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Abstract
In this paper, the global asymptotic stability of both the closed economy system and
the open economy system is investigated under impulse control, and the obtained
stability criteria improve the existing results in the previous literature, generalizing the
stabilization from the closed economy system to the open economy system, and
stabilizing the unstable equilibrium point with positive interest rate. Particularly,
stability of the equilibrium point with positive interest rate is suitable for the open
economic market of China, for the interest rates during different periods in China’s
financial market are always some of positive percentages. Finally, numerical examples
illustrate the effectiveness of the proposed methods.
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1 Introduction
The dynamic behavior of a complex financial system is unpredictable and unstable. Delay
is determined by the nature of delayed feedback in financial markets. Delay makes the dy-
namic behavior of a chaotic financial system more unpredictable. To avoid the economic
crisis and financial risks, the government’s macroeconomic control makes it necessary to
study the stability of the financial system. Impulse control is one of the effective means
for macroeconomic regulation and control of financial market. So we may firstly intro-
duce a complex financial system. Establishing and testing a financial model consisting of
production sub-blocks, currency sub-blocks, securities sub-blocks, and labor sub-blocks
by using system dynamics method, people find that some long-term behaviors given by
the model are irregular and extremely sensitive to the parameter changes of initial state
values. The above-mentioned financial system is presented as follows:

⎧
⎪⎪⎨

⎪⎪⎩

ẋ = z + (y – a)x,

ẏ = 1 – by – x2,

ż = –x – cz,

(1.1)
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which has been investigated in many existing literature works [1–8], where x represents
the interest rate, y represents the investment demand, z represents the price index, a repre-
sents savings, b represents the unit investment cost, and c represents the elasticity of com-
modity demand. Since people’s behavior is rational, they have normal delayed response
when facing market changes. So the delayed feedback system was introduced as follows
[5, 6, 8]:

⎧
⎪⎪⎨

⎪⎪⎩

ẋ = z + (y – a)x + k1(x – x(t – τ1(t))),

ẏ = 1 – by – x2 + k2(y – y(t – τ2(t))),

ż = –x – cz + k3(z – z(t – τ3(t))),

(1.2)

where ki (i = 1, 2, 3) is the feedback gain coefficient.
In system (1.1), if c – b – abc ≤ 0, financial system (1.1) has the unique equilibrium

point Q0(0, 1
b , 0); if c – b – abc ≥ 0, financial system (1.1) owns three equilibrium points

Q0(0, 1
b , 0), Q1(

√
θ , 1+ac

c , –
√

θ
c ), Q2(–

√
θ , 1+ac

c ,
√

θ
c ), where θ =

√
c–b–abc

c . Chaos appears in fi-
nancial system (1.1) if c – b – abc > 0 and c + a – 1

b < 0. For example, let a = 0.9, b = 0.2,
c = 1.2, then there is a chaos phenomenon in financial system (1.1) (see, e.g., [8, Fig. 1]).

Moreover, time delays make the dynamic behavior of the financial system even more
complex and unpredictable (see, e.g., [8, Fig. 2]). In fact, time delay brings essential diffi-
culties to impulse control of a delayed feedback financial system. Existing stability criteria
of the equilibrium point Q1(

√
θ , 1+ac

c , –
√

θ
c ) derived solely by impulse control in some liter-

ature are probably erroneous. For example, such literature is always involved in citing the
erroneous conclusions of [9]. In fact, Yinping Zhang and Qing-Guo Wang in [10] pointed
out the errors of [9, Lemma 3] and [9, Theorem 1]. So the author of [8] had to employ
simultaneously impulse control and regional control on the delayed feedback system (see
[8, Theorem 1]). Of course, impulse control is effective for the financial system without
any time delays (see [8, Theorem 2]). In [11–20], global asymptotic stability of dynamics
of a nonlinear dynamical system was discussed. Motivated by some methods of the related
literature [8, 11–26], we shall discuss the global asymptotic stability of chaotic economy
systems and employ solely impulse control on the financial system with small time de-
lays. Besides, robust stability is very important to the nonlinear dynamic system [27], and
hence we may consider the robust stability for the financial system with parameter un-
certainties. By employing some mathematical analysis techniques and Lyapunov function
methods, we shall give the globally exponential stability criteria for the closed economy
system and the open economy system.

Remark 1 In the previous related literature, only the closed economy system was involved
[8, 21–26, 28]. But in this paper, both the closed economy system and the open economy
system are simultaneously investigated under impulse control.

2 Preparation
Firstly, we introduce the financial mathematical model investigated in this paper.
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Let

⎧
⎪⎪⎨

⎪⎪⎩

X1 = x –
√

θ ,

X2 = y – 1+ac
c ,

X3 = z +
√

θ
c ;

(2.1)

then the delayed feedback financial system (1.2) is translated into the following system:

⎧
⎪⎪⎨

⎪⎪⎩

Ẋ1 = 1
c X1 + θX2 + X3 + X1X2 + k1(X1 – X1(t – τ1(t))),

Ẋ2 = –2θX1 – bX2 – X2
1 + k2(X2 – X2(t – τ2(t))),

Ẋ3 = –X1 – cX3 + k3(X3 – X3(t – τ3(t))),

(2.2)

or

Ẋ(t) = –AX(t) + f
(
X(t)

)
+ K

(
X – X

(
t – τ (t)

))
, (2.3)

where the equilibrium point Q1(
√

θ , 1+ac
c , –

√
θ

c ) of the delayed feedback system (1.2) corre-
sponds to the null solution of system (2.2) or (2.3), and A, K , and f are defined as follows:

A =

⎛

⎜
⎝

– 1
c –θ –1

2θ b 0
1 0 c

⎞

⎟
⎠ , f (X) =

⎛

⎜
⎝

X1X2

–X2
1

0

⎞

⎟
⎠ , K =

⎛

⎜
⎝

k1 0 0
0 k2 0
0 0 k3

⎞

⎟
⎠ . (2.4)

The so-called impulse control system is proposed as follows:

⎧
⎪⎪⎨

⎪⎪⎩

Ẋ(t) = –AX(t) + f (X(t)) + K(X – X(t – τ (t))), t ≥ t0 = 0, t �= tk , k ∈ Z
+,

X(t+
k ) = X(tk) = BkX(t–

k ), t = tk , k ∈ Z
+ � {1, 2, . . .},

X(s) = ξ (s), s ∈ [–τ , 0]

(2.5)

or

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ = z + (y – a)x + k1(x – x(t – τ1(t))), t ≥ 0, t �= tk , k = 1, 2, . . . ,

ẏ = 1 – by – x2 + k2(y – y(t – τ2(t))), t ≥ 0, t �= tk , k = 1, 2, . . . ,

ż = –x – cz + k3(z – z(t – τ3(t))), t ≥ 0, t �= tk , k = 1, 2, . . . ,

(x(t+
k ) –

√
θ , y(t+

k ) – 1+ac
c , z(t+

k ) +
√

θ
c )T

= Bk(x(t–
k ) –

√
θ , y(t–

k ) – 1+ac
c , z(t–

k ) +
√

θ
c )T , t = tk , k ∈ Z

+,

(x(s) –
√

θ , y(s) – 1+ac
c , z(s) +

√
θ

c )T = ξ (s), s ∈ [–τ , 0],

(2.6)

where time delays τi(t) ∈ [–τ , 0] (i = 1, 2, 3) with the scalar τ being positive. X(t – τ (t)) =
(X1(t – τ1(t)), X2(t – τ2(t)), X3(t – τ3(t)))T . Impulsive time tk (k ∈ Z

+) is a positive number,
satisfying t1 < t2 < · · · < tk < tk+1 < · · · with limk→∞ tk = +∞.

As pointed out in [8], ki (i = 1, 2, 3) represents the feedback profit coefficient, which is
also stochastic in a dynamic economic market. The randomness has the Markov property,
for the feedback coefficient for the next moment is only related to that of the current
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moment. Therefore, in this paper, the authors consider the Markovian jumping delayed
impulsive financial system as follows:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Ẋ(t) = –AX(t) + f (X(t)) + K(r(t))(X – X(t – τ (t))),

t ≥ t0 = 0, t �= tk , k ∈ Z
+,

X(t+
k ) = X(tk) = BkX(t–

k ), t = tk , k ∈ Z
+ � {1, 2, . . .},

X(s) = ξ (s), s ∈ [–τ , 0]

(2.7)

or
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ = z + (y – a)x + k1(r(t))(x – x(t – τ1(t))), t ≥ 0, t �= tk , k = 1, 2, . . . ,

ẏ = 1 – by – x2 + k2(r(t))(y – y(t – τ2(t))), t ≥ 0, t �= tk , k = 1, 2, . . . ,

ż = –x – cz + k3(r(t))(z – z(t – τ3(t))), t ≥ 0, t �= tk , k = 1, 2, . . . ,

(x(t+
k ) –

√
θ , y(t+

k ) – 1+ac
c , z(t+

k ) +
√

θ
c )T

= Bk(x(t–
k ) –

√
θ , y(t–

k ) – 1+ac
c , z(t–

k ) +
√

θ
c )T , t = tk , k ∈ Z

+,

(x(s) –
√

θ , y(s) – 1+ac
c , z(s) +

√
θ

c )T = ξ (s), s ∈ [–τ , 0],

(2.8)

where A and f are defined in (2.4), and

K
(
r(t)

)
=

⎛

⎜
⎝

k1(r(t)) 0 0
0 k2(r(t)) 0
0 0 k3(r(t))

⎞

⎟
⎠ . (2.9)

(Ω ,F ,P) is a complete probability space with a natural filtration {Ft}t≥0. Let S = {1, 2, . . . ,
n0} and the random form process {r(t) : [0, +∞) → S} be a homogeneous, finite-state
Markovian process with right continuous trajectories with generator Π = (γij)n0×n0 and
transition probability from mode i at time t to mode j at time t + δ, i, j ∈ S,

P
(
r(t + δ) = j | r(t) = i

)
=

⎧
⎨

⎩

γijδ + o(δ), j �= i,

1 + γijδ + o(δ), j = i,

where γij ≥ 0 is the transition probability rate from i to j (j �= i) and γii = –
∑n0

j=1,j �=i γij, δ > 0
and limδ→0 o(δ)/δ = 0.

3 Main results
Before giving the main results of this paper, we need to present some assumptions and
notations.

For simplicity, in this section, denote the norm ‖ · ‖ as follows:

‖Y‖2 = Y T Y , where Y ∈ R3.

Suppose that time delays τi(t) ∈ [0, τ ], i = 1, 2, 3. Assume that there are two positive
scalars M1, M2 such that

0 < M1 ≤ ∥
∥X(s)

∥
∥2 ≤ M2, ∀s ∈ [–τ , +∞). (3.1)
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In this paper, we assume that X(t) is uniformly bounded on [–τ , +∞), which implies that
‖X(t)‖2 is uniformly bounded on [–τ , +∞), too. Thus, for any given cτ > 0, there exists the
corresponding δc > 0 such that

∣
∣
∥
∥X(t)

∥
∥2 –

∥
∥X

(
t – τ (t)

)∥
∥2∣∣ < cτ whenever τ ≤ δc. (3.2)

So, in this paper, we assume that

τ ≤ δc. (3.3)

Remark 2 In the real financial market, some financial indicators, such as the interest rate,
the investment demand, and the price index, are all percentages, and hence, the bound-
edness assumptions on these financial indicators are very natural, in line with the actual
situation.

Theorem 3.1 Assume that supk∈Z+ (tk – tk–1) < +∞. Assume, in addition, that there exist
positive scalars ε, ς , λ such that

λmaxBT
k Bk < e–(ς+λ)(tk+1–tk ), k ∈ Z

+, (3.4)

λmax

(

–A – AT + 2K + ε–1K2 + ε

(

1 +
cτ

M1

)

I
)

≤ ς – λ, (3.5)

where I represents the unit matrix with suitable dimension.
Then the following two conclusions hold simultaneously:
(a) The null solution of system (2.5) is globally exponentially stable with convergence rate

λ
2 ;

(b) The equilibrium point Q1 with positive interest rate
√

θ for system (2.6) is globally
exponentially stable with convergence rate λ

2 .

Proof Firstly, combining (3.1)–(3.3) results in

∣
∣
∥
∥X(t)

∥
∥2 –

∥
∥X

(
t – τ (t)

)∥
∥2∣∣ < cτ

‖X(t)‖2

M1
, (3.6)

which means

∥
∥X

(
t – τ (t)

)∥
∥2 ≤

(

1 +
cτ

M1

)
∥
∥X(t)

∥
∥2, ∀t ≥ 0. (3.7)

Next, it follows from (3.4) that there exists a positive number qk such that

λmaxBT
k Bk ≤ qk < e–(ς+λ)(tk+1–tk ), k ∈ Z

+.

Let X be a solution of impulsive system (2.5), and consider the following Lyapunov func-
tion:

V (t) = XT X.
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Next, we claim that there exists a positive scalar

M ≥ sup
k∈Z+

e(ς+λ)(tk–tk–1) > 1 (3.8)

such that

V (t) ≤ M‖ξ‖2
τ e–λ(t–t0), t ∈ [tk–1, tk), k ∈ Z

+. (3.9)

We may firstly prove that

V (t) ≤ M‖ξ‖2
τ e–λ(t–t0), t ∈ [t0, t1). (3.10)

To prove (3.10), we only need

V (t) ≤ M‖ξ‖2
τ e–λ(t1–t0), t ∈ [t0, t1). (3.11)

Obviously, (3.11) holds in t = t0 because the definition of M deduces that

M ≥ e(ς+λ)(t1–t0) > eλ(t1–t0) ⇒ Me–λ(t1–t0) > 1,

and hence

V (t0) =
∥
∥X(t0)

∥
∥2 ≤ ‖ξ‖2

τ < M‖ξ‖2
τ e–λ(t1–t0). (3.12)

Next, we assume (3.11) does not hold for t ∈ [t0, t1). Then there is t̄ ∈ (t0, t1) such that

V (t̄) > M‖ξ‖2
τ e–λ(t1–t0).

It is not difficult to obtain

V (t̄) > M‖ξ‖2
τ e–λ(t1–t0) ≥ ‖ξ‖2

τ eς (t1–t0) > ‖ξ‖2
τ ≥ V (t0 + s) = V (s), s ∈ [–τ , 0], (3.13)

which implies that there exists t∗ ∈ (t0, t̄) such that

V
(
t∗) = M‖ξ‖2

τ e–λ(t1–t0), and V (t) ≤ M‖ξ‖2
τ e–λ(t1–t0), t ∈ [

t0, t∗]. (3.14)

Besides,

V
(
t∗) = M‖ξ‖2

τ e–λ(t1–t0) > ‖ξ‖2
τ ≥ ∥

∥X(t0)
∥
∥2 = V (t0). (3.15)

Thus, there is t∗∗ ∈ [t0, t∗) such that

V
(
t∗∗) = ‖ξ‖2

τ . (3.16)

Let D+ be upper right derivative (Dini derivative) such that

D+V (t) ≤ λmax

(

–A – AT + 2K + ε–1K2 + ε

(

1 +
cτ

M1

)

I
)

V (t) ≤ (ς – λ)V (t),

t ∈ [
t∗∗, t∗] ⊂ [t0, t1).
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Then the definition of M yields

V
(
t∗) ≤ V

(
t∗∗)e(ς–λ)(t∗–t∗∗) < V

(
t∗∗)eς (t∗–t∗∗)

= ‖ξ‖2
τ eς (t∗–t∗∗) ≤ M‖ξ‖2

τ e–λ(t1–t0) = V
(
t∗). (3.17)

This is an obvious contradiction. And then both (3.11) and (3.10) are proved.
Suppose that (3.17) holds for k = 1, 2, . . . , m. That is,

V (t) ≤ M‖ξ‖2
τ e–λ(t–t0), t ∈ [tk–1, tk), k = 1, 2, . . . , m. (3.18)

Below, we shall prove

V (t) ≤ M‖ξ‖2
τ e–λ(t–t0), t ∈ [tm, tm+1). (3.19)

Similarly, we only need to prove

V (t) ≤ M‖ξ‖2
τ e–λ(tm+1–t0), t ∈ [tm, tm+1). (3.20)

At first, we claim

V (tm) < M‖ξ‖2
τ e–λ(tm+1–t0). (3.21)

In fact,

V (tm) ≤ λmaxBT
mBm

∥
∥X

(
t–
m
)∥
∥2

≤ qmM‖ξ‖2
τ e–λ(tm–t0)

< e–(ς+λ)(tm+1–tm)M‖ξ‖2
τ e–λ(tm–t0)

≤ M‖ξ‖2
τ e–λ(tm+1–t0). (3.22)

Thus, if (3.20) does not hold, we know that there is t̃ ∈ (tm, tm+1) such that

V (t̃) > M‖ξ‖2
τ e–λ(tm+1–t0). (3.23)

Then there must exist t∗ ∈ (tm, tm+1) such that

V (t∗) = M‖ξ‖2
τ e–λ(tm+1–t0), and V (t) ≤ M‖ξ‖2

τ e–λ(tm+1–t0), ∀t ∈ [tm, t∗]. (3.24)

It follows from (3.22) that

V (tm) ≤ qmM‖ξ‖2
τ e–λ(tm–t0) < M‖ξ‖2

τ e–λ(tm+1–t0),

which implies that there must be t∗∗ ∈ [tm, t∗) such that

V (t∗∗) = qmM‖ξ‖2
τ e–λ(tm–t0). (3.25)
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Similarly,

D+V (t) ≤ λmax

(

–A – AT + 2K + ε–1K2 + ε

(

1 +
cτ

M1

)

I
)

V (t) ≤ (ς – λ)V (t),

t ∈ [t∗∗, t∗] ⊂ [tm, tm+1),

we have

V (t∗) ≤ V (t∗∗)e(ς–λ)(t∗–t∗∗)

≤ e–(ς+λ)(tm+1–tm)M‖ξ‖2
τ e–λ(tm–t0)e(ς–λ)(tm+1–tm)

< e–ς (tm+1–tm)M‖ξ‖2
τ e–λ(tm–t0)e(ς–λ)(tm+1–tm) = V (t∗).

This is an obvious contradiction. And then both (3.20) and (3.19) are proved. Finally, it is
not difficult to derive from condition (3.4)

∥
∥X(t)

∥
∥2 = V (t) ≤ M‖ξ‖2

τ e–λ(t–t0), t ∈ [tk–1, tk], k ∈ Z
+,

which implies the completeness of the proof. �

Similar to the proof of Theorem 3.1, we can select the Lyapunov function V(t) =
XT (t)PrX(t), deriving directly the following theorem for the case of Markovian jumping
systems.

Theorem 3.2 Assume that supk∈Z+ (tk – tk–1) < +∞. Assume, in addition, that there are a
sequence of positive diagonal definite matrices Pr = diag(pr1, pr2, pr3) (r ∈ S) with pr1 = pr2

and positive scalars ε, ς , λ such that

λmaxBT
k Bk < e–(ς+λ)(tk+1–tk ), k ∈ Z

+, (3.26)

maxr∈S λmax(–PrA – AT Pr + 2KrPr + ε–1K2
r P2

r + ε(1 + cτ
M1

)I +
∑

r∈S γrjPj)
minr∈S λminPr

≤ ς – λ, (3.27)

where I represents the unit matrix with suitable dimension.
Then the following two conclusions hold simultaneously:
(a) The null solution of system (2.7) is stochastically globally exponentially stable with

convergence rate λ
2 ;

(b) The equilibrium point Q1 with positive interest rate
√

θ for system (2.8) is
stochastically globally exponentially stable with convergence rate λ

2 .

Remark 3 Theorem 3.1 and Theorem 3.2 aim to employ the pulse control stabilizing
chaotic system under closed economy. But if the open economy system is involved, the
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corresponding external inputs system can be considered as follows:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Ẋ(t) = –AX(t) + f (X(t)) + K(X – X(t – τ (t))) + u(t),

t ≥ t0 = 0, t �= tk , k ∈ Z
+,

X(t+
k ) = X(tk) = BkX(t–

k ), t = tk , k ∈ Z
+ � {1, 2, . . .},

X(s) = ξ (s), s ∈ [–τ , 0],

(3.28)

where u(t) is the external input. Here, we may assume that there is a positive scalar c0 > 0
such that

∥
∥u(t)

∥
∥ ≤ c0

∥
∥X(t)

∥
∥. (3.29)

Since the acquisition of parameters is often uncertain in real financial markets, the ro-
bust stability should be considered for the following system with parametric uncertainty:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Ẋ(t) = –(A + �A(t))X(t) + f (X(t)) + K(X – X(t – τ (t))) + u(t),

t ≥ t0 = 0, t �= tk , k ∈ Z
+,

X(t+
k ) = X(tk) = BkX(t–

k ), t = tk , k ∈ Z
+ � {1, 2, . . .},

X(s) = ξ (s), s ∈ [–τ , 0],

(3.30)

where the parameter uncertainties are restricted as follows:

A1 ≤ �A(t) ≤ A2

or

A + A1 ≤ A + �A(t) ≤ A + A2, (3.31)

where A1 and A2 are known real constant matrices.

Theorem 3.3 Assume that supk∈Z+ (tk – tk–1) < +∞ and the external input condition (3.29)
holds. Assume, in addition, that there exist positive scalars ε, ς , λ with ς > λ such that

0 < λmaxBT
k Bk < e–(ς+λ)(tk+1–tk ), k ∈ Z

+, (3.32)

λmax
(
–A – A1 – AT – AT

1
)

+ λmax
(
2K + I + c2

0I + K
)

+ γ eλτ λmaxK ≤ ς – λ, (3.33)

where γ ≥ 1
λmaxBT

k Bk
, k ∈ Z

+.
Then the null solution of the open economy system (3.30) is globally exponentially robust

input-to-state stability with convergence rate λ
2 .

Proof Let D+ be the upper right derivative (Dini derivative) along with system (3.30) such
that

D+(∥
∥X(t)

∥
∥2) = XT[

–
(
A + �A(t)

)
X(t) + f

(
X(t)

)
+ K

(
X – X

(
t – τ (t)

))
+ u(t)

]

+
[
–
(
A + �A(t)

)
X(t) + f

(
X(t)

)
+ K

(
X – X

(
t – τ (t)

))
+ u(t)

]T X(t)
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≤ (
λmax

(
–A – A1 – AT – AT

1
)

+ λmax
(
2K + I + c2

0I + K
))∥

∥X(t)
∥
∥2

+ (λmaxK)
∥
∥X

(
t – τ (t)

)∥
∥2. (3.34)

It follows from the assumption on γ that there is a positive scalar M > 1 such that

γ eλτ > M > max
{

e(ς+λ)(t1–t0), eλτ
}

. (3.35)

Next, we claim that

∥
∥X(t)

∥
∥2 ≤ M‖ξ‖2

τ e–λ(t–t0), ∀t ∈ [tk–1, tk), k ∈ Z
+. (3.36)

Indeed, employing mathematical induction will prove that (3.36) holds.
At first, we need to prove

∥
∥X(t)

∥
∥2 ≤ M‖ξ‖2

τ e–λ(t–t0), ∀t ∈ [t0, t1), (3.37)

which implies that we only need to show

∥
∥X(t)

∥
∥2 ≤ M‖ξ‖2

τ e–λ(t1–t0), ∀t ∈ [t0, t1). (3.38)

In fact, it is obvious that

∥
∥X(t0)

∥
∥2 ≤ ‖ξ‖2

τ < M‖ξ‖2
τ e–λ(t1–t0). (3.39)

Thus, if (3.38) does not hold, there must exist some t ∈ (t0, t1) such that ‖X(t)‖2 >
M‖ξ‖2

τ e–λ(t1–t0), which implies that there is t∗ ∈ (t0, t1) satisfying

∥
∥X

(
t∗)∥∥2 = M‖ξ‖2

τ e–λ(t1–t0), and
∥
∥X(t)

∥
∥2 ≤ M‖ξ‖2

τ e–λ(t1–t0) =
∥
∥X

(
t∗)∥∥2, ∀t ∈ [

t0, t∗),
(3.40)

which together with (3.39) means that there is t∗∗ ∈ [t0, t∗) such that ‖X(t∗∗)‖2 = ‖ξ‖2
τ and

∥
∥X

(
t∗∗)∥∥2 ≤ ∥

∥X(t)
∥
∥2 ≤ ∥

∥X
(
t∗)∥∥2, ∀t ∈ [

t∗∗, t∗].

On the other hand, it is obvious that

∥
∥X(t0 + s)

∥
∥2 = ‖ξ‖2 ≤ ‖ξ‖2

τ < M‖ξ‖2
τ e–λ(t1–t0), ∀s ∈ [–τ , 0], (3.41)

which together with (3.40) implies

∥
∥X(t + s)

∥
∥2 ≤ M‖ξ‖2

τ e–λ(t1–t0), ∀s ∈ [–τ , 0], t ∈ [
t0, t∗].

Besides, for any s ∈ [–τ , 0], we can conclude that

∥
∥X(t + s)

∥
∥2 ≤ M‖ξ‖2

τ e–λ(t1–t0)

≤ γ eλτ
∥
∥X

(
t∗∗)∥∥2

≤ γ eλτ
∥
∥X(t)

∥
∥2, ∀t ∈ [

t∗∗, t∗],
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which together with (3.34) and (3.33) implies that

D+(∥
∥X(t)

∥
∥2) ≤ (

λmax
(
–A – A1 – AT – AT

1
)

+ λmax
(
2K + I + c2

0I + K
)

+ γ eλτ λmaxK
)∥
∥X(t)

∥
∥2

≤ (ς – λ)
∥
∥X(t)

∥
∥2, ∀t ∈ [

t∗∗, t∗],

from which one can conclude

∥
∥X

(
t∗)∥∥2 ≤ ∥

∥X
(
t∗∗)∥∥2e(ς–λ)(t∗–t∗∗)

< M‖ξ‖2
τ e–λ(t1–t0) =

∥
∥X

(
t∗)∥∥2.

This contradiction implies that (3.38) holds, and then (3.37) holds.
Next, we assume that (3.36) holds for k = 1, 2, . . . , m, or

∥
∥X(t)

∥
∥2 ≤ M‖ξ‖2

τ e–λ(t–t0), ∀t ∈ [tk–1, tk), k = 1, 2, . . . , m. (3.42)

Below, we shall employ assumption (3.42) to conclude

∥
∥X(t)

∥
∥2 ≤ M‖ξ‖2

τ e–λ(t–t0), ∀t ∈ [tm, tm+1). (3.43)

It is obvious that

∥
∥X(tm)

∥
∥2 < M‖ξ‖2

τ e–λ(tm–t0). (3.44)

Indeed, (3.42) yields

∥
∥X(tm)

∥
∥2 =

∥
∥X

(
t+
m
)∥
∥2

≤ (
λmaxBT

mBm
)
M‖ξ‖2

τ e–λ(tm–t0)

< e–λ(tm+1–tm)M‖ξ‖2
τ e–λ(tm–t0)

< M‖ξ‖2
τ e–λ(tm–t0). (3.45)

Suppose that (3.44) is not true. Define tb = inf{t ∈ [tm, tm+1) : V (t) > M‖ξ‖2
τ e–λ(t–t0)}. Then

the continuity of V (t) on [tm, tm+1) derives

∥
∥X(tb)

∥
∥2 = M‖ξ‖2

τ e–λ(tb–t0) and
∥
∥X(t)

∥
∥2 ≤ M‖ξ‖2

τ e–λ(t–t0), ∀t ∈ [tm, tb]. (3.46)

And (3.45) yields tm < tb < tm+1. On the other hand,

∥
∥X(tm)

∥
∥2 =

∥
∥X

(
t+
m
)∥
∥2

≤ (
λmaxBT

mBm
)
eλ(tm+1–tm)M‖ξ‖2

τ e–λ(tb–t0)

< M‖ξ‖2
τ e–λ(tb–t0). (3.47)

So the continuity of ‖X(t)‖2 on [tm, tm+1) yields that there must be some t ∈ [tm, tb) such
that ‖X(t)‖2 = (λmaxBT

mBm)eλ(tm+1–tm)M‖ξ‖2
τ e–λ(tb–t0). Define t∗ = sup{t ∈ [tm, tb) : ‖X(t)‖2 =
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(λmaxBT
mBm)eλ(tm+1–tm)M‖ξ‖2

τ e–λ(tb–t0)}, and then we can see from (3.47) and the definition
of ta that

∥
∥X(ta)

∥
∥2 =

(
λmaxBT

mBm
)
eλ(tm+1–tm)M‖ξ‖2

τ e–λ(tb–t0) and
∥
∥X(ta)

∥
∥2 ≤ ∥

∥X(t)
∥
∥2, ∀t ∈ [ta, tb].

(3.48)

Now, for t ∈ [ta, tb] and s ∈ [–τ , 0], then t + s ∈ [–τ , tb].
In the case of t + s ∈ [–τ , tm), (3.42) yields

∥
∥X(t + s)

∥
∥2 ≤ M‖ξ‖2

τ e–λ(t+s–t0)

≤ M‖ξ‖2
τ eλ(tm+1–tm)e–λ(tb–t0)eλτ , ∀t ∈ [ta, tb] ⊂ [tm, tm+1). (3.49)

In the case of t + s ∈ [tm, tb], (3.46) yields

∥
∥X(t + s)

∥
∥2 ≤ M‖ξ‖2

τ e–λ(t+s–t0)

≤ M‖ξ‖2
τ eλ(tm+1–tm)e–λ(tb–t0)eλτ , ∀t ∈ [ta, tb] ⊂ [tm, tm+1). (3.50)

Hence, combining (3.48)–(3.50) gives

∥
∥X(t + s)

∥
∥2 ≤ M‖ξ‖2

τ eλ(tm+1–tm)e–λ(tb–t0)eλτ

≤ γ eλτ
∥
∥X(ta)

∥
∥2

≤ γ eλτ
∥
∥X(t)

∥
∥2, ∀t ∈ [ta, tb], s ∈ [–τ , 0], (3.51)

which together with (3.34) and (3.33) implies

D+(∥
∥X(t)

∥
∥2) ≤ (

λmax
(
–A – A1 – AT – AT

1
)

+ λmax
(
2K + I + c2

0I + K
)

+ γ eλτ λmaxK
)∥
∥X(t)

∥
∥2

≤ (ς – λ)
∥
∥X(t)

∥
∥2, ∀t ∈ [ta, tb].

Similarly, we have

∥
∥X(tb)

∥
∥2 ≤ (

λmaxBT
mBm

)
eλ(tm+1–tm)M‖ξ‖2

τ e–λ(tb–t0)e(ς–λ)(tb–ta)

≤ e–ς (tm+1–tm)M‖ξ‖2
τ e–λ(tb–t0)e(ς–λ)(tm+1–tm)

< M‖ξ‖2
τ e–λ(tb–t0) =

∥
∥X(tb)

∥
∥2.

This contradiction verifies (3.43), and hence mathematical induction demonstrates claim
(3.36), which derives

∥
∥X(t)

∥
∥ ≤ √

M‖ξ‖τ e– λ
2 (t–t0), ∀t ∈ [tk–1, tk), k ∈ Z

+.

Similar to the proof of [8, Theorem 2], we can actually conclude from the above inequality
that

∥
∥X(t)

∥
∥ ≤ √

M‖ξ‖τ e– λ
2 (t–t0), ∀t ∈ [tk–1, tk], k ∈ Z

+.
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Therefore, the null solution of system (3.30) is globally exponentially robust input-to-
state stability with convergence rate λ

2 . �

Remark 4 In [29, Theorem 3.1], there is assumption condition (ii) as follows:
(ii) ELV (t,ϕ) ≤ –λEV (t,ϕ(0)), whenever eηθ EV (t +θ ,ϕ(θ )) < qEV (t,ϕ(0)) for all α ≤ θ ≤

0, where ϕ ∈ BLp
Ft

.
However, the conditions of our Theorems 3.1–3.3 reveal that our main matrix –A is not

necessarily negative definite. Actually, numerical examples show that the maximum eigen-
value of –A is a positive number (see Examples 1–3), which is one of the main difficulties
to be overcome in this paper.

Remark 5 Theorem 3.3 does not require the boundedness hypothesis of the state variable
X, which is a perceptible improvement on Theorem 3.1. Of course, the state variable X
is an economic index, which itself is a bounded percentage. Besides, the boundedness as-
sumption makes condition (3.5) of Theorem 3.1 simpler than the corresponding condition
(3.33) of Theorem 3.3.

Remark 6 If the external input u(t) ≡ 0, the open economy system (3.30) becomes the
closed economy system with parametric uncertainty as follows:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Ẋ(t) = –(A + �A(t))X(t) + f (X(t)) + K(X – X(t – τ (t))),

t ≥ t0 = 0, t �= tk , k ∈ Z
+,

X(t+
k ) = X(tk) = BkX(t–

k ), t = tk , k ∈ Z
+ � {1, 2, . . .},

X(s) = ξ (s), s ∈ [–τ , 0],

(3.52)

which implies that Theorem 3.3 includes the robust stability result of the closed economy
system (3.52), and restriction condition (3.29) is naturally deleted.

Corollary 3.4 Assume that supk∈Z+ (tk – tk–1) < +∞. Assume, in addition, that there exist
positive scalars ε, ς , λ with ς > λ such that

0 < λmaxBT
k Bk < e–(ς+λ)(tk+1–tk ), k ∈ Z

+,

λmax
(
–A – A1 – AT – AT

1
)

+ λmax(2K + I + K) + γ eλτ λmaxK ≤ ς – λ,
(3.53)

where γ ≥ 1
λmaxBT

k Bk
, k ∈ Z

+.

Then the null solution of system (3.52) is globally exponentially robust stability with
convergence rate λ

2 .

Remark 7 As far as we know, even for closed economic systems, Corollary 3.4 is a new
criterion of robust stability.

Remark 8 If restriction condition (3.29) is abolished in Theorem 3.3, the regional control
may be necessary for stabilization of the financial system. And so the following regional
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control systems have to be investigated for the open economy:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂Z
∂t = D�Z – AZ(t, x) + f (Z(t, x)) + K(Z – Z(t – τ (t), x)) + u(t, x),

t ≥ t0 = 0, t �= tk , k = 1, 2, . . . ,

Z(t+
k , x) = BkZ(t–

k , x), t = tk , k = 1, 2, . . . ,

Z(s, x) = ξ (s, x), (s, x) ∈ [–τ , 0] × Ω ,
∂Zi
∂ν

= 0, x ∈ ∂Ω , t ≥ 0, i = 1, 2, 3,

(3.54)

or
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂Z(t,x)
∂t = B�Z(t, x) – AZ(t, x) + f (Z(t, x))

+ K(r(t))(Z(t, x) – Z(t – τ (t), x)) + u(t, x), t ≥ 0,
∂Z
∂ν

= 0, x ∈ ∂Ω ,

Z(s, x) = φ(s, x), (s, x) ∈ [–τ , 0] × Ω .

(3.55)

4 Numerical examples
Example 1 In system (2.5) or (2.6), let a = 0.9, b = 0.2, c = 0.2463, and one gets

A =

⎛

⎜
⎝

–4.0601 –0.0893 –1.0000
0.1787 0.2000 0
1.0000 0 0.2463

⎞

⎟
⎠ .

In addition, let ς = 9.3, λ = 0.7, tk+1 – tk ≡ 0.05,

Bk =

⎛

⎜
⎝

1
18k3 0 0
0 1

16k5 0
0 0 0.0010

⎞

⎟
⎠ , k = 1, 2, . . . .

K =

⎛

⎜
⎝

0.07 0 0
0 0.03 0
0 0 0.01

⎞

⎟
⎠ .

Let ε = 0.1, M1 = cτ = 0.0001, one can compute and obtain

λmaxBT
k Bk ≤ λmaxBT

1 B1 < 0.6065 = e–(ς+λ)(tk+1–tk ),

ς – λ = 8.6 > λmax

(

–A – AT + 2K + ε–1K2 + ε

(

1 +
cτ

M1

)

I
)

,

which implies that conditions (3.4) and (3.5) are satisfied. And hence, Theorem 3.1 yields
that the equilibrium point Q1 with positive interest rate 8.93% for financial system (2.6) is
globally exponentially stable with convergence rate 0.35.

Example 2 In system (2.7) or (2.8), let a = 0.9, b = 0.2, c = 0.2463, and one gets

A =

⎛

⎜
⎝

–4.0601 –0.0893 –1.0000
0.1787 0.2000 0
1.0000 0 0.2463

⎞

⎟
⎠ .



Rao and Zhong Advances in Difference Equations         (2020) 2020:50 Page 15 of 18

In addition, let qk ≡ 0.6, ς = 9.3, λ = 0.7, tk+1 – tk ≡ 0.05,

Bk =

⎛

⎜
⎝

1
18k3 0 0
0 1

16k5 0
0 0 0.0010

⎞

⎟
⎠ , k = 1, 2, . . . .

Let S = {1, 2}, and the transition rates matrix and feedback coefficient matrix Π and feed-
back gain coefficient matrix Kr are given as follows:

Π =

(
–0.013 0.013
0.015 –0.015

)

, K1 =

⎛

⎜
⎝

0.011 0 0
0 0.015 0
0 0 0.012

⎞

⎟
⎠ ,

K2 =

⎛

⎜
⎝

0.012 0 0
0 0.016 0
0 0 0.013

⎞

⎟
⎠ .

P1 =

⎛

⎜
⎝

1.005 0 0
0 1.005 0
0 0 0.9987

⎞

⎟
⎠ , P2 =

⎛

⎜
⎝

0.9993 0 0
0 0.9993 0
0 0 1.002

⎞

⎟
⎠ .

Let ε = 0.1, M1 = cτ = 0.0001, one can compute and obtain

λmaxBT
k Bk ≤ λmaxBT

1 B1 < 0.6065 = e–(ς+λ)(tk+1–tk ),

ς – λ = 8.6 >
maxr∈S λmax(–PrA – AT Pr + 2KrPr + ε–1K2

r P2
r + ε(1 + cτ

M1
)I +

∑
r∈S γrjPj)

minr∈S λminPr
,

which implies that conditions (3.26) and (3.27) are satisfied. And hence, Theorem 3.2 yields
that the equilibrium point Q1 with positive interest rate 8.93% for financial system (2.8) is
stochastically globally exponentially stable with convergence rate 0.35.

Remark 9 As pointed out in Remark 1, Theorem 3.1 and Theorem 3.2 may be the impor-
tant conclusions of the first paper on the financial systems with time delays, although the
time delays may be small.

Example 3 In system (3.30), let a = 0.9, b = 0.2, c = 0.2463, and one gets

A =

⎛

⎜
⎝

–4.0601 –0.0893 –1.0000
0.1787 0.2000 0
1.0000 0 0.2463

⎞

⎟
⎠ .

In addition, let

A1 =

⎛

⎜
⎝

0.00011 0 0
0 0.00012 0
0 0 0.00013

⎞

⎟
⎠
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and ς = 9.8, λ = 0.2, tk+1 – tk ≡ 0.05,

Bk =

⎛

⎜
⎝

1
18k3 0 0
0 1

16k5 0
0 0 0.0010

⎞

⎟
⎠ , k = 1, 2, . . . .

K =

⎛

⎜
⎝

0.0007 0 0
0 0.0003 0
0 0 0.0001

⎞

⎟
⎠ .

Let τ = 0.5, c0 = 0.03, γ = 260, one can compute and obtain

λmaxBT
k Bk ≤ λmaxBT

1 B1 = 0.0039 < 0.6065 = e–(ς+λ)(tk+1–tk ),

ς – λ = 9.6 > 9.4237

= λmax
(
–A – A1 – AT – AT

1
)

+ λmax
(
2K + I + c2

0I + K
)

+ γ eλτ λmaxK ,

which implies that conditions (3.32) and (3.33) are satisfied. And hence, Theorem 3.3 yields
that the open economy system (3.30) is globally exponentially robust input-to-state stable
with convergence rate 0.1, where the interest rate is 8.93% > 0 when the economy system
reaches stability.

Remark 10 In Example 3, the upper bound of time delay is τ = 0.5, which is not small. This
fully illustrates the effectiveness and feasibility of Theorem 3.3.

5 Conclusions and further considerations
In this paper, using some mathematical analysis techniques and Lyapunov function meth-
ods, we have derived the globally exponential stability criteria for the closed economy sys-
tem and the open economy system. Because the interest rate obtained in Chinese finan-
cial market is usually positive, the global asymptotic stabilization of the positive interest
rate equilibrium under impulse control studied in this paper has certain theoretical sig-
nificance for Chinese economic management departments. Particularly, our Theorem 3.3
involves the robust input-to-state stabilization of the open economy system under impulse
control while China’s economy is an open economy. Moreover, global exponential stability
implies deleting chaos of complex economy system.

As pointed out in [8] and [30], under Lipschitz conditions ensuring the unique existence
of the solution of the reaction-diffusion system for any given initial value, Ruofeng Rao,
Shouming Zhong, and Zhilin Pu deduced the boundedness conclusion [30, Theorem 3.3]
and the stability criterion [30, Theorem 3.4], in which the following formula was derived:

λ1
(
B(0, R0)

)
=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

β2
0 ( πm

m! )
2

2m

[mes(B(0,R0))]
2

2m
=

β2
0 ( π

n
2

( n
2 )! )

2
n

[mes(B(0,R0))]
2
n

, n = 2m,

β2
0

[2(2π )m]
2

2m+1
(2m+1)!!

[mes(B(0,R0))]
2

2m+1
= β2

0
[2(2π )

n–1
2 ]

2
n

n!!

[mes(B(0,R0))]
2
n

, n = 2m + 1.

(5.1)

This has actually proven the following conclusion.
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Theorem 5.1 ([8, Theorem 3]) If fi, f̃i, σij, σ̂ij are Lipschitz continuous with fi(0) = f̃i(0) =
σij(0) = σ̂ij(0) = 0, then there must exist a series of spherical regions B(0, R0) ⊂ Rn with R0

moderately small such that the following fuzzy system (5.2) is globally stochastically expo-
nentially stable in the pth moment, where Υ = B(0, R0) in (5.2).

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dui(t, x) = qi div∇ui(t, x) dt –
∑r∗

r=1 �r(ω̂(t))[airui(t, x) –
∑n

j=1 bijrfj(vj(t, x))

–
∑n

j=1 cijrfj(vj(t – τ (t), x)) –
∑n

j=1 hijr
∫ t

t–ρ(t) fj(vj(s, x)) ds] dt

+
∑n

j=1 σij(t, u(t, x), v(t – τ (t), x)) dwj(t), t ≥ 0, x ∈ Υ ,

dvi(t, x) = q̃i div∇vi(t, x) dt –
∑r∗

r=1 �r(ω̂(t))[ãirvi(t, x)

–
∑n

j=1 b̃ijr f̃j(uj(t, x)) –
∑n

j=1 c̃ijr f̃j(uj(t – τ̂ (t), x))

–
∑n

j=1 h̃ijr
∫ t

t–ρ̃(t) f̃j(uj(s, x)) ds] dt

+
∑n

j=1 σ̂ij(t, v(t, x), u(t – τ̂ (t), x), ) dw̃j(t), t ≥ 0, x ∈ Υ ,

ui(t, x) = ζi(t, x), vi(t, x) = �i(t, x), ∀(s, x) ∈ [–τ , 0] × Υ ,

∂νu(t, x) = 0 = ∂νv(t, x), ∀(t, x) ∈ [0, +∞] × ∂Υ .

(5.2)

Due to λ1(Ω) ≥ λ1(B(0, R0)) when Ω ⊂ B(0, R0), we can actually generalize Theorem 5.1
and [30, Theorem 3.4] from the spherical region B(0, R0) to a more general region Ω ⊂R

n,
where Ω is a bounded domain of Rn with smooth boundary ([6, Theorem 6.3]). Moreover,
it follows from [6, Theorem 6.2] and [6, Theorem 6.3] that

Theorem 5.2 If fi, f̃i, σij, σ̂ij are Lipschitz continuous with fi(0) = f̃i(0) = σij(0) = σ̂ij(0) = 0,
then there must exist a series of domains Ω ⊂ B(a, R0) ⊂ Rn with R0 moderately small such
that the following fuzzy system (5.2) is globally stochastically exponentially stable in the
pth moment, where Υ = Ω in (5.2).

How to derive the concise criterion for the open economy systems (3.54), (3.55), and
(3.30), similar to that of Theorem 5.2, is an interesting problem.
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