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Abstract
This paper deals with a class of inverse spectral problems of fourth-order boundary
value problems with eigenparameter-dependent boundary conditions. Under the
equivalent conditions of the problem and a certain type of matrix eigenvalue
problem some coefficient functions are reconstructed from the given three sets of
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1 Introduction
This paper is a generalization of [26] and [5]. In [26], a class of inverse problems of Sturm–
Liouville problems with eigenparameter-dependent boundary conditions has been con-
sidered by the authors. And in [5], the authors studied the inverse fourth-order bound-
ary value problems with finite spectrum under separated boundary conditions. Since the
higher-order boundary value problems with eigenparameter-dependent boundary con-
ditions have their own theoretical and application background, we will investigate an in-
verse spectral problem of the fourth-order boundary value problems with eigenparameter-
dependent boundary conditions. The reader may find the historical and research back-
ground on boundary value problems with eigenparameter-dependent boundary condi-
tions in [20, 26] and the references therein.

It is well known that the inverse spectral problems play an important role in many sci-
entific fields which is motivated by recovering operators from their spectral data. Such
problems have been widely studied by mathematicians, physicists, and engineers. Espe-
cially the inverse matrix eigenvalue problems and inverse Sturm–Liouville problems have
been deeply studied in the last several decades [7, 8, 10, 11, 13, 22–25]. Such problems
are always connected with the problems such as the vibrating systems [12], the classical
moment problems [19], and quantum mechanics [18].
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In recent years, boundary value problems (BVPs) of Atkinson type which have a finite
spectrum have been considered by some scholars [1–4, 6, 14, 15, 17]. These problems are
connected with some physical problems such as frequencies of vibrating strings and diffu-
sion operators [21]. Besides the finite spectrum results and matrix representations of these
problems, the corresponding inverse spectral problems of such a type of problems have
also been investigated most recently [5, 9, 16, 26, 27]. In 2012, Kong and Zettl considered
the inverse Sturm–Liouville problems with finite spectrum of Atkinson type by using the
so-called matrix representations of these problems [16]. In 2018, Cai and Zheng [9] gener-
ated the results in [16] and investigated a class of inverse Sturm–Liouville problems with
discontinuous boundary conditions. The inverse spectral problems of Sturm–Liouville
problems with eigenparameter- dependent boundary conditions and fourth-order bound-
ary value problems were studied by Zhang and Ao in [26, 27] and [5], respectively. Since
the fourth-order boundary value problems and the eigenparameter-dependent boundary
value problems have their own significant background, we will discuss an inverse spectral
problem on it.

Let us consider the fourth-order boundary value problem generated by the equation

(
py′′)′′ + qy = λwy, on I = [a, b], –∞ < a < b < +∞, (1.1)

where the coefficients satisfy the condition

r = 1/p, q, w ∈ L(I,R),

here L(I,R) denotes the real valued functions which are Lebesgue integrable on I , and the
eigenparameter-dependent boundary conditions (BCs)

AλY (a) + BλY (b) = 0, Y =
[
y, y′, py′′,

(
py′′)′]T , (1.2)

where

Aλ =

⎡

⎢⎢
⎢
⎣

λα′
1 + α1 λα′

2 + α2 λα′
3 + α3 λα′

4 + α4

λβ ′
1 + β1 λβ ′

2 + β2 λβ ′
3 + β3 λβ ′

4 + β4

0 0 0 0
0 0 0 0

⎤

⎥⎥
⎥
⎦

,

Bλ =

⎡

⎢⎢
⎢
⎣

0 0 0 0
0 0 0 0

λγ ′
1 + γ1 λγ ′

2 + γ2 λγ ′
3 + γ3 λγ ′

4 + γ4

λδ′
1 + δ1 λδ′

2 + δ2 λδ′
3 + δ3 λδ′

4 + δ4

⎤

⎥⎥
⎥
⎦
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with αi,α′
i ,βi,β ′

i ,γi,γ ′
i , δi, δ′

i ∈R, i = 1, 2, 3, 4, and satisfying

rank

(
α1 α2 α3 α4

α′
1 α′

2 α′
3 α′

4

)

= 2, rank

(
β1 β2 β3 β4

β ′
1 β ′

2 β ′
3 β ′

4

)

= 2,

rank

(
γ1 γ2 γ3 γ4

γ ′
1 γ ′

2 γ ′
3 γ ′

4

)

= 2, rank

(
δ1 δ2 δ3 δ4

δ′
1 δ′

2 δ′
3 δ′

4

)

= 2,

rank

(
α1 α2 α3 α4

β1 β2 β3 β4

)

= 2, rank

(
α′

1 α′
2 α′

3 α′
4

β ′
1 β ′

2 β ′
3 β ′

4

)

= 2,

rank

(
γ1 γ2 γ3 γ4

δ1 δ2 δ3 δ4

)

= 2, rank

(
γ ′

1 γ ′
2 γ ′

3 γ ′
4

δ′
1 δ′

2 δ′
3 δ′

4

)

= 2.

(1.3)

Here λ is the spectral parameter.
The fourth-order eigenparameter-dependent BVPs (1.1), (1.2) are of Atkinson type if for

some positive integer n ≥ 1, there exists a partition of the interval [a, b]

a = a0 < b0 < a1 < b1 < · · · < an < bn = b, (1.4)

such that

r(t) =
1

p(t)
= 0 on [ai, bi), i = 0, 1, . . . , n,

∫ ai

bi–1

r(t) dt �= 0,

∫ ai

bi–1

r(t)t dt �= 0,
∫ ai

bi–1

r(t)t2 dt �= 0, i = 1, 2, . . . , n;
(1.5)

q(t) = 0 on [bi–1, ai), i = 1, 2, . . . , n, (1.6)

and

w(t) = 0 on [bi–1, ai), i = 1, 2, . . . , n,
∫ bi

ai

w(t) dt > 0,

∫ bi

ai

w(t)t dt > 0,
∫ bi

ai

w(t)t2 dt > 0, i = 0, 1, . . . , n,

(1.7)

and BC (1.2) satisfies the conditions (1.3).
To present our discussions in this paper we need to introduce the following notations.

Let

ri =
∫ ai

bi–1

r(t) dt, r̂i =
∫ ai

bi–1

r(t)t dt, ři =
∫ ai

bi–1

r(t)t2 dt, i = 1, 2, . . . , n,

qi =
∫ bi

ai

q(t) dt, q̂i =
∫ bi

ai

q(t)t dt, q̌i =
∫ bi

ai

q(t)t2 dt, i = 0, 1, . . . , n,

wi =
∫ bi

ai

w(t) dt, ŵi =
∫ bi

ai

w(t)t dt, w̌i =
∫ bi

ai

w(t)t2 dt, i = 0, 1, . . . , n,

(1.8)

and assume that

θi = r̂2
i – riři �= 0, i = 1, 2, . . . , n.
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For a given equation (1.1) with coefficients satisfying (1.5)–(1.7), let us set

�α = (α1,α2,α3,α4), �α′ =
(
α′

1,α′
2,α′

3,α′
4
)
, �β = (β1,β2,β3,β4),

�β ′ =
(
β ′

1,β ′
2,β ′

3,β ′
4
)
, �γ = (γ1,γ2,γ3,γ4), �γ ′ =

(
γ ′

1,γ ′
2,γ ′

3,γ ′
4
)
,

�δ = (δ1, δ2, δ3, δ4), �δ′ =
(
δ′

1, δ′
2, δ′

3, δ′
4
)
, �0 = (0, 0, 0, 0).

Then we let σ (�α, �α′, �β , �β ′, �γ , �γ ′, �δ, �δ′) be the spectrum of the fourth-order eigenparameter-
dependent BVPs (1.1), (1.2).

Assume k ∈ N
+ such that k > 2, and let M2k be the set of 2k × 2k matrices over the

reals. For any Y ∈ M2k , we denote by σ (Y ) the set of eigenvalues of Y . Furthermore, let
Y1 be the principal submatrix obtained from Y by removing its first row and column, and
Y 1 its submatrix obtained from Y by removing the last row and column. Let Y12 be the
principal submatrix obtained from Y by removing its first two rows and first two columns,
and Y 12 its submatrix obtained from Y by removing the last two rows and the last two
columns. For any 2 × 2 matrix F , we denote by Y12[F] the matrix of Y12 plus F in the
(1, 1), (1, 2), (2, 1), (2, 2) entries. We denote by Y 12[F] the matrix of Y 12 plus F in the (2k –
3, 2k – 3), (2k – 3, 2k – 2), (2k – 2, 2k – 3), (2k – 2, 2k – 2) entries.

For any Y , Z ∈ M2k , we say that λ∗ is an eigenvalue of the matrix-pair (Y , Z) if there
exists a nontrivial vector u ∈ R

2k such that (Y – λ∗Z)u = 0. We denote by σ (Y , Z) the set
of eigenvalues of (Y , Z). Clearly, λ∗ ∈ σ (Y ) if and only if λ∗ ∈ σ (Y , I2k), where I2k is the
identity matrix in M2k .

2 Equivalent matrix representations of fourth-order
eigenparameter-dependent BVPs

To illustrate our main result on inverse fourth-order eigenparameter-dependent BVPs, we
will show the following lemmas, which have been given in [1].

Lemma 2.1 ([1]) Let x1, x2 ∈ R and x1 �= x2. Then, for any η0,η1,η2 ∈ R, there exists a
unique polynomial function P(t) = τ2t2 + τ1t + τ0, such that

∫ x2

x1

P(t) dt = η0,
∫ x2

x1

P(t)t dt = η1,
∫ x2

x1

P(t)t2 dt = η2. (2.1)

Denote the polynomial constructed in Lemma 2.1 by χ (x1, x2,η0,η1,η2) and define the
piecewise polynomial functions r̄(t) = 1

p̄(t) , q̄(t) and w̄(t) on [a, b] by

r̄(t) =
1

p̄(t)
=

⎧
⎨

⎩
χ (bi–1, ai, ri, r̂i, ři), t ∈ [bi–1, ai), i = 1, 2, . . . , n;

0, t ∈ [ai, bi), i = 0, 1, . . . , n;

q̄(t) =

⎧
⎨

⎩
χ (ai, bi, qi, q̂i, q̌i), t ∈ [ai, bi), i = 0, 1, . . . , n;

0, t ∈ [bi–1, ai), i = 1, 2, . . . , n;

w̄(t) =

⎧
⎨

⎩
χ (ai, bi, wi, ŵi, w̌i), t ∈ [ai, bi), i = 0, 1, . . . , n;

0, t ∈ [bi–1, ai), i = 1, 2, . . . , n.

Then we can state the following lemma.
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Lemma 2.2 ([1]) Assume r(t), q(t), w(t) ∈ L(I,R) satisfy (1.5)–(1.7). Then the fourth-order
eigenparameter-dependent BVPs (1.1), (1.2) have exactly the same eigenvalues as the
fourth-order eigenparameter-dependent BVPs consisting of the equation with piecewise
polynomial functions

(
p̄y′′)′′ + q̄y = λw̄y, on I = [a, b], (2.2)

and the same BC (1.2).

It can be inferred from Lemma 2.2, for a fixed BC (1.2) and a given partition of
the interval [a, b], there is a family of fourth-order eigenparameter-dependent BVPs of
Atkinson type which has exactly the same eigenvalues as fourth-order eigenparameter-
dependent BVP (2.2), (1.2). Such a family is called the equivalent family of the fourth-
order eigenparameter-dependent BVPs (2.2), (1.2). It is clear that, for an equivalent family
of the fourth-order eigenparameter-dependent BVPs (2.2), (1.2), the parameters ri, r̂i, ři

and qi, q̂i, q̌i, wi, ŵi, w̌i defined by (1.8) are all the same.

Lemma 2.3 ([1]) Consider the BC (1.2) with αi,α′
i ,βi,β ′

i ,γi,γ ′
i , δi, δ′

i ∈ R, i = 1, 2, 3, 4, satis-
fying the conditions (1.3). Define an (n + 3) × (n + 3) block tridiagonal matrix

P =

⎡

⎢
⎢⎢
⎢⎢⎢
⎢⎢
⎢⎢
⎢
⎣

B1 B2

E2 –P1 P1

P1 –P1 – P2 P2

· · · · · · · · ·
Pn–1 –Pn–1 – Pn Pn

Pn –Pn –E2

B3 B4

⎤

⎥
⎥⎥
⎥⎥⎥
⎥⎥
⎥⎥
⎥
⎦

, (2.3)

a block diagonal matrix

Q = diag(O, Q0, Q1, . . . , Qn, O), (2.4)

and an ‘almost’ block diagonal matrix

W =

⎡

⎢⎢
⎢⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎣

–B′
1 –B′

2

W0

W1

· · ·
Wn–1

Wn

–B′
3 –B′

4

⎤

⎥⎥
⎥⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎦

, (2.5)

where E2, O, Pj, j = 1, . . . , n and Qj, Wj, j = 0, 1, . . . , n, are 2 × 2 matrices with the rule

E2 =

[
0 –1
1 0

]

, O =

[
0 0
0 0

]

, Pj =

⎡

⎣
rj
θj

r̂j
θj

r̂j
θj

řj
θj

⎤

⎦ , j = 1, 2, 3, . . . , n,
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Qj =

[
qj q̂j

q̂j q̌j

]

, Wj =

[
wj ŵj

ŵj w̌j

]

, j = 0, 1, . . . , n,

and Bi, B′
i, i = 1, 2, 3, 4, are 2 × 2 matrices with the rule

B1 =

[
α3 aα3 + α4

β3 aβ3 + β4

]

, B2 =

[
α1 aα1 + α2

β1 aβ1 + β2

]

, B3 =

[
γ3 bγ3 + γ4

δ3 bδ3 + δ4

]

,

B4 =

[
γ1 bγ1 + γ2

δ1 bδ1 + δ2

]

, B′
1 =

[
α′

3 aα′
3 + α′

4

β ′
3 aβ ′

3 + β ′
4

]

, B′
2 =

[
α′

1 aα′
1 + α′

2

β ′
1 aβ ′

1 + β ′
2

]

,

B′
3 =

[
γ ′

3 bγ ′
3 + γ ′

4

δ′
3 bδ′

3 + δ′
4

]

, B′
4 =

[
γ ′

1 bγ ′
1 + γ ′

2

δ′
1 bδ′

1 + δ′
2

]

.

Then we have the same eigenvalues of the fourth-order eigenparameter-dependent BVPs
(1.1), (1.2) and the matrix-pair (P + Q, W), i.e.

σ
(�α, �α′, �β , �β ′, �γ , �γ ′, �δ, �δ′) = σ (P + Q, W).

Lemma 2.4 Consider the BC (1.2) with α′
i ,β ′

i ,γi,γ ′
i , δi, δ′

i ∈ R, i = 1, 2, 3, 4, satisfying the
conditions (1.3). Define an (n + 2) × (n + 2) block tridiagonal matrix

P12
[
–E2

(
B′

1
)–1B′

2
]

=

⎡

⎢
⎢⎢
⎢⎢
⎢⎢
⎢
⎣

–P1 – E2(B′
1)–1B′

2 P1

P1 –P1 – P2 P2

· · · · · · · · ·
Pn–1 –Pn–1 – Pn Pn

Pn –Pn –E2

B3 B4

⎤

⎥
⎥⎥
⎥⎥
⎥⎥
⎥
⎦

, (2.6)

a block diagonal matrix

Q12 = diag(Q0, Q1, . . . , Qn, O), (2.7)

and an ‘almost’ block diagonal matrix

W12 =

⎡

⎢
⎢⎢
⎢⎢⎢
⎢⎢
⎣

W0

W1

· · ·
Wn–1

Wn

–B′
3 –B′

4

⎤

⎥
⎥⎥
⎥⎥⎥
⎥⎥
⎦

, (2.8)

where E2, O, Pj, j = 1, . . . , n, Qj, Wj, j = 0, 1, . . . , n, and Bi, i = 3, 4, B′
i, i = 1, 2, 3, 4 are 2 × 2

matrices as given in Lemma 2.3.
Then σ (�0, �α′, �0, �β ′, �γ , �γ ′, �δ, �δ′) = σ (P12 + Q12, W12).

Proof The proof is similar to the proof of Lemma 2.3, hence it is omitted here. �
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Lemma 2.5 Consider the BC (1.2) with αi,α′
i ,βi,β ′

i ,γ ′
i , δ′

i ∈ R, i = 1, 2, 3, 4, satisfying the
conditions (1.3). Define an (n + 2) × (n + 2) block tridiagonal matrix

P12[E2
(
B′

4
)–1B′

3
]

=

⎡

⎢⎢
⎢⎢⎢
⎢⎢
⎢
⎣

B1 B2

E2 –P1 P1

P1 –P1 – P2 P2

· · · · · · · · ·
Pn–1 –Pn–1 – Pn Pn

Pn –Pn + E2(B′
4)–1B′

3

⎤

⎥⎥
⎥⎥⎥
⎥⎥
⎥
⎦

, (2.9)

a block diagonal matrix

Q12 = diag(O, Q0, Q1, . . . , Qn), (2.10)

and an ‘almost’ block diagonal matrix

W12 =

⎡

⎢
⎢⎢
⎢⎢
⎢⎢
⎢
⎣

–B′
1 –B′

2

W0

W1

· · ·
Wn–1

Wn

⎤

⎥
⎥⎥
⎥⎥
⎥⎥
⎥
⎦

, (2.11)

where E2, O, Pj, j = 1, . . . , n, Qj, Wj, j = 0, 1, . . . , n, and Bi, i = 1, 2; B′
i, i = 1, 2, 3, 4 are 2 × 2

matrices as given in Lemma 2.3.
Then σ (�α, �α′, �β , �β ′, �0, �γ ′, �0, �δ′) = σ (P12 + Q12, W12).

Proof The proof is similar to the proof of Lemma 2.3, hence it is omitted here. �

Remark 2.1 In Lemmas 2.3, 2.4, 2.5, it is easy to conclude that

(P + Q)12 = P12 + Q12, (P + Q)12 = P12 + Q12.

3 Related inverse matrix eigenvalue problems
We first introduce the following matrices in M2k :

⎡

⎢⎢
⎢⎢
⎢⎢
⎣

C1 D1

DT
1 C2 D2

· · · · · · · · ·
DT

k–2 Ck–1 Dk–1

DT
k–1 Ck

⎤

⎥⎥
⎥⎥
⎥⎥
⎦

, (3.1)

where Ci, i = 1, . . . , k and Di, i = 1, . . . , k – 1 are 2 × 2 matrices, T denotes the transpose.

Definition 3.1 ([22]) A matrix Jb ∈M2k in the form of (3.1) is called a two-banded matrix
if Ci =

[ c̀i ći
ći c̄i

]
, c̀i, ći, c̄i �= 0, i = 1, . . . , k; Di =

[ d̀i 0
d́i d̄i

]
, d̀i, d́i, d̄i �= 0, i = 1, . . . , k – 1.
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Lemma 3.1 ([22]) Let {λi : i = 1, . . . , 2k}, {μi : i = 1, . . . , 2k – 1} and {ξi : i = 1, . . . , 2k – 2} be
three sets of real numbers satisfying the interlacing property

λ1 ≤ μ1 ≤ λ2 ≤ μ2 ≤ · · · ≤ λ2k–1 ≤ μ2k–1 ≤ λ2k ,

μ1 ≤ ξ1 ≤ μ2 ≤ ξ2 ≤ · · · ≤ μ2k–2 ≤ ξ2k–2 ≤ μ2k–1.
(3.2)

Then there exists a two-banded matrix Jb ∈M2k such that

σ (Jb) = {λi : i = 1, . . . , 2k}, σ
(
(Jb)1

)
= {μi : i = 1, . . . , 2k – 1},

σ
(
(Jb)12

)
= {ξi : i = 1, . . . , 2k – 2}.

Next, we consider the block matrices in M2k of the form
⎡

⎢
⎢⎢⎢
⎢⎢
⎣

C1 D1

D′
1 C2 D2

· · · · · · · · ·
DT

k–2 Ck–1 D′
k–1

Dk–1 Ck

⎤

⎥
⎥⎥⎥
⎥⎥
⎦

, (3.3)

which is block symmetric except for the D1, D′
1, Dk–1, D′

k–1 entries.

Definition 3.2 A matrix M ∈ M2k in the form of (3.3) is called a 2×2 block pseudo-Jacobi
matrix if Ci =

[ ci ĉi
ĉi či

]
, ci, ĉi, či �= 0, i = 2, . . . , k – 1; Di =

[ di d̂i
d̂i ďi

]
, di, d̂i, ďi �= 0, i = 2, . . . , k – 2,

and C1 =
[ c(1)

11 c(1)
12

c(1)
21 c(1)

22

]
, D1 =

[ d(1)
11 d(1)

12

d(1)
21 d(1)

22

]
, D′

1 =
[ d(1)′

11 d(1)′
12

d(1)′
21 d(1)′

22

]
, Dk–1 =

[ d(k–1)
11 d(k–1)

12

d(k–1)
21 d(k–1)

22

]
, D′

k–1 =
[ d(k–1)′

11 d(k–1)′
12

d(k–1)′
21 d(k–1)′

22

]
,

Ck =
[ c(k)

11 c(k)
12

c(k)
21 c(k)

22

]
with each Di, i = 1, . . . , k – 1, and C1, Ck , D′

1, D′
k–1 are 2 × 2 nonsingular ma-

trices.

From Lemma 3.1, we can deduce the following theorem which includes the key tech-
nique to solve our main result.

Theorem 3.1 Let {λi : i = 1, . . . , 2k}, {μi : i = 1, . . . , 2k – 1} and {ξi : i = 1, . . . , 2k – 2} be three
sets of real numbers satisfying the interlacing property (3.2).

If

W =

⎡

⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢⎢
⎣

–B′
1 –B′

2

W0

W1

· · ·
Wk–4

Wk–3

–B′
3 –B′

4

⎤

⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥⎥
⎦

is an ‘almost’ block diagonal matrix with Wj =
[ wj ŵj

ŵj w̌j

]
, j = 0, 1, . . . , k – 3, B′

i =
[ b(i)

11 b(i)
12

b(i)
21 b(i)

22

]
, i =

1, 2, 3, 4 satisfying wi, ŵi, w̌i > 0, det(Wi) > 0, i = 0, 1, . . . , k – 3, wiŵi+1–ŵiwi+1
wi+1det(Wi)

= d́i+2
d̀i+2

, i =

0, 1, . . . , k – 4, where d́i+2, d̀i+2, i = 0, 1, . . . , k – 4 are entries of Jb as mentioned in Lemma 3.1,
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and det(B′
i) �= 0, i = 1, 2, 3, 4. Then there exists a block pseudo-Jacobi matrix M ∈ M2k such

that

σ (M, W) = {λi : i = 1, . . . , 2k},
σ
(
M12

[
–E2

(
B′

1
)–1B′

2
]
, W12

)
= {ξi : i = 1, . . . , 2k – 2}.

(3.4)

Proof Since {λi : i = 1, . . . , 2k}, {μi : i = 1, . . . , 2k – 1} and {ξi : i = 1, . . . , 2k – 2} are three sets
of real numbers satisfying the interlacing property (3.2), hence by Lemma 3.1, there exists
a two-banded matrix Jb ∈M2k such that

σ (Jb) = {λi : i = 1, . . . , k}, σ
(
(Jb)1

)
= {μi : i = 1, . . . , k – 1},

σ
(
(Jb)12

)
= {ξi : i = 1, . . . , k – 2}.

Now for each λ = λi, i = 1, . . . , 2k, there exists a nontrivial u ∈R
2k such that

(Jb – λI2k)u = 0. (3.5)

Set

H =

⎡

⎢⎢
⎢⎢
⎢⎢
⎣

I2 –(B′
1)–1B′

2

I2

· · ·
I2

–(B′
4)–1B′

3 I2

⎤

⎥⎥
⎥⎥
⎥⎥
⎦

,

then one has WH = LU, with L = diag(L1, RT
0 , RT

1 , . . . , RT
k–3, L2), U = diag(U1, R0, R1, . . . ,

Rk–3, U2), where U1 = (RT
0 )–1(DT

1 )–1E2, U2 = (RT
k–3)–1(Dk–1)–1(–E2), L1 = –B′

1(U1)–1, L2 =

–B′
4(U2)–1, Ri =

[
√wi

ŵi√wi

0

√
w̌iwi–ŵ2

i√wi

]
, i = 0, 1, . . . , k – 3, DT

1 ,Dk–1 ∈ Jb.

Let u = UH–1ũ and left multiplying Eq. (3.5) by L we obtain

(
LJbUH–1 – λLUH–1)ũ = 0, i.e., (M – λW)ũ = 0,

where M = LJbUH–1. Clearly, λ ∈ σ (M, W) and M ∈M2k is a block pseudo-Jacobi matrix.
The same argument applies to each ξ = ξi, i = 1, . . . , 2k – 2, then we obtain the conclusion
that M12[–E2(B′

1)–1B′
2] = L12(Jb)12U12(H–1)12, W12 = L12U12(H–1)12 and ξ ∈ σ (M12, W12).

Thus,

σ (Jb) ⊂ σ (M, W) and σ
(
(Jb)12

) ⊂ σ
(
M12

[
–E2

(
B′

1
)–1B′

2
]
, W12

)
.

Similarly by reversing the steps above we can get

σ (Jb) ⊃ σ (M, W) and σ
(
(Jb)12

) ⊃ σ
(
M12

[
–E2

(
B′

1
)–1B′

2
]
, W12

)
.

Consequently,

σ (Jb) = σ (M, W) and σ
(
(Jb)12

)
= σ

(
M12

[
–E2

(
B′

1
)–1B′

2
]
, W12

)
.

This completes the proof. �
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Corollary 3.1 When M12[–E2(B′
1)–1B′

2] and W12 are replaced by M12[E2(B′
4)–1B′

3] and
W12, respectively, then the similar conclusion of Theorem 3.1 still holds.

Corollary 3.2 When wi, ŵi, w̌i > 0 are replaced by wi, ŵi, w̌i < 0 for i = 1, . . . , k, then the
similar conclusion of Theorem 3.1 still holds.

4 Main result
We now state our main result on the inverse spectral problem of the fourth-order
eigenparameter-dependent BVPs (1.1), (1.2).

Theorem 4.1 Let {λi : i = 1, . . . , 2k}, {μi : i = 1, . . . , 2k – 1} and {ξi : i = 1, . . . , 2k – 2} be three
sets of real numbers satisfying the interlacing property (3.2). Let n = k – 3. Then, for any
–∞ < a < b < +∞, any partition (1.4), any w ∈ L(I,R) satisfying (1.7), any real numbers
α′

i ,β ′
i ,γ ′

i , δ′
i , i = 1, 2, 3, 4 satisfying α′

1β
′
2 – α′

2β
′
1 �= 0, α′

3β
′
4 – α′

4β
′
3 �= 0, γ ′

1δ
′
2 – γ ′

2δ
′
1 �= 0, γ ′

3δ
′
4 –

γ ′
4δ

′
3 �= 0, we have the following:

(a) There exist r, q ∈ L(I,R) satisfying (1.5) and (1.6), the values of eigenparameter-
dependent BCs αi,βi,γi, δi, i = 1, 2, 3, 4, such that the associated equivalent family of the
fourth-order eigenparameter-dependent BVPs (1.1), (1.2) has the spectrum

σ
(�α, �α′, �β , �β ′, �γ , �γ ′, �δ, �δ′) = {λi : i = 1, . . . , 2k},

σ
(�0, �α′, �0, �β ′, �γ , �γ ′, �δ, δ̃′) = {ξi : i = 1, . . . , 2k – 2}.

(b) There exist r, q ∈ L(I,R) satisfying (1.5) and (1.6), the values of eigenparameter-
dependent BCs αi,βi,γi, δi, i = 1, 2, 3, 4, such that the associated equivalent family of the
fourth-order eigenparameter-dependent BVPs (1.1), (1.2) has the spectrum

σ
(�α, �α′, �β , �β ′, �γ , �γ ′, �δ, �δ′) = {λi : i = 1, . . . , 2k},

σ
(�α, �α′, �β , �β ′, �0, �γ ′, �0, �δ′) = {ξi : i = 1, . . . , 2k – 2}.

Proof (a) For any –∞ < a < b < +∞ and a given partition (1.4) of [a, b], define wi =
∫ bi

ai
w(t) dt, ŵi =

∫ bi
ai

w(t)t dt, w̌i =
∫ bi

ai
w(t)t2 dt, i = 0, 1, . . . , n,Wi = [ wi ŵi

ŵi w̌i
], i = 0, 1, . . . , n, satis-

fying the conditions wiŵi+1–ŵiwi+1
wi+1det(Wi)

= d́i+2
d̀i+2

, i = 0, 1, . . . , n – 1. For any real numbers α′
i ,β ′

i ,γ ′
i , δ′

i ,
i = 1, 2, 3, 4, satisfying α′

1β
′
2 – α′

2β
′
1 �= 0, α′

3β
′
4 – α′

4β
′
3 �= 0, γ ′

1δ
′
2 – γ ′

2δ
′
1 �= 0, γ ′

3δ
′
4 – γ ′

4δ
′
3 �= 0,

define B′
1 =

[ α′
3 aα′

3+α′
4

β ′
3 aβ ′

3+β ′
4

]
, B′

2 =
[ α′

1 aα′
1+α′

2
β ′

1 aβ ′
1+β ′

2

]
, B′

3 =
[ γ ′

3 bγ ′
3+γ ′

4
δ′

3 bδ′
3+δ′

4

]
, B′

4 =
[ γ ′

1 bγ ′
1+γ ′

2
δ′

1 bδ′
1+δ′

2

]
. Then define

W =

⎡

⎢
⎢⎢
⎢⎢
⎢⎢⎢
⎢⎢
⎢
⎣

–B′
1 –B′

2

W0

W1

· · ·
Wn–1

Wn

–B′
3 –B′

4

⎤

⎥
⎥⎥
⎥⎥
⎥⎥⎥
⎥⎥
⎥
⎦

.

By (1.7), wi > 0, ŵi > 0, w̌i > 0, i = 0, 1, . . . , n, and det(B′
i) �= 0, i = 1, 2, 3, 4. Since k = n + 3,

by Theorem 3.1, there exists a block pseudo-Jacobi matrix M ∈M2n+6 in the form of (3.3)
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satisfying D′
1 = –D′

k–1 = E2 such that

σ (M, W) = {λi : i = 1, . . . , 2n + 6},
σ
(
M12

[
–E2

(
B′

1
)–1B′

2
]
, W12

)
= {ξi : i = 1, . . . , 2n + 4}.

Let

θi =
1

d̂2
i – ďi di

, i = 1, . . . , n;

ri = θidi, r̂i = θid̂i, ři = θiďi, i = 1, . . . , n;

qi = ci+2 +
ri

θi
+

ri+1

θi+1
, q̂i = ĉi+2 +

r̂i

θi
+

r̂i+1

θi+1
,

q̌i = či+2 +
ři

θi
+

ři+1

θi+1
, i = 1, . . . , n – 1,

q0 = c2 +
r1

θ1
, q̂0 = ĉ2 +

r̂1

θ1
, q̌0 = č2 +

ř1

θ1
,

qn = cn+2 +
rn

θn
, q̂n = ĉn+2 +

r̂n

θn
, q̌n = čn+2 +

řn

θn
;

α1 = d(1)
11 , α2 = d(1)

12 – a ∗ d(1)
11 , β1 = d(1)

21 , β2 = d(1)
22 – a ∗ d(1)

21 ,

α3 = c(1)
11 , α4 = c(1)

12 – a ∗ c(1)
11 , β3 = c(1)

21 , β4 = c(1)
22 – a ∗ c(1)

21 ,

γ1 = d(k–1)
11 , γ2 = d(k–1)

12 – b ∗ d(k–1)
11 , δ1 = d(k–1)

21 , δ2 = d(k–1)
22 – b ∗ d(k–1)

21 ,

γ3 = c(k)
11 , γ4 = c(k)

12 – b ∗ c(k)
11 , δ3 = c(k)

21 , δ4 = c(k)
22 – b ∗ c(k)

21 ,

and define P, Q, P12[–E2(B′
1)–1B′

2] and Q12 by (2.3), (2.4), (2.6) and (2.7), respectively.
Clearly, ri, r̂i, ři �= 0, i = 1, . . . , n. It is easy to see that M = P + Q and M12[–E2(B′

1)–1B′
2] =

P12[–E2(B′
1)–1B′

2] + Q12. With the notation in (2.5) and (2.8), we also have (W)12 = W12.
Therefore,

σ (P + Q, W) = {λi : i = 1, . . . , 2n + 6},
σ
(
P12

[
–E2

(
B′

1
)–1B′

2
]

+ Q12, W12
)

= {ξi : i = 1, . . . , 2n + 4}.

By Lemmas 2.3 and 2.4 we see that for the fourth-order eigenparameter-dependent BVPs
(1.1), (1.2)

σ
(�α, �α′, �β , �β ′, �γ , �γ ′, �δ, �δ′) = {λi : i = 1, . . . , 2n + 6},

σ
(�0, �α′, �0, �β ′, �γ , �γ ′, �δ, δ̃′) = {ξi : i = 1, . . . , 2n + 4}.

We observe that the choice of ri, r̂i, ři, i = 1, . . . , n and qi, q̂i, q̌i, i = 0, . . . , n and all r, q ∈ L(I,R)
by this choice form an equivalent family of the fourth-order eigenparameter-dependent
BVPs. This completes the proof.

(b) The proof is similar using Corollary 3.1, and Lemmas 2.3, 2.5, hence the details are
omitted here. �

To illustrate our main result we show the following algorithm and example.
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Algorithm 1
Step 1. Input three sets of real numbers λ1,λ2, . . . ,λ2k , μ1,μ2, . . . ,μ2k–1 and ξ1, ξ2, . . . , ξ2k–2.
Step 2. Construct the matrix Jb by the proof of Problem 2.6 in [22].
Step 3. Set a, b and the partition of [a, b]. Input w̄(t) and α′

i ,β ′
i ,γ ′

i , δ′
i ∈ R, i = 1, 2, 3, 4. Set

W and H to obtain L and U. Compute M = LJbUH–1.
Step 4. Obtain αi,βi,γi, δi ∈ R, i = 1, 2, 3, 4, and ri, r̂i, ři, i = 1, . . . , n, qi, q̂i, q̌i, i = 0, . . . , n by

Theorem 4.1.

Example 1 Given three sets of real numbers satisfying the interlacing property (3.2): λ1 =
–3.8397,λ2 = –3.0377,λ3 = –0.0540,λ4 = 2.5830,λ5 = 5.5791,λ6 = 7.0055,λ7 = 11.3818,
λ8 = 15.3820;μ1 = –3.0842,μ2 = –1.9058,μ3 = 2.3327,μ4 = 3.2462,μ5 = 6.2319,μ6 =
9.4212,μ7 = 13.7579; ξ1 = –2.7411, ξ2 = –1.3502, ξ3 = 3.1316, ξ4 = 5.7604, ξ5 = 8.0532, ξ6 =
13.1461. Let α′

1 = –10,α′
2 = –12,α′

3 = –5,α′
4 = –14,β ′

1 = –4,β ′
2 = –2,β ′

3 = –2,β ′
4 = –7,γ ′

1 =
9,γ ′

2 = –33,γ ′
3 = –3,γ ′

4 = 7, δ′
1 = 3, δ′

2 = –15, δ′
3 = –1, δ′

4 = 1, n = 1. Given an interval I =
[–2, 3] and a partition of it: –2 < 0 < 1 < 3. Define the piecewise polynomial function w̄
on I by

w̄(t) =

⎧
⎪⎪⎨

⎪⎪⎩

0.7624t2 – 0.1236t – 0.1401, t ∈ [–2, 0),

0, t ∈ [0, 1),

–3.2811t2 + 12.3742t – 9.0306, t ∈ [1, 3].

Then we can obtain the fourth-order eigenparameter-dependent boundary value prob-
lem:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(p̄y′′)′′ + q̄y = λw̄y, on I = [–2, 3],

(–10λ + 483.2857)y(–2) + (–12λ + 1587.3571)y′(–2)

+ (–5λ + 36.1429)(py′)(–2) + (–14λ + 104.1429)(py′′)′(–2) = 0,

(–4λ + 29.7143)y(–2) + (–2λ + 81.1429)y′(–2)

+ (–2λ + 6.8571)(py′)(–2) + (–7λ + 22.8571)(py′′)′(–2) = 0,

(9λ – 522.0000)y(3) + (–33λ + 1380.9000)y′(3)

+ (–3λ + 76.5000)(py′′)(3) + (7λ – 96.4500)(py′′)′(3) = 0,

(3λ – 14.0000)y(3) + (–15λ + 74.9667)y′(3)

+ (–λ + 5.5000)(py′′)(3) + (λ – 6.1500)(py′′)′(3) = 0,

where the piecewise polynomial functions r̄ = 1
p̄ and q̄ on I = [–2, 3] are as follows:

r̄(t) =

⎧
⎪⎪⎨

⎪⎪⎩

0, t ∈ [–2, 0),

211.2683t2 – 201.4703t + 30.9248, t ∈ [0, 1),

0, t ∈ [1, 3].

q̄(t) =

⎧
⎪⎪⎨

⎪⎪⎩

8.5514t2 – 9.2826t – 12.0102, t ∈ [–2, 0),

0, t ∈ [0, 1),

–80.7883t2 + 325.0663t – 291.8755, t ∈ [1, 3].
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Hence the spectrum of the reconstructed fourth-order eigenparameter-dependent BVPs
(1.1), (1.2) is

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

σ (�α, �α′, �β , �β ′, �γ , �γ ′, �δ, �δ′)

= {–3.8397, –3.0377, –0.0540, 2.5830, 5.5791, 7.0055, 11.3818, 15.3820},
σ (0, �α′, 0, �β ′, �γ , �γ ′, �δ, �δ′)

= {–2.7411, –1.3502, 3.1316, 5.7604, 8.0532, 13.1461}.
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