√

1 – t2
+

(

u(t) +
6

25Γ ( 3
2 )

+ 1
) 1

3
+

(

v(t) +
6

25Γ ( 3
2 )

+ 1
)–1

+
1
2

· 160Γ ( 5
4 )

3

]

≥ 1
2

(

g(t, u, v) +
1
2

· 4Γ ( 5
4 )

3C(s)

)

= δg(t, u, v) + δ2 4Γ ( 5
4 )

3C(s)
.

Therefore, (C4) holds. In addition, we get

∫ 1

0
f (s, H , 0) ds

=
∫ 1

0

(
1√

1 – s2
+

(

H +
6

25Γ ( 3
2 )

+ 1
) 1

2
+

(
6

25Γ ( 3
2 )

+ 1
)– 1

5
+

40Γ ( 5
4 )

3

)

ds

=
∫ 1

0

1√
1 – s2

ds +
(

H +
6

25Γ ( 3
2 )

+ 1
) 1

2
+

(
6

25Γ ( 3
2 )

+ 1
)– 1

5
+

40Γ ( 5
4 )

3

=
π

2
+

(

H +
6

25Γ ( 3
2 )

+ 1
) 1

2
+

(
6

25Γ ( 3
2 )

+ 1
)– 1

5
+

40Γ ( 5
4 )

3
< ∞,

similarly,

∫ 1

0
g(s, H , 0) ds =

∫ 1

0

(
1√

1 – s2
+

(

H +
6

25Γ ( 3
2 )

+ 1
) 1

3
+

(
6

25Γ ( 3
2 )

+ 1
)–1)

ds

=
∫ 1

0

1√
1 – s2

ds +
(

H +
6

25Γ ( 3
2 )

+ 1
) 1

3
+

(
6

25Γ ( 3
2 )

+ 1
)–1

=
π

2
+

(

H +
6

25Γ ( 3
2 )

+ 1
) 1

3
+

(
6

25Γ ( 3
2 )

+ 1
)–1

< ∞.

Thus, (C5) is satisfied. Therefore, the application of Theorem 3.1 ensures that the problem
(3.1) has a unique solution u∗ for λ ∈ (0, 1

2 ], and we can construct the following iterative
sequences:

ωn(t) =
∫ 1

0
G(t, s)

(
1√

1 – s2
+

(

ωn–1(s) +
6

25Γ ( 3
2 )

+ 1
) 1

2
+

(

τn–1(s) +
6

25Γ ( 3
2 )

+ 1
) –1

5

+
40Γ ( 5

4 )
3

)

ds +
∫ 1

0
G(t, s)

(
1√

1 – s2
+

(

ωn–1(s) +
6

25Γ ( 3
2 )

+ 1
) 1

3
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+
(

τn–1(s) +
6

25Γ ( 3
2 )

+ 1
)–1)

ds

–
6

25Γ ( 3
2 )

tα–1 +
3Γ ( 5

4 )t 1
2 λ

4Γ ( 3
2 )

, n = 1, 2, . . . ,

τn(t) =
∫ 1

0
G(t, s)

(
1√

1 – s2
+

(

τn–1(s) +
6

25Γ ( 3
2 )

+ 1
) 1

2
+

(

ωn–1(s) +
6

25Γ ( 3
2 )

+ 1
) –1

5

+
40Γ ( 5

4 )
3

)

ds +
∫ 1

0
G(t, s)

(
1√

1 – s2
+

(

τn–1(s) +
6

25Γ ( 3
2 )

+ 1
) 1

3

+
(

ωn–1(s) +
6

25Γ ( 3
2 )

+ 1
)–1)

ds

–
6

25Γ ( 3
2 )

tα–1 +
3Γ ( 5

4 )t 1
2 λ

4Γ ( 3
2 )

, n = 1, 2, . . . ,

for any initial values ω0, τ0 ∈ Ph,e, we have ωn → u∗ and τn → u∗ as n → ∞. �

Remark 3.1 For problem (3.1), we can take some negative values in nonlinear term f +
g – 10. However, the authors of [18] required that the nonlinear term is non-negative.
Therefore, Theorem 3.1 in [18] cannot be applied to dealing with the problem (3.1).

4 Conclusions
In this paper, we establish the existence and uniqueness theorem of the solution for frac-
tional m-point boundary value problem. Our tool is mixed monotone fixed point theorem
involving non-cone mapping. Furthermore, two iterative sequences to approximate the
unique solution are also given.
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