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Abstract
In this paper, we are concerned with a class of quaternion-valued cellular neural
networks with time-varying transmission delays and leakage delays. By applying a
continuation theorem of coincidence degree theory and the Wirtinger inequality as
well as constructing a suitable Lyapunov functional, sufficient conditions are derived
to ensure the existence and global exponential stability of anti-periodic solutions via
direct approaches. Our results are completely new. Finally, numerical examples are
also provided to show the effectiveness of our results.
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1 Introduction
A quaternion, which was invented by Hamilton in 1843 [1], consists of a real and three
imaginary parts. The skew field of quaternion is denoted by

H :=
{

q = qR + iqI + jqJ + kqK}
,

where qR, qI , qJ , qK are real numbers and the three imaginary units i, j and k obey Hamil-
ton’s multiplication rules:

ij = –ji = k, jk = –kj = i, ki = –ik = j, i2 = j2 = k2 = –1

and the norm ‖q‖ =
√

q̄q =
√

qq̄ =
√

(qR)2 + (qI)2 + (qJ )2 + (qK )2, where q̄ = qR – iqI – jqJ –
kqK .

Due to the non-commutativity of quaternion multiplication, the investigation on quater-
nion is much harder than that on plurality. Fortunately, over the past 20 years, especially
in algebra area, quaternion has been a topic for the effective applications in the real world.
Also, a new class of differential equations named quaternion differential equations has
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been already applied successfully to the fields, such as quantum mechanics [2, 3], robotic
manipulation [4], fluid mechanics [5], differential geometry [6], communication problems
and signal processing [7–9], and neural networks [10–13]. Many scholars tried to shed
some light on the information about solutions of quaternion differential equations. For
example, the authors of [14] first started the research on the existence of periodic solu-
tions of one-dimensional first order periodic quaternion differential equation by using the
coincidence degree theory approach. Subsequently, the author of [15, 16] studied the exis-
tence of periodic solution of the quaternion Riccati equation with two-sided coefficients.
For more works related the problem of the existence of periodic solutions of the quater-
nion differential equations, we refer to [17, 18] and the references cited therein. As we
know, anti-periodic functions as a special class of the quasi-periodic functions are peri-
odic functions, but not all periodic functions are anti-periodic ones. However, up to date,
very few papers have been published on the existence of anti-periodic solutions of the
quaternion differential equations [19–21].

On the other hands, complex-valued neural networks (CVNNs) can be seen as an exten-
sion of real-valued neural networks (RVNNs). Naturally, CVNNs can be also generalized
to quaternion-valued neural networks (QVNNs). In fact, CVNNs employing multi-state
activation functions can deal with multi-level information, and have often been applied
to the storage of image data [22–27]. QVCNNs can deal with multi-level information,
and require only half the connection weight parameters of CVNNs [28]. Moreover, com-
pared with RVNNs and CVNNs, QVNNs perform more prominently when it comes to
geometrical transformations, like 2D affine transformations or 3D affine transformations.
3D geometric affine transformations can be represented efficiently and compactly based
on QVNNs, especially spatial rotation [29]. It is well known that in the design and imple-
mentation of neural networks, the dynamics of neural networks plays a very important
role. Recently, the study of QVNNs has received much attention of many scholars and
some results about dynamical behaviors of QVNNs have been obtained. However, it is
well known that quaternion multiplication does not meet the commutative law, so the re-
search on quaternion is much difficult than that on plurality. Besides, the methods and
techniques for analyzing CVNNs or RVNNs cannot be directly applied to study QVNNs.
In order to avoid the non-commutativity of quaternion multiplication, two usually feasi-
ble methods are to decompose the QVNN into four real-valued or two complex-valued
systems based on Hamilton’s multiplication rules or the plural decomposition property
of quaternion. For example, by decomposing QVNNs into four real-valued systems, in
[30], the author dealt with the problem of robust stability for QVNNs with leakage delay,
discrete delay and parameter uncertainties; in [31], the global exponential stability for re-
current neural networks with asynchronous time delays is investigated in the quaternion
field; in [32], by using Mawhin’s continuation theorem of coincidence degree theory and
constructing a suitable Lyapunov function, the existence and global exponential stability
of periodic solutions for quaternion-valued cellular neural networks with time-varying
delays was established; in [33], the existence and global exponential stability of pseudo
almost periodic solutions for neutral type quaternion-valued neural networks with de-
lays in the leakage term on time scales was studied by using the exponential dichotomy
method and Lyapunov function method; by decompose QVNNs into two complex-valued
systems, in [10], some sufficient conditions on the global μ-stability of the QVNNs with
unbounded time-varying delays was obtained, in [34], some sufficient conditions on the
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existence, uniqueness, and global asymptotical stability of the equilibrium point are de-
rived for the continuous-time QVNNs and their discrete-time analogs, respectively.

Moreover, as far as we know, in all known results about the dynamics of quaternion-
valued neural networks, the coefficients of the leakage terms in the quaternion-valued
neural networks are assumed to be real numbers.

Besides, among all dynamical behaviors of neural networks, the existence and stability
of anti-periodic solutions play a key role in designing and implementation of neural net-
works and it has been attracting the interest of many researchers, we refer to [35–38] and
references therein. However, there are only few papers that consider the problems of anti-
periodic solutions for QVNNs [19–21]. Thus, it is worth investigating the existence and
stability of anti-periodic solutions of QVNNs.

Motivated by the above discussions and considering that various time delays may change
the dynamics of a system, in this paper, we are concern with the following quaternion-
valued neural network with time-varying transmission delays and leakage delays:

ẋp(t) = –ap(t)xp
(
t – ηp(t)

)
+

n∑

q=1

bpq(t)fq
(
xq(t)

)

+
n∑

q=1

cpq(t)gq
(
xq

(
t – τpq(t)

))
+ Qp(t), (1)

where p = 1, 2, . . . , n, xp(t) ∈ H corresponds to the state of the pth unit at time t,
fq(xq(t)), gq(xq(t – τpq(t)) ∈ H denotes the output of the qth unit at time t and t – τpq(t)),
bpq(t), cpq(t) ∈ H denote the strength of qth unit on pth unit at time t, respectively,
Qp(t) ∈H is external input on the pth at time t, τpq(t) ≥ 0 corresponds to the transmission
delay along the axon of the qth unit on the pth unit at time t, ap(t) ∈ Q represents the
coefficient of the leakage terms, ηp(t) ≥ 0 is the delay in the leakage terms.

The initial value of system (1) is given by

xp(s) = ϕp(s) ∈H, s ∈ [–τ , 0],

where τ = max1≤p,q≤n supt∈[0,T]{τpq(t),ηp(t)}.
Our main purpose of this paper is by applying a continuation theorem of coincidence

degree theory and the Wirtinger inequality as well as constructing a suitable Lyapunov
functional to study the existence and global exponential stability of anti-periodic solutions
via a direct method. That is, we do not decompose system (1) into real value systems or
complex value systems, but study quaternion-valued system (1) directly. Our results are
completely new and our methods are different from the previous ones, and can be used to
study other types of QVNNs.

This paper is organized as follows. In Sect. 2, we recall some basic definitions and lem-
mas. In Sect. 3, the existence of anti-periodic solutions of (1) is discussed based on the
coincidence degree and the Wirtinger inequality. In Sect. 4, the global exponential stabil-
ity of anti-periodic solutions of (1) is discussed by constructing a suitable Lyapunov func-
tional. In Sect. 5, two numerical examples are given to demonstrate the obtained results.
In Sect. 6, a brief conclusion is given.
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2 Preliminaries and lemmas
In this section, we introduce some definitions and recall some lemmas.

Definition 2.1 A function f : R → H is called a T-periodic function if for all t ∈ R, f (t +
T) = f (t).

Definition 2.2 A function f : R → H is called a T-anti-periodic function if for all t ∈ R,
f (t + T) = –f (t).

Remark 2.1 From the definitions above, if f = f R + if I + jf J + kf K : R → H, where
f R, f I , f J , f K : R → R, then we see that if f is a T-periodic function, then for every l =
R, I, J , K , f l is a T-periodic function, and that if f is a T-anti-periodic function, then for
every l = R, I, J , K , f l is a T-anti-periodic function.

Lemma 2.1 ([39]) Let X,Y be two Bananch spaces, and let L : D(L) ⊂ X → Y be a linear
operator, N : X →Y is continuous. Assume that L is one-to-one and � := L–1N is compact.
Furthermore, assume there exists a bounded and open subset Ω ∈ X with 0 ∈ Ω such that
the equation Lx = λNx has no solutions in ∂Ω ∩ D(L) for any λ ∈ (0, 1). Then the problem
Lx = Nx has at least one solution in Ω̄ .

Lemma 2.2 ([39] (Wirtinger inequality)) If u is a C1 function such that u(0) = u(T), then

‖u – ū‖L2 ≤ T
2π

‖u̇‖L2 ,

where ‖u‖L2 := (
∫ T

0 |u(t)|2 dt) 1
2 and ū = 1

T
∫ T

0 u(t) dt.

Lemma 2.3 For all a, b ∈H, āb + b̄a ≤ āa + b̄b.

For convenience, we introduce the following notation:

a+
p = sup

t∈[0,2T]

∥∥ap(t)
∥∥, η+

p = sup
t∈[0,2T]

ηp(t), η̇+
p = sup

t∈[0,2T]
η̇p(t),

τ+
pq = sup

t∈[0,2T]
τpq(t), τ̇+

pq = sup
t∈[0,2T]

τ̇pq(t), b+
pq = sup

t∈[0,2T]

∥∥bpq(t)
∥∥,

c+
pq = sup

t∈[0,2T]

∥∥cpq(t)
∥∥, Q+

p = sup
t∈[0,2T]

∥∥Qp(t)
∥∥.

In order to obtain our results, we introduce the following assumptions.
(H1) For p, q = 1, 2, . . . , n, τpq,ηp ∈ C1(R,R+), ap, bpq, cpq, Qp ∈ C(R,H) are all T-periodic

functions, and τpq and ηp satisfy min1≤p,q≤n{1 – τ̇+
pq} > 0 and min1≤p,q≤n{1 – η̇+

pq} > 0,
respectively.

(H2) For q = 1, 2, . . . , n, fq, gq ∈ C(H,H) satisfy fq(–x) = –fq(x), gq(–x) = –gq(x) for all x ∈
H.

(H3) For q = 1, 2, . . . , n, there exist constants F , G > 0 such that ‖fq(x)‖ ≤ F ,‖gq(x)‖ ≤ G
for all x ∈ H.

(H4) For q = 1, 2, . . . , n, there exist constants Lf
q, Lg

q > 0 such that ‖fq(x) – fq(y)‖ ≤ Lf
q‖x –

y‖,‖gq(x) – gq(y)‖ ≤ Lg
q‖x – y‖ for all x, y ∈H.
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3 Existence of anti-periodic solutions
In this section, we will study the existence of anti-periodic solutions of (1) by applying
Lemma 2.1 and the Wirtinger inequality.

Theorem 3.1 Assume that (H1)–(H3) hold. Suppose that
(H5) For p = 1, 2, . . . , n, a+

pT < π
√

1 – η̇+
p .

Then system (1) has at least one T-anti-periodic solution.

Proof Let

X = Y =
{

x = (x1, x2, . . . , xn)T ∈ C
(
R,Hn), x(t + T) = –x(t), t ∈ [0, T]

}

be two Bananch spaces equipped with the norms:

‖x‖Y = ‖x‖X =
n∑

p=1

‖xp‖0,

where ‖xp‖0 = supt∈[0,2T] ‖xp(t)‖, p = 1, 2, . . . , n.
Define operators L : D(L) ∩ X → Y by Lx = ẋ, where D(L) = {x|x ∈ X, ẋ ∈ X} ⊂ X, and

N : X→Y by

Nx = (N1x, N2x, . . . , Nnx)T ,

where

(Npx)(t) = –ap(t)xp
(
t – ηp(t)

)
+

n∑

q=1

bpq(t)fq
(
xq(t)

)

+
n∑

q=1

cpq(t)gq
(
xq

(
t – τpq(t)

))
+ Qp(t), p = 1, 2, . . . , n.

It is easy to see that KerL = {0} and L(D(L)) = {y ∈ Y,
∫ 2T

0 y(t) dt = 0} = Y. Hence, L :
D(L) → Y is one-to-one. Denote by L–1 the inverse of L and take � := L–1N , then by us-
ing Arzela–Ascoli theorem, we can verify that � is compact. Assume that x ∈ D(L) is an
arbitrary anti-periodic solution of the equation Lx = λNx, for some λ ∈ (0, 1). Then, for
p = 1, 2, . . . , n, we have

ẋp(t) = λ

{

–ap(t)xp
(
t – ηp(t)

)
+

n∑

q=1

bpq(t)fq
(
xq(t)

)

+
n∑

q=1

cpq(t)gq
(
xq

(
t – τpq(t)

))
+ Qp(t)

}

. (2)

Multiplying by ¯̇xp(t) from the left on both sides of the system (2), we have

¯̇xp(t)ẋp(t) = λ ¯̇xp(t)

{

–ap(t)xp
(
t – ηp(t)

)
+

n∑

q=1

bpq(t)fq
(
xq(t)

)
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+
n∑

q=1

cpq(t)gq
(
xq

(
t – τpq(t)

))
+ Qp(t)

}

, p = 1, 2, . . . , n. (3)

Integrating both sides of (3) from 0 to 2T and noticing that

∫ 2T

0

∥∥ ¯̇xp(t)ẋp(t)
∥∥dt =

∫ 2T

0

∥∥ ¯̇xp(t)
∥∥2 dt =

∫ 2T

0

∥∥ẋp(t)
∥∥2 dt, p = 1, 2, . . . , n,

we obtain

∫ 2T

0

∥∥ ¯̇xp(t)
∥∥2 dt

= λ

∫ 2T

0

∥∥∥∥∥
¯̇xp(t)

{

–ap(t)xp
(
t – ηp(t)

)
+

n∑

q=1

bpq(t)fq
(
xq(t)

)

+
n∑

q=1

cpq(t)gq
(
xq

(
t – τpq(t)

))
+ Qp(t)

}∥∥∥∥∥
dt

≤ a+
p

∫ 2T

0

∥∥ ¯̇xp(t)xp
(
t – ηp(t)

)∥∥dt +
n∑

q=1

b+
pqF

∫ 2T

0

∥∥ ¯̇xp(t)
∥∥dt

+
n∑

q=1

c+
pqG

∫ 2T

0

∥∥ ¯̇xp(t)
∥∥dt + Q+

p

∫ 2T

0

∥∥ ¯̇xp(t)
∥∥dt

≤ a+
p√

1 – η̇+
p

(∫ 2T

0

∥∥ ¯̇xp(t)
∥∥2 dt

) 1
2
(∫ 2T

0

∥∥xp(t)
∥∥2 dt

) 1
2

+
n∑

q=1

b+
pqF

√
2T

(∫ 2T

0

∥∥ ¯̇xp(t)
∥∥2 dt

) 1
2

+
n∑

q=1

c+
pqG

√
2T

(∫ 2T

0

∥∥ ¯̇xp(t)
∥∥2 dt

) 1
2

+ Q+
p
√

2T
(∫ 2T

0

∥∥ ¯̇xp(t)
∥∥2 dt

) 1
2

,

that is, for p = 1, 2, . . . , n,

(∫ 2T

0

∥∥ẋp(t)
∥∥2 dt

) 1
2 ≤ a+

p√
1 – η̇+

p

(∫ 2T

0

∥∥xp(t)
∥∥2 dt

) 1
2

+
n∑

q=1

b+
pqF

√
2T

+
n∑

q=1

c+
pqG

√
2T + Q+

p
√

2T . (4)

Since xp ∈ C1 and xp is a T-anti-periodic function, xp is a 2T-periodic function, by
Lemma 2.2, we have

(∫ 2T

0

∥∥ẋp(t)
∥∥2 dt

) 1
2 ≤ a+

pT

π
√

1 – η̇+
p

(∫ 2T

0

∥∥ẋp(t)
∥∥2 dt

) 1
2

+
n∑

q=1

b+
pqF

√
2T
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+
n∑

q=1

c+
pqG

√
2T + Q+

p
√

2T ,

hence

(∫ 2T

0

∥∥ẋp(t)
∥∥2 dt

) 1
2 ≤

∑n
q=1 b+

pqF
√

2T +
∑n

q=1 c+
pqG

√
2T + Q+

p
√

2T

1 – a+
p T

π
√

1–η̇+
p

, (5)

where p = 1, 2, . . . , n. Since xp(t) is a T-anti-periodic function, there must exist constants
ξ l

p ∈ [0, 2T] such that xl
p(ξ l

p) = 0, l = R, I, J , K . Hence, we have

∣∣xl
p(t)

∣∣ =
∣∣∣∣x

l
p
(
ξ l

p
)

+
∫ t

ξ l
p

ẋl
p(s) ds

∣∣∣∣ ≤
∫ 2T

0

∣∣ẋl
p(t)

∣∣dt, p = 1, 2, . . . , n, l = R, I, J , K .

Moreover, obviously, |xl
p(t)| ≤ ‖xp(t)‖, for l = R, I, J , K , so we get

∥∥xp(t)
∥∥ =

(∑

l

∣∣xl
p(t)

∣∣2
) 1

2

≤
(∑

l

(∫ 2T

0

∣∣ẋl
p(t)

∣∣dt
)2) 1

2

≤ 2
∫ 2T

0

∥∥ẋp(t)
∥∥dt

≤ 2
√

2T
(∫ 2T

0

∥∥ẋp(t)
∥∥2 dt

) 1
2

, p = 1, 2, . . . , n.

From (5), we obtain

∥∥xp(t)
∥∥ ≤ 2

√
2T(

∑n
q=1 b+

pqF
√

2T +
∑n

q=1 c+
pqG

√
2T + Q+

p
√

2T)

1 – a+
p T

π
√

1–η̇+
p

,

thus

‖xp‖0 ≤ 2
√

2T(
∑n

q=1 b+
pqF

√
2T +

∑n
q=1 c+

pqG
√

2T + Q+
p
√

2T)

1 – a+
p T

π
√

1–η̇+
p

:= Mp,

where p = 1, 2, . . . , n. Therefore,

‖x‖X =
n∑

p=1

‖xp‖0 ≤
n∑

p=1

Mp := W .

Take Ω = {x ∈ X : ‖x‖X < W + 1}, then it is clear that Ω satisfies all requirements of
Lemma 2.1. In view of Lemma 2.1, system (1) has at least one T-anti-periodic solution.
The proof is complete. �

Theorem 3.2 Assume that (H1), (H2) and (H4) hold. Suppose that
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(H6) Λ := 1 – T
π

∑n
p=1[ a+

p√
1–η̇+

p
+

∑n
q=1(b+

qpLf
p + c+

qpLg
p√

1–τ̇+
qp

)] > 0.

Then system (1) has at least one T-anti-periodic solution.

Proof Similar to the proof of Theorem 3.1, suppose that x ∈ D(L) is an arbitrary anti-
periodic solution of the equation Lx = λNx, for some λ ∈ (0, 1). Then, for p = 1, 2, . . . , n, we
have

ẋp(t) = λ

{

–ap(t)xp
(
t – ηp(t)

)
+

n∑

q=1

bpq(t)fq
(
xq(t)

)

+
n∑

q=1

cpq(t)gq
(
xq

(
t – τpq(t)

))
+ Qp(t)

}

. (6)

Multiplying by ¯̇xp(t) from the left on both sides of the system (2), we have

¯̇xp(t)ẋp(t) = λ ¯̇xp(t)

{

–ap(t)xp
(
t – ηp(t)

)
+

n∑

q=1

bpq(t)fq
(
xq(t)

)

+
n∑

q=1

cpq(t)gq
(
xq

(
t – τpq(t)

))
+ Qp(t)

}

, p = 1, 2, . . . , n. (7)

Integrating both sides of (7) from 0 to 2T and noticing that

∫ 2T

0

∥∥ ¯̇xp(t)ẋp(t)
∥∥dt =

∫ 2T

0

∥∥ ¯̇xp(t)
∥∥2 dt =

∫ 2T

0

∥∥ẋp(t)
∥∥2 dt, p = 1, 2, . . . , n,

we obtain
∫ 2T

0

∥∥ ¯̇xp(t)
∥∥2 dt

= λ

∫ 2T

0

∥∥∥∥∥
¯̇xp(t)

{

–ap(t)xp
(
t – ηp(t)

)
+

n∑

q=1

bpq(t)fq
(
xq(t)

)

+
n∑

q=1

cpq(t)gq
(
xq

(
t – τpq(t)

))
+ Qp(t)

}∥∥∥∥∥
dt

≤ a+
p

∫ 2T

0

∥∥ ¯̇xp(t)
∥∥∥∥xp

(
t – ηp(t)

)∥∥dt +
n∑

q=1

b+
pqLf

q

∫ 2T

0

∥∥ ¯̇xp(t)
∥∥∥∥xq(t)

∥∥dt

+
n∑

q=1

c+
pqLg

q

∫ 2T

0

∥∥ ¯̇xp(t)
∥∥∥∥xq

(
t – τpq(t)

)∥∥dt + Q+
p

∫ 2T

0

∥∥ ¯̇xp(t)
∥∥dt

≤ a+
p

(∫ 2T

0

∥∥ ¯̇xp(t)
∥∥2 dt

) 1
2
(∫ 2T

0

∥∥xp
(
t – ηp(t)

)∥∥2 dt
) 1

2

+
n∑

q=1

b+
pqLf

q

(∫ 2T

0

∥∥ ¯̇xp(t)
∥∥2 dt

) 1
2
(∫ 2T

0

∥∥xq(t)
∥∥2 dt

) 1
2

+
n∑

q=1

c+
pqLg

q

(∫ 2T

0

∥∥ ¯̇xp(t)
∥∥2 dt

) 1
2
(∫ 2T

0

∥∥xq
(
t – τpq(t)

)∥∥2 dt
) 1

2
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+ Q+
p
√

2T
(∫ 2T

0

∥∥ ¯̇xp(t)
∥∥2 dt

) 1
2

≤ a+
p√

1 – η̇+
p

(∫ 2T

0

∥∥ ¯̇xp(t)
∥∥2 dt

) 1
2
(∫ 2T

0

∥∥xp(t)
∥∥2 dt

) 1
2

+
n∑

q=1

b+
pqLf

q

(∫ 2T

0

∥∥ ¯̇xp(t)
∥∥2 dt

) 1
2
(∫ 2T

0

∥∥xq(t)
∥∥2 dt

) 1
2

+
n∑

q=1

c+
pqLg

q
√

1 – τ̇+
pq

(∫ 2T

0

∥∥ ¯̇xp(t)
∥∥2 dt

) 1
2
(∫ 2T

0

∥∥xq(t)
∥∥2 dt

) 1
2

+ Q+
p
√

2T
(∫ 2T

0

∥∥ ¯̇xp(t)
∥∥2 dt

) 1
2

,

that is, for p = 1, 2, . . . , n,

(∫ 2T

0

∥∥ẋp(t)
∥∥2 dt

) 1
2

≤ a+
p√

1 – η̇+
p

(∫ 2T

0

∥∥xp(t)
∥∥2 dt

) 1
2

+
n∑

q=1

(
b+

pqLf
q +

c+
pqLg

q
√

1 – τ̇+
pq

)

×
(∫ 2T

0

∥∥xq(t)
∥∥2 dt

) 1
2

+ Q+
p
√

2T . (8)

Hence, for p = 1, 2, . . . , n,

n∑

p=1

(∫ 2T

0

∥∥ẋp(t)
∥∥2 dt

) 1
2

≤
n∑

p=1

[
a+

p√
1 – η̇+

p

(∫ 2T

0

∥
∥xp(t)

∥
∥2 dt

) 1
2

+
n∑

q=1

(
b+

pqLf
q +

c+
pqLg

q
√

1 – τ̇+
pq

)

×
(∫ 2T

0

∥∥xq(t)
∥∥2 dt

) 1
2
]

+
√

2T
n∑

p=1

Q+
p

≤
n∑

p=1

[
a+

p√
1 – η̇+

p

+
n∑

q=1

(
b+

qpLf
p +

c+
qpLg

p
√

1 – τ̇+
pq

)]

×
(∫ 2T

0

∥∥xp(t)
∥∥2 dt

) 1
2

+
√

2T
n∑

p=1

Q+
p . (9)

Since xp ∈ D(L) and xp is a T-anti periodic function, xp is a 2T-periodic function, by
Lemma 2.2, we have

n∑

p=1

(∫ 2T

0

∥∥ẋp(t)
∥∥2 dt

) 1
2
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≤ T
π

n∑

p=1

[
a+

p√
1 – η̇+

p

+
n∑

q=1

(
b+

qpLf
p +

c+
qpLg

p
√

1 – τ̇+
pq

)]

×
(∫ 2T

0

∥∥ẋp(t)
∥∥2 dt

) 1
2

+
√

2T
n∑

p=1

Q+
p ,

hence

n∑

p=1

(∫ 2T

0

∥∥ẋp(t)
∥∥2 dt

) 1
2 ≤

√
2T

∑n
p=1 Q+

p

Λ
, p = 1, 2, . . . , n. (10)

Since xp(t) is a T-anti-periodic function, there must exist constants ξ l
p ∈ [0, 2T] such that

xl
p(ξ l

p) = 0, p = 1, 2, . . . , n, l = R, I, J , K . Hence, we have

∣∣xl
p(t)

∣∣ =
∣∣∣∣x

l
p
(
ξ l

p
)

+
∫ t

ξ l
p

ẋl
p(s) ds

∣∣∣∣ ≤
∫ 2T

0

∣∣ẋl
p(t)

∣∣dt, p = 1, 2, . . . , n, l = R, I, J , K .

Moreover, obviously, |xl
p(t)| ≤ ‖xp(t)‖, for l = R, I, J , K , so we get

n∑

p=1

∥∥xp(t)
∥∥ =

n∑

p=1

(∑

l

∣∣xl
p(t)

∣∣2
) 1

2

≤
n∑

p=1

(∑

l

(∫ 2T

0

∣∣ẋl
p(t)

∣∣dt
)2) 1

2

≤ 2
n∑

p=1

∫ 2T

0

∥∥ẋp(t)
∥∥dt

≤ 2
√

2T
n∑

p=1

(∫ 2T

0

∥∥ẋp(t)
∥∥2 dt

) 1
2

.

From (10), we obtain

n∑

p=1

∥∥xp(t)
∥∥ ≤ 2T

∑n
p=1 Q+

p

Λ
.

Therefore,

‖x‖X =
n∑

p=1

‖xp‖0 ≤ 2T
∑n

p=1 Q+
p

Λ
:= W .

Take Ω = {x ∈ X : ‖x‖X < W + 1}, then system (1) has at least one T-anti periodic solu-
tion. The proof is complete. �

4 Global exponential stability
In this section, we study the global exponential stability of anti-periodic solutions of (1)
by constructing a suitable Lyapunov functional.
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Definition 4.1 Let x = (x1, x2, . . . , xn)T be an anti periodic solution of system (1) with the
initial value ϕ = (ϕ1,ϕ2, . . . ,ϕn)T ∈ C([–τ , 0],Hn) and y = (y1, y2, . . . , yn)T be an arbitrary
solution of system (1) with the initial value ψ = (ψ1,ψ2, . . . ,ψn)T ∈ C([–τ , 0],Hn), respec-
tively. If there exist positive constants λ and M such that

∥∥x(t) – y(t)
∥∥ ≤ M‖ϕ – ψ‖τ e–λt , t > 0,

where

‖ϕ – ψ‖τ =
n∑

p=1

sup
t∈[–τ ,0]

∥∥ϕp(t) – ψp(t)
∥∥,

then the anti-periodic solution of system (1) is said to be globally exponentially stable.

Theorem 4.1 In system (1), let ηp(t) ≡ 0, ap ∈ C(R,R+) with a–
p = inft∈[0,2T] ap(t) > 0, p =

1, 2, . . . , n. Assume that (H1)–(H5) hold, and there exists a positive constant λ such that
(H7) Γ = max1≤p≤n{2λ + 2 – 2a–

p +
∑n

q=1 b+
qp

2(Lf
p)2 +

∑n
q=1 c+

qp
2(Lg

p)2 e2λτ+qp
1–τ̇+

qp
} < 0.

Then system (1) has a unique T-anti periodic solution that is globally exponentially stable.

Proof By Theorem 3.1, system (1) has an anti-periodic solution, let x be an anti-periodic
solution with the initial value ϕ and y be an arbitrary anti-periodic solution with the initial
value ψ . Taking z = x – y, where zp = xp – yp, p = 1, 2, . . . , n, we have

żp(t) = –ap(t)zp(t) +
n∑

q=1

bpq(t)f̃q
(
zq(t)

)

+
n∑

q=1

cpq(t)g̃q
(
zq

(
t – τpq(t)

))
, p = 1, 2, . . . , n, (11)

where f̃q(zq(t)) = fq(xq(t)) – fq(yq(t)), g̃q(zq(t – τpq(t))) = gq(xq(t – τpq(t))) – gq(yq(t – τpq(t))).
Define a Lyapunov function as follows:

V (t) = V1(t) + V2(t),

where

V1(t) =
n∑

p=1

e2λt(z̄p(t) · zp(t)
)
,

V2(t) =
n∑

p=1

n∑

q=1

‖cpq‖2(Lg
q
)2 e2λτ+

pq

1 – τ̇+
pq

∫ t

t–τpq(t)
e2λsz̄q(s) · zq(s) ds.

Calculating the right derivatives D+V1(t) of V1(t) and D+V2(t) of V2(t) along with the so-
lutions of (11), respectively, and by using Lemma 2.3, we have

D+V1(t)

=
n∑

p=1

2λe2λt(z̄p(t) · zp(t)
)

+
n∑

p=1

e2λt( ¯̇zp(t) · zp(t) + z̄p(t) · żp(t)
)
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=
n∑

p=1

2λe2λt(z̄p(t) · zp(t)
)

+
n∑

p=1

e2λt

{

–ap(t)zp(t) +
n∑

q=1

bpq(t)f̃q
(
zq(t)

)

+
n∑

q=1

cpq(t)g̃q
(
zq

(
t – τpq(t)

))
}

· zp(t) +
n∑

p=1

e2λt z̄p(t) ·
{

–ap(t)zp(t)

+
n∑

q=1

bpq(t)f̃q
(
zq(t)

)
+

n∑

q=1

cpq(t)g̃q
(
zq

(
t – τpq(t)

))
}

=
n∑

p=1

2λe2λt z̄p(t)zp(t) +
n∑

p=1

e2λt

{

–ap(t)z̄p(t)zp(t)

+
n∑

q=1

bpq(t)f̃q
(
zq(t)

)
zp(t) +

n∑

q=1

cpq(t)g̃q
(
zq

(
t – τpq(t)

))
zp(t)

}

+
n∑

p=1

e2λt

{

–ap(t)z̄p(t)zp(t) +
n∑

q=1

z̄p(t)bpq(t)f̃q
(
zq(t)

)

+
n∑

q=1

z̄p(t)cpq(t)g̃q
(
zq

(
t – τpq(t)

))
}

≤
n∑

p=1

e2λt z̄p(t)zp(t)
(
2λ – 2a–

p
)

+
n∑

p=1

e2λt z̄p(t)zp(t) +
n∑

p=1

e2λt z̄p(t)zp(t)

+
n∑

q=1

e2λtbpq(t)f̃q
(
zq(t)

)
bpq(t)f̃q

(
zq(t)

)

+
n∑

q=1

e2λ(t–τpq(t))e2λτ+
pq cpq(t)g̃q

(
zq

(
t – τpq(t)

))
cpq(t)g̃q

(
zq

(
t – τpq(t)

))

≤
n∑

p=1

e2λt z̄p(t)zp(t)
(
2λ + 2 – 2a–

p
)

+
n∑

p=1

n∑

q=1

e2λtb+
pq

2(Lf
q
)2z̄q(t)zq(t)

+
n∑

p=1

n∑

q=1

e2λ(t–τpq(t))e2λτ+
pq c+

pq
2(Lg

q
)2z̄q

(
t – τpq(t)

)
zq

(
t – τpq(t)

)

and

D+V2(t) =
n∑

p=1

n∑

q=1

c+
pq

2(Lg
q
)2 e2λte2λτ+

pq

1 – τ̇+
pq

z̄q(t)zq(t)

–
n∑

p=1

n∑

q=1

c+
pq

2(Lg
q
)2 e2λ(t–τpq(t))e2λτ+

pq (1 – τ̇pq(t))
1 – τ̇+

pq

× z̄q
(
t – τpq(t)

)
zq

(
t – τpq(t)

)

≤
n∑

p=1

n∑

q=1

c+
pq

2(Lg
q
)2 e2λte2λτ+

pq

1 – τ̇+
pq

z̄q(t)zq(t)

–
n∑

p=1

n∑

q=1

c+
pq

2(Lg
q
)2e2λ(t–τpq(t))e2λτ+

pq z̄q
(
t – τpq(t)

)
zq

(
t – τpq(t)

)
.
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Therefore,

D+V (t) = D+V1(t) + D+V2(t)

≤
n∑

p=1

e2λt z̄p(t)zp(t)
(
2λ + 2 – 2a–

p
)

+
n∑

p=1

n∑

q=1

e2λtb+
qp

2(Lf
p
)2z̄p(t)zp(t)

+
n∑

p=1

n∑

q=1

e2λt z̄q(t)zq(t)c+
pq

2(Lg
q
)2 e2λτ+

pq

1 – τ̇+
pq

=
n∑

p=1

e2λt z̄p(t)zp(t)

(

2λ + 2 – 2a–
p +

n∑

q=1

b+
qp

2(Lf
p
)2

+
n∑

q=1

c+
qp

2(Lg
p
)2 e2λτ+

qp

1 – τ̇+
qp

)

= Γ V1(t) ≤ 0.

That is, for t ≥ 0, V (t) ≤ V (0). From the definition of V (t), we have

V (t) ≥
n∑

p=1

e2λt(z̄p(t) · zp(t)
)

=
n∑

p=1

e2λt∥∥zp(t)
∥∥2

and

V (0) =
n∑

p=1

(
z̄p(0) · zp(0)

)
+

n∑

p=1

n∑

q=1

c+
pq

2(Lg
q
)2 e2λτ+

pq

1 – τ̇+
pq

×
∫ 0

–τpq(0)
e2λsz̄q(s) · zq(s) ds

≤
n∑

p=1

{

sup
s∈[–τ ,0]

∣∣zp(s)
∣∣2 +

n∑

q=1

c+
pq

2(Lg
q
)2 e2λτ+

pq (1 – e–2λτpq(0))
2λ(1 – τ̇+

pq)

× sup
s∈[–τ ,0]

∥∥zq(s)
∥∥2

}

≤
n∑

p=1

{
1 +

∑n
q=1 c+

qp
2(Lg

p)2(e2λτ+
qp – 1)

2λ(1 – τ̇+
qp)

}
sup

s∈[–τ ,0]

∥∥ϕp(s) – ψp(s)
∥∥2,

hence

n∑

p=1

e2λt∥∥zp(t)
∥∥2 ≤

n∑

p=1

{
1 +

∑n
q=1 c+

qp
2(Lg

p)2(e2λτ+
qp – 1)

2λ(1 – τ̇+
qp)

}

× sup
s∈[–τ ,0]

∥∥ϕp(s) – ψp(s)
∥
∥2.
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Therefore, we have

∥∥x(t) – y(t)
∥∥2 ≤ e–2λt

{
1 +

∑n
q=1 c+

qp
2(Lg

p)2(e2λτ+
qp – 1)

2λ(1 – τ̇+
qp)

}
‖ϕ – ψ‖2

τ .

Take Θ = {1 +
∑n

q=1 c+
qp

2(Lg
p)2(e2λτ+qp –1)

2λ(1–τ̇+
qp) }, we have

∥∥x(t) – y(t)
∥∥ ≤ √

Θe–λt‖ϕ – ψ‖τ .

Hence, the system (1) is globally exponentially stable. The uniqueness follows from the
global stability. The proof is complete. �

Similarly, we have the following.

Theorem 4.2 In system (1), let ηp(t) ≡ 0, ap ∈ C(R,R+) with a–
p = inft∈[0,2T] ap(t) > 0, p =

1, 2, . . . , n. Assume that (H1), (H2), (H4), (H6) and (H7) hold. Then system (1) has a unique
T-anti-periodic solution that is globally exponentially stable.

5 Numerical examples
Example 5.1 Consider the following quaternion-valued cellular neural network with
time-varying transmission delays and leakage delays:

ẋp(t) = –ap(t)xp
(
t – ηp(t)

)
+

n∑

q=1

bpq(t)fq
(
xq(t)

)

+
n∑

q=1

cpq(t)gq
(
xq

(
t – τpq(t)

))
+ Qp(t), p = 1, 2, (12)

where

ẋp(t) = ẋR
p (t) + iẋI

p(t) + jẋJ
p(t) + kẋK

p (t) ∈H,

fq(xq) =
1

20
sin 8xR

q +
1

30
i sin 8xI

q +
1

20
j sin 8xJ

q +
1

24
k sin 8xK

q ,

gq(xq) =
1

15
sin 8xR

q +
1

25
i sin 8xI

q +
1

25
j sin 8xJ

q +
1

25
k sin 8xK

q ,
(

a1(t)
a2(t)

)

=

(
1.6 + 0.1j sin 8t + 0.1k cos 8t
1.5 + 0.1i sin 8t + 0.2j cos 8t

)

,

(
b11(t) b12(t)
b21(t) b22(t)

)

=

(
0.05 sin 8t + 0.01i sin2 4t

0.05 – 0.02i cos 8t + 0.01k cos 8t

0.01 + 0.02j cos 8t + 0.01k sin 8t
0.01 + 0.02i sin 8t + 0.01j sin 8t

)

,

(
c11(t) c12(t)
c21(t) c22(t)

)

=

(
0.02 sin 4t + 0.01i sin2 4t

0.03 – 0.01i cos2 4t + 0.01j cos 8t
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Figure 1 Curves of xRp(t) = (xR1(t), x
R
2(t))

T and xIp(t) = (xI1(t), x
I
2(t))

T of system (12) with the initial values

(xR1(0), x
R
2(0))

T = (0.5, –0.1)T , (–0.25, 0.35)T , (0.15, –0.45)T and (xI1(0), x
I
2(0))

T = (0.4, –0.2)T , (0.2, –0.45)T , (–0.3, 0.1)T

0.01 + 0.03j cos 8t + 0.01k
0.01 + 0.02j sin2 4t + 0.01k sin 8t

)

,

(
η1(t)
η2(t)

)

=

(
0.11 + 0.01 sin 8t
0.1 + 0.01 sin 8t

)

,

(
τ11(t) τ12(t)
τ21(t) τ22(t)3

)

=

(
0.03 sin 8t + 0.001 0

0 0.01 sin 8t + 0.001

)

,

(
Q1(t)
Q2(t)

)

=

(
1
4 sin2 2t + 1

5 i sin2 2t + 1
12 j cos 4t + 1

15 k sin 4t
1
5 sin 4t + 1

2 i sin 4t + 1
10 j cos 4t + 1

20 k sin2 2t

)

.

By computing, T = π
4 , ‖f1(x)‖ = ‖f2(x)‖ ≤ 0.089, ‖g1(x)‖ = ‖g2(x)‖ ≤ 0.097, a+

1 = 1.7, a+
2 =

1.8, η+
1 = 0.13,η+

2 = 0.11, η̇+
1 = 0.16, η̇+

2 = 0.08, b+
11 ≤ 0.051, b+

12 ≤ 0.0245, b+
21 ≤ 0.055, b+

22 ≤
0.0245, c+

11 ≤ 0.023, c+
12 ≤ 0.034, c+

21 ≤ 0.034, c+
22 ≤ 0.025, Q1 ≤ 0.5, Q2 ≤ 0.55. So (H1), (H2)

and (H3) are satisfied. Besides, it is easy to obtain

a+
1 T

π
√

1 – η̇+
1

≈ 0.464 < 1,

a+
2 T

π
√

1 – η̇+
2

≈ 0.469 < 1.

Therefore, all of the conditions of Theorem 3.1 are satisfied. Hence, system (12) has at
least one π

4 -anti-periodic solution. Setting the three different initial values, the transient
states of four parts of system (12) are shown in Figs. 1 and 2.
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Figure 2 Curves of xJp(t) = (xJ1(t), x
J
2(t))

T and xKp (t) = (xK1 (t), x
K
2 (t))

T of system (12) with the initial values

(xJ1(0), x
J
2(0))

T = (–0.05, 0.05)T , (–0.15, 0.2)T , (–0.2, 0.1)T and (xK1 (0), x
K
2 (0))

T = (–0.1, –0.05)T , (0.05, 0.15)T , (0.2, –0.2)T

Example 5.2 Consider the following quaternion-valued cellular neural network with
time-varying transmission delays:

ẋp(t) = –ap(t)xp(t) +
2∑

q=1

bpq(t)fq
(
xq(t)

)
+

2∑

q=1

cpq(t)gq
(
xq

(
t – τpq(t)

))

+ Qp(t), p = 1, 2, (13)

where

ẋp(t) = ẋR
p (t) + iẋI

p(t) + jẋJ
p(t) + kẋK

p (t) ∈H,

fq(xq) =
1

30
sin 16xR

q +
1

40
i sin 16xI

q +
1

20
j sin 16xJ

q +
1

34
k sin 16xK

q (t),

gq(xq) =
1

35
sin 16xR

q +
1

45
i sin 16xI

q +
1

25
j sin 16xJ

q +
1

65
k sin 16xK

q (t),
(

a1(t)
a2(t)

)

=

(
1.4 + 0.01 cos 8t
1.6 + 0.02 cos 8t

)

,

(
b11(t) b12(t)
b21(t) b22(t)

)

=

(
0.01 sin 16t + 0.02i sin 16t

0.05 – 0.01i cos 16t + 0.02k cos 16t

0.03 + 0.01j cos 16t + 0.01k sin 16t
0.01 + 0.01i sin 8t + 0.02j sin 16t

)

,

(
c11(t) c12(t)
c21(t) c22(t)

)

=

(
0.02 sin 4t + 0.01i sin 16t

0.05 – 0.02i cos2 8t + 0.01j cos 16t

0.01 + 0.01j cos 16t + 0.03k sin 16t
0.02 + 0.01j sin2 8t + 0.01k sin 16t

)

,
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Figure 3 Curves of xRp(t) = (xR1(t), x
R
2(t))

T and xIp(t) = (xI1(t), x
I
2(t))

T of system (13) with the initial values

(xR1(0), x
R
2(0))

T = (0.01, –0.02)T , (0.03, –0.04)T , (0.05, –0.05)T and
(xI1(0), x

I
2(0))

T = (–0.01, 0.03)T , (0.02, 0.05)T , (–0.05, –0.02)T

(
τ11(t) τ12(t)
τ21(t) τ22(t)

)

=

(
0.01 sin 8t + 0.081 0

0 0.005 sin 8t + 0.01

)

,

(
Q1(t)
Q2(t)

)

=

(
1

16 sin 8t + 1
20 i sin 8t + 1

12 j cos 8t + 1
15 k sin 8t

1
15 sin 8t + 1

12 i sin 8t + 1
10 j cos 8t + 1

20 k sin2 4t

)

.

By computing, T = π
8 , ‖fq(x)‖ ≤ 0.0715,‖gq(x)‖ ≤ 0.0561, ‖fq(x)‖ ≤ 1

20‖x – y‖,‖gq(x)‖ ≤
1

25‖x – y‖, a–
1 = 1.4, a–

2 = 1.6, a+
1 = 1.41, a+

2 = 1.62, b+
11 ≤ 0.0224, b+

12 ≤ 0.0332, b+
21 ≤ 0.0548,

b+
22 ≤ 0.0245, c+

11 ≤ 0.0224, c+
12 ≤ 0.0332, c+

21 ≤ 0.0548, c+
22 ≤ 0.0245, Q+

1 ≤ 0.1334, Q+
2 ≤

0.1546. So (H1)–(H4) are satisfied. Besides, τ+
11 = 0.091, τ+

12 = 0, τ+
21 = 0, τ+

22 = 0.015, τ̇+
11 =

0.08, τ̇+
12 = 0, τ̇+

21 = 0, τ̇+
22 = 0.04, and it is easy to obtain

a+
1 T
π

≈ 0.17625 < 1,

a+
2 T
π

≈ 0.2025 < 1.

Therefore, all of the conditions of Theorem 3.1 are satisfied. Hence, system (13) has at
least one π

8 -anti-periodic solution. Furthermore, take λ = 0.1, we have

Γ = max
1≤p≤2

{

2λ + 2 – 2a–
p +

2∑

q=1

b+
qp

2(Lf
p
)2 +

2∑

q=1

c+
qp

2(Lg
p
)2 e2λτ+

qp

1 – τ̇+
qp

}

≈ –0.6993 < 0.

Therefore, all of the conditions of Theorem 4.1 are satisfied. Thus, system (13) has at
least one π

8 -anti-periodic solution that is globally exponentially stable. Figures 3 and 4
show the time responses of four parts of state variables of system (13) with three different
initial values. Figure 5 depicts the curves of neurons xR

p (t), xI
p(t), xJ

p(t) and xK
p (t) with two

random initial conditions in three-dimensional space for stable case.
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Figure 4 Curves of xJp(t) = (xJ1(t), x
J
2(t))

T and xKp (t) = (xK1 (t), x
K
2 (t))

T of system (13) with the initial values

(xJ1(0), x
J
2(0))

T = (0.01, 0.04)T , (0.03, –0.01)T , (–0.045, –0.03)T and
(xK1 (0), x

K
2 (0))

T = (–0.03, 0.02)T , (–0.05, –0.02)T , (0.01, 0.05)T

Figure 5 Curves of xR2(t), x
I
2(t), x

J
2(t) and xK2 (t) in three-dimensional space for stable case

6 Conclusion
In this paper, we investigated the existence and global exponential stability of QVNNs with
time-varying delays by applying a continuation theorem of coincidence degree theory and
by constructing an appropriate Lyapunov functional via direct methods. Our results are
new and our proposed methods can be used to study the anti-periodic problem for other
types of QVNNs.
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