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Abstract
A stochastic susceptible–infectious–recovered epidemic model with temporary
immunity and media coverage is proposed. The effects of Lévy jumps on the
dynamics of the model are considered. A unique global positive solution for the
epidemic model is obtained. Sufficient conditions are derived to guarantee that the
epidemic disease is extinct and persistent in the mean. The threshold behavior is
discussed. Numerical simulations are given to verify our theoretical results.
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1 Introduction
Epidemics have a huge impact on human life, and controlling and eradicating infectious
diseases have been a vital problem that needs to be urgently solved in eco-epidemiology
research. Mathematical modeling has become an important tool in analyzing the spread
and control of infectious diseases. In implementing measures for preventing the spread of
diseases, educating people about the correct preventions of diseases through mass media
and other platforms at the first opportunity is particularly important [1]. The coverage
of epidemics in the media, such as through television, newspaper, and online networks,
gives an overview of the risk level and the relative need for precautions in risk areas and
encourages the public to take precautionary measures, such as wearing masks, avoiding
public places, and frequent hand washing [2]. Thus, in the past few years, many epidemic
models integrating the effects of media coverage have been presented and analyzed [3–11].

Temporary immunity is another important phenomenon in the transmission of epi-
demic diseases, such as influenza, Chlamydia trachomatis, and Salmonella infection [12].
In the case of temporary immunity, an individual gets a fleeting immunity to a disease
after recovery and then becomes susceptible again after some period. For example, after
recovery from influenza, there is a long immunity to the same strain of the disease but no
immunity against other strains. Many scholars have also paid close attention to the effects
of temporary disease immunity on epidemic models [13–18]; however, only a few have
considered the effects of media coverage and temporary immunity simultaneously.

On the basis of the aforementioned discussion, a deterministic susceptible–infectious–
recovered (SIR) model that considered media coverage and temporary immunity is pro-

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other
third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

https://doi.org/10.1186/s13662-020-2521-6
http://crossmark.crossref.org/dialog/?doi=10.1186/s13662-020-2521-6&domain=pdf
http://orcid.org/0000-0002-9713-0922
mailto:zhyan8401@163.com


Liu et al. Advances in Difference Equations         (2020) 2020:70 Page 2 of 15

posed as follows:

⎧
⎪⎪⎨

⎪⎪⎩

dS
dt = Λ – μS(t) – (β1 – β2I

α+I )S(t)I(t) + γ I(t – τ )e–μτ ,
dI
dt = (β1 – β2I

α+I )S(t)I(t) – (μ + γ )I(t),
dR
dt = γ I(t) – γ I(t – τ )e–μτ – μR(t),

(1.1)

where Λ is the recruitment rate, μ denotes the natural death rate, and γ is the treatment
rate. τ > 0 is the length of temporary immunity period, which denotes the time from recov-
ery to becoming susceptible again. The term I(t –τ )e–μτ reflects the fact that an individual
has survived from natural death in a recovery pool before becoming susceptible again [13].
β = β1 – β2I(t)

α+I(t) denotes the effective contact rate, here, β1 represents the maximal effective
contact rate between susceptible and infected individuals, β2I(t)

α+I(t) is the maximal reduced
effective contact rate as influenced by mass media alert [5, 6]. α > 0 is the effect of media
coverage on contact transmission, and β1 > β2.

On the other hand, epidemic models are inevitably subject to environmental noise and
it is necessary to reveal how the environmental noise affects the epidemic model. In the
natural world, there are various types of random noises, such as the famous white noise,
Lévy jump noise which considers the motivation that the continuity of solutions may be
broken under severe environmental perturbations, such as avian influenza, severe acute
respiratory syndrome, volcanic eruptions, earthquakes, hurricanes [19–21] and a jump
process should be introduced to prevent and control diseases, and so on. In this paper,
we extend the deterministic system (1.1) to the Brown motion with Lévy jumps, J(t) =
∫ t

0
∫

Y γ (u)Ñ(ds, du), and mainly consider its effects on the effective contact rate parameter
β = β1 – β2I

α+I such that

β → β + σ Ḃ(t) + J̇(t).

Considering the effects of temporary immunity and media coverage on a stochastic
susceptible–infectious–recovered (SIR) epidemic model driven by Lévy noise:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS = [Λ – μS(t) – (β1 – β2I
α+I )S(t)I(t) + γ I(t – τ )e–μτ ] dt

– (β1 – β2I
α+I )S(t)I(t)(σ dB(t) +

∫

Y γ (u)Ñ(dt, du)),

dI = [(β1 – β2I
α+I )S(t)I(t) – (μ + γ )I(t)] dt + (β1 – β2I

α+I )S(t)I(t)(σ dB(t)

+
∫

Y γ (u)Ñ(dt, du)),

dR = [γ I(t) – γ I(t – τ )e–μτ – μR(t)] dt.

(1.2)

The initial conditions are

S(0) = S0 ≥ 0, I(ξ ) = φ1(ξ ) ≥ 0,

φ1(0) > 0, ξ ∈ [–τ , 0],φ1 ∈ C
(
[–τ , 0];R+

)
,

(1.3)

where τ > 0 is the length of the temporary immunity period, which covers the time from
recovery phase to being the susceptible ones again; and σ 2(t) denotes the intensity of
white noise. B(t) is a standard Brownian motion that is defined on a complete proba-
bility space (Ω ,F ,P) with filtration {Ft}t∈R+ satisfying the usual conditions ({Ft}t∈R+ is
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right continuous and increasing while F0 contains all P-null sets) [22–26]. N is a Pois-
son counting measure with compensator Ñ and characteristic measure λ on a measurable
subset Y of (0,∞) which satisfies λ(Y) < ∞; λ is assumed to be a Lévy measure, such that
Ñ(dt, du) = N(dt, du) –λÑ(du) dt; γ : Y×Ω →R is bounded and continuous with respect
to λ and is B(Y) ×Ft-measurable, where B(Y) is a σ -algebra with respect to the set Y. In
this paper, B and N are assumed to be independent of each other.

As the first two equations of models (1.2) do not depend on the third one, then the
following equations should be considered:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dS = [Λ – μS(t) – (β1 – β2I
α+I )S(t)I(t) + γ I(t – τ )e–μτ ] dt

– (β1 – β2I
α+I )S(t)I(t)(σ dB(t) +

∫

Y γ (u)Ñ(dt, du)),

dI = [(β1 – β2I
α+I )S(t)I(t) – (μ + γ )I(t)] dt + (β1 – β2I

α+I )S(t)I(t)(σ dB(t)

+
∫

Y γ (u)Ñ(dt, du)).

(1.4)

Moreover, we make the following assumption.

Assumption (H1) γ (u) is a bounded function, 1 + γ (u) > 0 and |Λ
μ
γ (u)| ≤ δ, u ∈ Y.

Remark 1 This assumption means that the intensities of Lévy noises are not infinite.

The outline of this paper is as follows. In Sect. 2, a unique positive solution for system
(1.4) is obtained. The conditions are derived for the extinction and persistence in the mean
of diseases. The threshold behavior is obtained and discussed. In Sect. 3, some numerical
simulations are presented to verify our theoretical results of system (1.4).

2 Main results
2.1 Existence and uniqueness of the global solution
In the following, we discuss the existence and uniqueness of the positive solution of system
(1.4).

Theorem 2.1 If Assumption (H1) holds, then, for any initial value (S(0), I(0)) ∈ L1([–τ , 0];
R

2
+), a unique solution (S(t), I(t)) ∈R

2
+ of system (1.4) exists on t ≥ –τ and the solution will

remain in R
2
+ with probability one.

Proof According to the local Lipschitz condition of system (1.4), we see that, for any initial
value X0 = (S(0), I(0)) ∈ R

2
+, a unique local solution (S(t), I(t)) exists on [–τ , τe), herein,

τe represents the explosion time. To prove that the solution is global, one is required to
obtain τe = ∞ a.s. Then we suppose that k0 ≥ 1 is sufficiently large such that S(0) and
I(0) lie within the interval [1/k0, k0]. For each integer k > k0, we define the stopping time
τk = inf{t ∈ [–τ , τe] : S(t) /∈(1/k, k), or I(t) /∈(1/k, k)}. Then τk increases as k → ∞. Denote
τ∞ = limk→+∞τk , thus τ∞ ≤ τe. In the following, we need to show that τ∞ = ∞. If not,
there are constants T > 0 and ε ∈ (0, 1) satisfying P{τ∞ < ∞} > ε. Thus, an integer k1 ≥ k0

exists such that P{τk ≤ T} ≥ ε, for all k > k1. Construct a C2-function V : R2
+ →R+ by

V (S, I) =
(

S – a – a ln
S
a

)

+ (I – 1 – ln I) + γ e–μτ

∫ t

t–τ

I(s) ds, (2.1)
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where a is a constant that will be given later. By virtue of Itô’s formula, we have

dV (S, I) =
(

1 –
a
S

)[(

Λ – μS –
(

β1 –
β2I
α + I

)

SI + γ I(t – τ )e–μτ

)

dt

– σSI
(

β1 –
β2I
α + I

)

dB1(t)
]

+
aσ 2S2I2

2S2

(

β1 –
β2I
α + I

)2

dt

– a
∫

Y

[

ln

(

1 – γ (u)
(

β1 –
β2I
α + I

)

I
)

+ γ (u)I
(

β1 –
β2I
α + I

)]

λ(du) dt

–
∫

Y

[

a ln

(

1 – γ (u)
(

β1 –
β2I
α + I

)

I
)

+ γ (u)SI
(

β1 –
β2I
α + I

)]

Ñ(dt, du)

+
(

1 –
1
I

)[((

β1 –
β2I
α + I

)

SI – (μ + γ )I
)

dt + σ

(

β1 –
β2I
α + I

)

SI dB(t)
]

–
∫

Y

[

ln

(

1 + γ (u)
(

β1 –
β2I
α + I

)

S
)

– γ (u)
(

β1 –
β2I
α + I

)

S
]

λ(du) dt

+
σ 2S2I2

2I2

(

β1 –
β2I
α + I

)2

dt

+
∫

Y

[

γ (u)
(

β1 –
β2I
α + I

)

SI – ln

(

1 + γ (u)
(

β1 –
β2I
α + I

)

S
)]

Ñ(dt, du)

+ γ Ie–μτ dt – γ I(t – τ )e–μτ dt

=
(

1 –
a
S

)[(

Λ – μS –
(

β1 –
β2I
α + I

)

SI + γ I(t – τ )e–μτ

)]

dt

+
[

aσ 2S2I2

2S2

(

β1 –
β2I
α + I

)2

– a
∫

Y

[

ln

(

1 – γ (u)
(

β1 –
β2I
α + I

)

I
)

+ γ (u)
(

β1 –
β2I
α + I

)

I
]

λ(du)
]

dt

+
[(

1 –
1
I

)((

β1 –
β2I
α + I

)

SI – (μ + γ )I
)

+
σ 2S2I2

2I2

(

β1 –
β2I
α + I

)2]

dt

–
∫

Y

[

ln

(

1 + γ (u)
(

β1 –
β2I
α + I

)

S
)

– γ (u)
(

β1 –
β2I
α + I

)

S
]

λ(du) dt

+ γ Ie–μτ2 – γ I(t – τ2)e–μτ2 ) dt

– σ

(

1 –
a
S

)(

β1 –
β2I
α + I

)

SI dB(t) + σ

(

1 –
1
I

)(

β1 –
β2I
α + I

)

SI dB(t)

–
∫

Y

[

a ln

(

1 – γ (u)
(

β1 –
β2I
α + I

)

I
)

+ γ (u)SI
(

β1 –
β2I
α + I

)]

Ñ(dt, du)

+
∫

Y

[

γ (u)
(

β1 –
β2I
α + I

)

SI – ln

(

1 + γ (u)
(

β1 –
β2I
α + I

)

S
)]

Ñ(dt, du)

= LV (S, I) dt – σ

(

1 –
a
S

)(

β1 –
β2I
α + I

)

SI dB(t)

+ σ

(

1 –
1
I

)(

β1 –
β2I
α + I

)

SI dB(t)

–
∫

Y

[

a ln

(

1 – γ (u)
(

β1 –
β2I
α + I

)

I
)

+ γ (u)SI
(

β1 –
β2I
α + I

)]

Ñ(dt, du)

+
∫

Y

[

γ (u)
(

β1 –
β2I
α + I

)

SI – ln

(

1 + γ (u)
(

β1 –
β2I
α + I

)

S
)]

Ñ(dt, du). (2.2)
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Here, LV : R2
+ →R+ is defined as follows:

LV (S, I) =
(

1 –
a
S

)[(

Λ – μS –
(

β1 –
β2I
α + I

)

SI + γ I(t – τ )e–μτ

)]

+
[

aσ 2S2I2

2S2

(

β1 –
β2I
α + I

)2

– a
∫

Y

[

ln

(

1 – γ (u)
(

β1 –
β2I
α + I

)

I
)

+ γ (u)
(

β1 –
β2I
α + I

)

I
]

λ(du)
]

+
[(

1 –
1
I

)((

β1 –
β2I
α + I

)

SI – (μ + γ )I
)

+
σ 2S2I2

2I2

(

β1 –
β2I
α + I

)2]

–
∫

Y

[

ln

(

1 + γ (u)
(

β1 –
β2I
α + I

)

S
)

– γ (u)
(

β1 –
β2I
α + I

)

S
]

λ(du)

+ γ Ie–μτ2 – γ I(t – τ2)e–μτ2

≤ (Λ + μa + μ + γ ) –
aΛ

S
+

[

a
β2I
α + I

– μ – γ
(
1 – e–μτ

)
]

I

+
aσ 2S2I2

2S2

(

β1 –
β2I
α + I

)2

+
σ 2S2I2

2I2

(

β1 –
β2I
α + I

)2

– a
∫

Y

[

ln

(

1 – γ (u)
(

β1 –
β2I
α + I

)

I
)

+ γ (u)
(

β1 –
β2I
α + I

)

I
]

λ(du)

–
∫

Y

[

ln

(

1 + γ (u)
(

β1 –
β2I
α + I

)

S
)

– γ (u)
(

β1 –
β2I
α + I

)

S
]

λ(du)

≤ (Λ + μa + μ + γ ) –
aΛ

S
+

[

a
β2I
α + I

– μ – γ
(
1 – e–μτ

)
]

I

+
aσ 2S2I2

2S2

(

β1 –
β2I
α + I

)2

+
σ 2S2I2

2I2

(

β1 –
β2I
α + I

)2

+ a
∫

Y
ϕ1λ(du) +

∫

Y
ϕ2λ(du), (2.3)

where ϕ1 = – ln(1 – γ (u)(β1 – β2I
α+I )I) – γ (u)(β1 – β2I

α+I )I , ϕ2 = – ln(1 + γ (u)(β1 – β2I
α+I )S) +

γ (u)(β1 – β2I
α+I )S and choose a = μ+γ (1–e–μτ )

β2
.

On the other hand, notice that d(S + I + γ e–μt ∫ t
t–τ

eμSI(s) ds) = [Λ – γ I – μ(S + I +
γ e–μt ∫ t

t–τ
eμSI(s) ds)]dt. Then

S + I + γ e–μt
∫ t

t–τ

eμSI(s) ds

≤ Λ

μ
+ e–μt

[

S(0) + I(0) + γ

∫ 0

–τ

eμSI(s) ds –
Λ

μ

]

≤
⎧
⎨

⎩

Λ
μ

, if S(0) + I(0) + γ
∫ 0

–τ
eμSI(s) ds ≤ Λ

μ
,

S(0) + I(0) + γ
∫ 0

–τ
eμSI(s) ds, if S(0) + I(0) + γ

∫ 0
–τ

eμSI(s) ds > Λ
μ

� K .
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Then applying the Taylor formula to the function ln(1 – t) where t = (β1 – β2I
α+I )Iγ (u) and

Assumption (H1) to ϕ1, we have

ϕ1 = – ln

(

1 – γ (u)
(

β1 –
β2I
α + I

)

I
)

– γ (u)
(

β1 –
β2I
α + I

)

I

= γ (u)
(

β1 –
β2I
α + I

)

I +
((β1 – β2I

α+I )Iγ (u))2

2(1 – θγ (u)(2β1 – β2)I)2 – γ (u)
(

β1 –
β2I
α + I

)

I

≤ (2β1 – β2)2δ2

2(1 – (2β1 – β2)δ)2 ,

where θ ∈ (0, 1) is an arbitrary number. Similarly,

ϕ2 = –
∫

Y

[

ln

(

1 + γ (u)
(

β1 –
β2I
α + I

)

S
)

– γ (u)
(

β1 –
β2I
α + I

)

S
]

λ(du)

≤ (2β1 – β2)2δ2

2(1 – (2β1 – β2)δ)2 .

Then

LV (S, I) ≤ (Λ + μa + μ + γ ) +
aσ 2K2

2
(2β1 – β2)2 +

σ 2K2

2
(2β1 – β2)2

+
(a + 1)δ2

2
(2β1 – β2)2

2(1 – δ(2β1 – β2))2 � K̃ .

Therefore, we obtain

dV (S, I) ≤ K̃dt – σ

(

1 –
a
S

)(

β1 –
β2I
α + I

)

SI dB(t) + σ

(

1 –
1
I

)(

β1 –
β2I
α + I

)

SI dB(t)

–
∫

Y

[

a ln

(

1 – γ (u)
(

β1 –
β2I
α + I

)

I
)

+ γ (u)SI
(

β1 –
β2I
α + I

)]

Ñ(dt, du)

+
∫

Y

[

γ (u)
(

β1 –
β2I
α + I

)

SI – ln

(

1 + γ (u)
(

β1 –
β2I
α + I

)

S
)]

Ñ(dt, du). (2.4)

Taking the integral on the above inequality from 0 to τk ∧ T ,

∫ τk∧T

0
dV (S, I)

≤
∫ τk∧T

0
K̃dt –

∫ τk∧T

0
σ

(

1 –
a
S

)(

β1 –
β2I
α + I

)

SI dB(t)

+
∫ τk∧T

0
σ

(

1 –
1
I

)(

β1 –
β2I
α + I

)

SI dB(t)

–
∫ τk∧T

0

∫

Y

[

a ln

(

1 – γ (u)
(

β1 –
β2I
α + I

)

I
)

+ γ (u)SI
(

β1 –
β2I
α + I

)]

Ñ(ds, du)

+
∫ τk∧T

0

∫

Y

[

γ (u)
(

β1 –
β2I
α + I

)

SI – ln

(

1 + γ (u)
(

β1 –
β2I
α + I

)

S
)]

Ñ(ds, du),

(2.5)
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where τk ∧ T = min{τk , T}. Consequently,

EV
(
S(τk ∧ T), I(τk ∧ T)

) ≤ V
(
S(0), I(0)

)
+ K̃E(τk ∧ T) ≤ V

(
S(0), I(0)

)
+ K̃T .

Let Ωk = {τk ≤ T}, then P(Ωk) ≥ ε. For each ω ∈ Ωk , S(τk ,ω), or I(τk ,ω), equals either k or
1/k, and

V
(
S(τk ,ω), I(τk ,ω)

) ≥ min{k – 1 – ln k, 1/k – 1 + ln k}.

Thus,

V
(
S(0), I(0)

)
+ KT ≥ E

[
1Ωk (ω)V

(
S(ω), I(ω)

)]

≥ ε min{k – 1 – ln k, 1/k – 1 + ln k}, (2.6)

where 1Ωk is the indicator function of Ωk . Letting k → ∞, we obtain the contradiction.
The proof is completed. �

2.2 The extinction of diseases of system (1.4) with Lévy jumps
In this section, we define

R0 =
Λ(2β1 – β2)
μ(μ + γ )

,

and denote 〈x(t)〉 = 1
t
∫ t

0 x(s) ds, then the extinction of the disease will be discussed in the
following.

Theorem 2.2 Suppose (S(t), I(t)) be any solution of system (1.4) with an initial value (1.3).
Thus:

(1) if σ̂ 2 > (2β1–β2)2

4(μ+γ ) , then

lim sup
t→∞

ln I(t)
t

≤ (2β1 – β2)2

4σ̂ 2 – (μ + γ ) < 0 a.s.;

(2) if R0 – 1 < Λ2σ̂ 2

μ2(μ+γ ) and σ̂ 2 ≤ μ(2β1–β2)
2Λ

, then

lim sup
t→∞

ln I(t)
t

≤ (μ + γ )
(

R0 – 1 –
Λ2σ̂ 2

μ2(μ + γ )

)

< 0 a.s.,

where σ̂ 2 = β2
1 α2σ 2

2(α+N0)2 +
∫

Y
γ 2(u) β1α

α+N0
2(1+(2β1–β2)δ)2 λ(du).

Proof Applying Itô’s formula, we derive that

d lnI(t) =
[(

β1 –
β2I
α + I

)

S – (μ + γ ) –
σ 2S2

2

(

β1 –
β2I
α + I

)2]

dt

+ σ

(

β1 –
β2I
α + I

)

S dB(t)
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+
∫

Y

[

ln

(

1 +
(

β1 –
β2I
α + I

)

Sγ (u)
)

–
(

β1 –
β2I
α + I

)

Sγ (u)
]

λ(du)

+
∫

Y
ln

(

1 +
(

β1 –
β2I
α + I

)

Sγ (u)
)

Ñ(dt, du). (2.7)

Then

ln I(t)
t

=
ln I(0)

t
+

〈(

β1 –
β2I
α + I

)

S
〉

– (μ + γ )

–
σ 2

2

〈(

β1 –
β2I
α + I

)2

S2
〉

+
M1(t)

t
+

M2(t)
t

+
1
t

∫ t

0

∫

Y

[

ln

(

1 +
(

β1 –
β2I
α + I

)

Sγ (u)
)

–
(

β1 –
β2I
α + I

)

Sγ (u)
]

λ(du) ds

≤ (2β1 – β2)〈S〉 – (μ + γ ) –
β2

1α2

2(α + N0)2 σ 2〈S2〉 +
M1(t)

t
+

M2(t)
t

+
ln I(0)

t

+
∫

Y

γ 2(u) β1α

α+N0

2(1 + (2β1 – β2)δ)2 λ(du)
〈
S2〉. (2.8)

Here, M1(t) =
∫ t

0 σ (β1 – β2I
α+I )S dB(s) and M2(t) =

∫ t
0
∫

Y ln(1 + γ (u)(β1 – β2I
α+I )S)Ñ(ds, du).

On the other hand, we have

d
(

S + I + γ e–μτ

∫ t

t–τ

I(s) ds
)

=
[
Λ – μS –

(
μ + γ

(
1 – e–μτ

))
I
]

dt. (2.9)

Then

S + I + γ e–μτ
∫ t

t–τ
I(s) ds

t
–

S(0) + I(0) + γ e–μτ
∫ 0

–τ
I(s) ds

t

= Λ – μ
〈
S(t)

〉
–

(
μ + γ

(
1 – e–μτ

))〈
I(t)

〉
. (2.10)

Therefore,

〈
S(t)

〉
=

Λ

μ
–

μ + γ (1 – e–μτ )
μ

〈
I(t)

〉
– φ(t), (2.11)

and here, φ(t) = S+I+γ e–μτ
∫ t

t–τ I(s) ds
μt – S(0)+I(0)+γ e–μτ

∫ 0
–τ I(s) ds

μt , thus limt→∞ φ(t) = 0. According
to (2.11), we obtain

ln I(t)
t

≤ (2β1 – β2)
〈
S
(
t–)〉

– (μ + γ ) – σ̂ 2〈S2(t–)〉
+

M1(t)
t

+
M2(t)

t
+

ln I(0)
t

≤ (2β1 – β2)
[

Λ

μ
–

μ + γ (1 – e–μτ )
μ

〈
I(t)

〉
– φ(t)

]

– (μ + γ )

– σ̂ 2
[

Λ

μ
–

μ + γ (1 – e–μτ )
μ

〈
I(t)

〉
– φ(t)

]2

+
ln I(0)

t
+

M1(t) + M2(t)
t

= (μ + γ )
(

Λ(2β1 – β2)
μ(μ + γ )

– 1 –
Λ2σ̂ 2

μ2(μ + γ )

)
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–
μ + γ (1 – e–μτ )

μ

(

(2β1 – β2) – 2σ̂ 2 Λ

μ

)
〈
I(t)

〉

+
M1(t)

t
+

M2(t)
t

+ ψ(t), (2.12)

where

ψ(t) = –(2β1 – β2)φ(t) + 2σ̂ 2 Λ

μ
φ(t) – σ̂ 2

(
μ + γ (1 – e–μτ )

μ

〈
I(t)

〉
+ φ(t)

)2

+
ln I(0)

t
.

In addition,

〈M1, M1〉t = σ 2
∫ t

0

(

β1 –
β2I
α + I

)2

S2 ds,

〈M2, M2〉t =
∫ t

0

∫

Y

(

ln

(

1 +
(

β1 –
β2I
α + I

)

Sγ (u)
))2

λ(du) ds,

and

ln

(

1 +
β1α

α + N0
θ

)

≤ ln

(

1 +
(

β1 –
β2I
α + I

)

Sγ (u)
)

≤ ln
(
1 + (2β1 – β2)θ

)
.

Then we have

〈M2, M2〉t ≤ max

{
(
ln

(
1 + (2β1 – β2)θ

))2,
(

ln

(

1 +
β1α

α + N0
θ

))2}

λ(Y)t

and

lim sup
t→∞

〈M1, M1〉t

t
= σ 2 lim sup

t→∞
1
t

∫ t

0

(

β1 –
β2I
α + I

)2

S2ds ≤ σ 2(2β1 – β2)2
(

Λ

μ

)2

< ∞ a.s.,

lim sup
t→∞

〈M2, M2〉t

t
≤ max

{
(
ln

(
1 + (2β1 – β2)θ

))2,
(

ln

(

1 +
β1α

α + N0
θ

))2}

λ(Y)

< ∞, a.s.

Thus,

lim sup
t→∞

Mi(t)
t

= 0 (i = 1, 2) and lim sup
t→∞

ψ(t) = 0. (2.13)

By virtue of the condition (2) and (2.12), we obtain

lim sup
t→∞

ln I(t)
t

≤ (μ + γ )
(

R0 – 1 –
Λ2σ̂ 2

μ2(μ + γ )

)

< 0 a.s.

Moreover, according to (2.12), we have

ln I(t)
t

≤ (2β1 – β2)
〈
S
(
t–)〉

– (μ + γ ) – σ̂ 2〈S
(
t–)〉2 +

M1(t)
t

+
M2(t)

t
+

ln I(0)
t

= –σ̂ 2
[
〈
S
(
t–)〉2 –

(2β1 – β2)
σ̂ 2

〈
S
(
t–)〉

]

– (μ + γ ) +
M1(t)

t
+

M2(t)
t

+
ln I(0)

t
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= –σ̂ 2
(

〈
S
(
t–)〉

–
(2β1 – β2)

2σ̂ 2

)2

+
(2β1 – β2)2

4σ̂ 2 – (μ + γ )

+
M1(t)

t
+

M2(t)
t

+
ln I(0)

t

≤ –(μ + γ ) +
(2β1 – β2)2

4σ̂ 2 +
M1(t)

t
+

M2(t)
t

+
ln I(0)

t
. (2.14)

According to the condition (1) and (2.14), we obtain

lim sup
t→∞

ln I(t)
t

≤ –(μ + γ ) +
(2β1 – β2)2

4σ̂ 2 < 0, a.s.

That is, limt→∞ I(t) = 0. Moreover, we have

lim
t→∞

〈
S(t)

〉
=

Λ

μ
–

μ + γ (1 – e–μτ )
μ

lim
t→∞

〈
I(t)

〉
– lim

t→∞φ(t) =
Λ

μ
.

The conclusion is proven. �

2.3 Persistence in the mean of system (1.4)
Now we are in a position to discuss the persistence in the mean of the disease and before
that some notations are presented in the following.

For convenience, we denote

R1 =
β1αΛ

(μ + γ )μ(α + N0)
,

σ̃ =
σ 2

2

(
β1α

α + N0

)2

N2
0 +

∫

Y

(2β1 – β2)2δ2

2(1 – δ(2β1 – β2))2 λ(du),

λ∗ = (μ + γ )
(

R0 – 1 –
σ̂ 2Λ2

μ2(μ + γ )

)

,

λ0 =
μ + γ (1 – e–μτ )

μ

(

(2β1 – β2) – 2σ̂ 2 Λ

μ

)

,

I∗ =
λ∗

λ0
, Ĩ∗ =

μ(α + N0)((μ + γ )(R1 – 1) – σ̃ )
β1α(μ + γ (1 – e–μτ ))

.

Theorem 2.3 Suppose that Assumption (H1) holds and R1 – 1 > σ̃ 2

μ+γ
, then, for the solution

(S(t), I(t)) of model (1.4), we have

lim sup
t→∞

〈
I(t)

〉 ≤ I∗, lim inf
t→∞

〈
I(t)

〉 ≥ Ĩ∗.

Proof By virtue of (2.12), we have

ln I(t)
t

≤ (μ + γ )
(

R0 – 1 –
Λ2σ̂ 2

μ2(μ + γ )

)

–
μ + γ (1 – e–μτ )

μ

(

(2β1 – β2) – 2σ̂ 2 Λ

μ

)
〈
I(t)

〉

+
M1(t)

t
+

M2(t)
t

+ ψ(t). (2.15)



Liu et al. Advances in Difference Equations         (2020) 2020:70 Page 11 of 15

Then

ln I(t) ≤ λ∗t – λ0

∫ t

0
I(s) ds + F(t), (2.16)

here, F(t) = M1(t) + M2(t) + ψ(t)t.
Considering limt→∞ F(t)

t = 0, then, for an arbitrary ζ > 0, there exist a T1 = T1(ω) > 0 and
a set Ωk such that F(t)

t ≤ ζ and P(Ωk) ≥ 1 – ζ for all t ≥ T1, ω ∈ Ωk . Let T̂ = max{T , T1},
then according to Lemma 2.2 and Theorem 3 in Ref. [19], we obtain

lim sup
t→∞

〈
I(t)

〉 ≤ λ∗

λ0
� I∗. (2.17)

On the other hand, by (2.8) and (2.11), we obtain

ln I(t)
t

=
〈(

β1 –
β2I
α + I

)

S
〉

– (μ + γ ) –
σ 2

2

〈(

β1 –
β2I
α + I

)2

S2
〉

+
M1(t)

t
+

M2(t)
t

+
ln I(0)

t

+
1
t

∫ t

0

∫

Y

[

ln(1 +
(

β1 –
β2I
α + I

)

Sγ (u) –
(

β1 –
β2I
α + I

)

Sγ (u)
]

λ(du) ds

≥ β1α

α + N0

〈
S(t)

〉
– (μ + γ ) – σ̃ +

M1(t)
t

+
M2(t)

t
+

ln I(0)
t

=
β1α

α + N0

[
Λ

μ
–

μ + γ (1 – e–μτ )
μ

〈
I(t)

〉
– φ(t)

]

– (μ + γ ) – σ̃ +
M1(t) + M2(t) + ln I(0)

t

= (μ + γ )
[

β1αΛ

μ(α + N0)(μ + γ )
– 1

]

– σ̃ –
β1α(μ + γ (1 – e–μτ ))

μ(α + N0)
〈
I(t)

〉

–
β1α

α + N0
φ(t) +

M1(t) + M2(t) + ln I(0)
t

= (μ + γ )[R1 – 1] – σ̃ –
β1α(μ + γ (1 – e–μτ ))

μ(α + N0)
〈
I(t)

〉
–

β1α

α + N0
φ(t)

+
M1(t) + M2(t) + ln I(0)

t
. (2.18)

As 0 < S + I ≤ N0, then we derive that –∞ < ln I(t) < ln(N0). Thus,

〈
I(t)

〉 ≥ μ(α + N0)
β1α(μ + γ (1 – e–μτ ))

(

(μ + γ )(R1 – 1) – σ̃

–
β1α

α + N0
φ(t) +

M1(t) + M2(t)
t

–
ln(N0) – ln I(0)

t

)

. (2.19)

By virtue of the conclusion limt→∞ φ(t) = 0, we derive that

lim inf
t→∞

〈
I(t)

〉 ≥ μ(α + N0)[(μ + γ )(R1 – 1) – σ̃ ]
β1α(μ + γ (1 – e–μτ ))

� Ĩ∗. (2.20)

This completes the proof. �
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3 Discussions and numerical simulations for system (1.4)
In this paper, we propose a stochastic SIR epidemic model that incorporate the effects of
temporary immunity and media coverage. Some theoretical results are obtained with the
influence of Lévy jumps. We prove that the system has a unique global solution at first.
Then the conditions for extinction and persistence of the disease is derived. The results
reveal that the intensity of Lévy noises can greatly influence the extinction and persistence
of the disease.

In the following, we give some numerical simulations to support our obtained theoret-
ical results of model (1.4) through the Milstein method [27] and Euler numerical approx-
imation [28].

Example 3.1 Choose the parameter values in model (1.2) as follows:

Λ = 0.6, β1 = 0.3, β2 = 0.2, μ = 0.15, γ = 0.2,

α = 1.8, γ (u) = 0.07, σ = 0.03, S(0) = 2,

I(0) = 0.5, Y = (0, +∞), λ(Y) = 1,

then we have

R1 = 1.064 > 1 +
σ̃ 2

μ + γ
= 1.0251,

and the condition of Theorem 2.3 is satisfied. Thus, the disease I is persistent with proba-
bility one and Fig. 1 confirms it. The red lines, the green lines and the blue lines are solu-
tions of system (1.4), the corresponding deterministic system and the system with white
noise, respectively.

Figure 1 The populations are persistent in the mean for system (1.4)
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Figure 2 The disease goes to extinction

Example 3.2 Let the parameters be as follows:

Λ = 0.3, β1 = 0.002, β2 = 0.001, μ = 0.6, γ = 0.1, α = 0.1,

σ = 0.3, γ (u) = 0.6, S(0) = 0.5, I(0) = 2, Y = (0, +∞), λ(Y) = 1,

then R0 = 0.0021 < 1 + Λ2σ̂ 2

μ2(μ+γ )
.= 1 and σ̂ 2 = 1.3023 ∗ 10–5 ≤ μ(2β1–β2)

2Λ
= 2.7 ∗ 10–4. Apply-

ing the conditions (2) in Theorem 2.2, we derive that the infective population I(t) will be
extinct with probability one (see Fig. 2).

Example 3.3 In model (1.4), set

Λ = 0.3, β1 = 0.002, β2 = 0.001, μ = 0.15, γ = 0.01, α = 0.01.

The initial value is (S(0), I(0)) = (0.5, 0.1). To show the effects of noise to the system (1.4),
two cases are considered as follows: (1) σ = 0.1, γ (u) = 0.1, (2) σ = 0.1, γ (u) = 0.7, and
we obtain Fig. 3, where the green lines, the blue lines the red lines, and the rose lines
denote solutions of the deterministic system, the system with white noise, system (1.4)
with γ (u) = 0.1 and γ (u) = 0.7, respectively. We derive that jumps have negative effects for
the prevailing of diseases (see Fig. 3).

At last, some interesting issues merit further investigations. In this paper, the threshold
behavior is discussed and two threshold expressions R0 and R1 are obtained. However, the
threshold value cannot be derived according to the complex expression of the contact rate
and it is an interesting issue left for further work. Moreover, in this paper, we consider the
effects of white noise and the Lévy jumps to the model behavior, however, if we also take
other perturbations, such as the regime-switching [29–31] to the proposal of epidemic
model, what will happen? We will also investigate this question in our future work.
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Figure 3 The effects of jumps to system (1.4)
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