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Abstract
We propose a discrete-time viral model with antibody and cell-mediated immune
responses. Two types of infected cells are incorporated into the model, namely
latently infected and actively infected. The incidence rate of infection as well as the
production and removal rates of all compartments are modeled by general nonlinear
functions. The model contains three types of intracellular time delays. We utilize
nonstandard finite difference (NSFD) method to discretize the continuous-time
model. We prove that NSFD preserves the positivity and boundedness of the solutions
of the model. Based on four threshold parameters, the existence of the five equilibria
of the model is established. We perform global stability of all equilibria of the model
by using Lyapunov approach. Numerical simulations are carried out to illustrate our
theoretical results. The impact of time delay on the viral dynamics is established.
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1 Introduction
Mathematical modeling and analysis of within host human viral infections have provided
useful insights into the understanding of interplay between three main compartments:
viruses, target cells, and infected cells. Nowak and Bangham [1] have proposed the basic
virus infection model in the form

⎧
⎪⎪⎨

⎪⎪⎩

Ḟ(t) = δ – βF(t) – κF(t)H(t),

Ṡ(t) = κF(t)H(t) – aS(t),

Ḣ(t) = θS(t) – cH(t),

(1)

where F , S, and H are the healthy (uninfected) target cells, actively infected cells, and free
virus particles. δ and βF are the production and natural death rates of the healthy cells,
respectively. The incidence rate is modeled by κFH . The death rate of actively infected
cells is given by aS. The free viruses are generated at rate θS and cleared at rate cH . The
model has been developed to describe within host dynamics of different viruses such as
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human immunodeficiency virus (HIV) [2, 3], hepatitis C virus (HCV) [4, 5], hepatitis B
virus (HBV) [6, 7], chikungunya virus (CHIKV) [8], and dengue virus [9].

The immune system works to defend the body against attacks by foreign invaders. B cells
and CTL cells play a central role in the specific immune response. In general, B cells pro-
duce antibodies that neutralize the viruses, namely antibody immune response and CTL
cells attack and kill virus-infected cells, namely cell-mediated immune response. The im-
pact of cell-mediated immune response on the virus dynamics has been modeled [1] as
follows:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Ḟ(t) = δ – βF(t) – κF(t)H(t),

Ṡ(t) = κF(t)H(t) – aS(t) – λS(t)Z(t),

Ḣ(t) = θS(t) – cH(t),

Ż(t) = gS(t)Z(t) – ξZ(t),

(2)

where Z is the concentration of the CTL cells. The CTL cells are proliferated at rate gSZ,
die at rate ξZ, and kill infected cells at rate λSZ. Model (2) has been extended in several
works (see, e.g., [10–13]). In other words, the basic model (1) has been modified to take
into account the effect of antibody immune response in [14] as follows:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Ḟ(t) = δ – βF(t) – κF(t)H(t),

Ṡ(t) = κF(t)H(t) – aS(t),

Ḣ(t) = θS(t) – cH(t) – dH(t)Y (t),

Ẏ (t) = qH(t)Y (t) – ηY (t),

(3)

where Y is the concentration of antibodies. The free viruses are removed by the antibodies
at rate dHY . The antibodies are proliferated at rate qHY and die at rate ηY . In the liter-
ature, the effect of antibody immune response has been incorporated into mathematical
models of various virus infections (see, e.g., [15–17]).

In models (1)–(3) it has been assumed that once a healthy cell is contacted by a virus it
becomes productive instantaneously. In fact, a number of intracellular processes is needed
to produce new viruses. In case of HIV infection the intracellular processes take approxi-
mately 0.9 days [18]. Therefore, the intracellular time delay has a significant effect on the
virus dynamics. Delayed viral infection models have been constructed and analyzed in sev-
eral works (see, e.g., [19–32]). To incorporate both cell-mediated and antibody immune
responses as well as the time delay into the virus dynamics, Wodarz [33] has proposed the
following model:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ḟ(t) = δ – βF(t) – κF(t)H(t),

Ṡ(t) = κe–μτF(t – τ )H(t – τ ) – aS(t) – λS(t)Z(t),

Ḣ(t) = θS(t) – cH(t) – dH(t)Y (t),

Ẏ (t) = qH(t)Y (t) – ηY (t),

Ż(t) = gS(t)Z(t) – ξZ(t),

(4)

where, e–μτ represents the survival rate of infected cells after the interval τ , and μ is a pos-
itive constant. Model (4) has been extended in [34–36]. It has been reported in [37, 38]
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that in case of HIV infection, latent HIV reservoirs serve as a major obstruction in treat-
ing HIV infection. Latently infected cells have been incorporated into the virus dynamics
model with both cell-mediated and antibody in [25] and [39]. The bilinear incidence rate
associated with the mass action principle can be insufficient to describe infection process
in detail. The most obvious reason for a nonlinear incidence rate is that the number of
free pathogen particles can vary in a very wide range, from a few particles up to hundreds
of millions of them in the case of virus. The bilinear interaction term, which may be con-
sidered as an approximation, is hardly able to adequately describe the process that runs
over such a range of variables. For instance, if the number of free pathogen particles is
very high, so that exposure of a susceptible host is virtually certain, then the incidence
rate may respond more slowly than linear to the further increase in the number of the
pathogen particles [40].

In all the above mentioned works the viral infection is modeled by a system of ordi-
nary or delay differential equations. These models are nonlinear, and calculating the exact
analytical solution is difficult or impossible. Therefore, only approximate discrete-time
models can be obtained by using suitable numerical approximation methods. One of the
discretization methods which has been widely used to discretize viral infection models
is called nonstandard finite difference (NSFD) [41]. It has been established that NSFD
has the advantage of preserving the essential qualitative features of these models such as
equilibria, positivity, boundedness, and global behaviors of solutions independently of the
chosen step-size [42–46]. The impact of cell-mediated immune response has been incor-
porated into the discrete-time virus dynamics models in [47, 48]. In very recent works,
Elaiw and Alshaikh [49–51] have proposed and investigated a class of discrete-time virus
infection models with antibody immune response. However, the impact of both antibody
and cell-mediated immune responses on the discrete-time virus infection model has not
been investigated before.

The aim of the present paper is to formulate and analyze a discrete-time viral infection
model with both antibody and cell-mediated immune responses. The model considers
both latently infected cells and actively infected cells. The incidence rate of infection as
well as the production and removal rates of all compartments are modeled by general
nonlinear functions. We discretize the continuous-time model by using NSFD method.
We first show that the solutions of the discrete-time model are positive and bounded,
then we prove the global stability of the equilibria by constructing Lyapunov functions.
Moreover, we perform numerical simulations to support the global stability results.

The achievements in this present paper look ahead to research perspectives focused
on pattern formation induced by the action of the external environments, for instance,
by Keller Segel dynamics [52]. The present literature is focused simply on the original
SIR model [52], while it appears interesting extending the qualitative and computational
analysis to more advanced models such as the one treated in our paper.

2 The model
We introduce the following general viral infection model with three types of time delays
and both antibody and cell-mediated immune responses:

Ḟ(t) = Θ
(
F(t)

)
– Λ

(
F(t), H(t)

)
, (5)

K̇(t) = (1 – ε)e–μ1τ1Λ
(
F(t – τ1), H(t – τ1)

)
– (α + m)�1

(
K(t)

)
, (6)
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Ṡ(t) = εe–μ2τ2Λ
(
F(t – τ2), H(t – τ2)

)
+ m�1

(
K(t)

)
– a�2

(
S(t)

)

– λ�2
(
S(t)

)
�5

(
Z(t)

)
, (7)

Ḣ(t) = θe–μ3τ3�2
(
S(t – τ3)

)
– c�3

(
H(t)

)
– d�3

(
H(t)

)
�4

(
Y (t)

)
, (8)

Ẏ (t) = q�3
(
H(t)

)
�4

(
Y (t)

)
– η�4

(
Y (t)

)
, (9)

Ż(t) = g�2
(
S(t)

)
�5

(
Z(t)

)
– ξ�5

(
Z(t)

)
, (10)

where K is the concentration of latently infected cells. The parameter ε, with 0 < ε < 1, is a
fraction of the healthy cells that become latently infected. The terms α�1(K) and m�1(K)
represent the death and activation rates of the latently infected cells. We suppose that the
viruses contact the healthy cells at times t – τ1 and t – τ2, respectively, the cells become
latently infected and actively infected at time t, where τ1 and τ2 are positive constants. The
immature viruses at time t – τ3 are assumed to be mature at time t, where τ3 is a positive
constant. e–μjτj , j = 1, 2, 3, is the probability of the cells and viruses survival during the delay
periods, where μ1, μ2, and, μ3 are positive constants. Here Θ , Λ, and �i, i = 1, . . . , 5, are
general nonlinear functions satisfy the following conditions:

C1 (i) There exists F0 > 0 such that Θ(F0) = 0, Θ(F) > 0 for F ∈ [0, F0);
(ii) Θ ′(F) < 0 for all F > 0;

(iii) ∃b, b > 0 such that Θ(F) ≤ b – bF for all F ≥ 0.
Here, F0 is the equilibrium susceptible cell concentration in the absence of viral infec-

tion. Condition C1 implies that F(t) → F0 as t → ∞ in the absence of the infection.
C2 (i) Λ(F , H) > 0, and Λ(0, H) = Λ(F , 0) = 0 for all F > 0, H > 0;

(ii) ∂Λ(F ,H)
∂F > 0, ∂Λ(F ,H)

∂H > 0, ∂Λ(F ,0)
∂H > 0 for all F > 0, H > 0;

(iii) d
dF ( ∂Λ(F ,0)

∂H ) > 0 for all F > 0.
Furthermore, C2(i) means there are no incidences if there are no susceptible cells or free

virus particles. For C2(ii), the number of new cases monotonically grows with growth in
the numbers of susceptible cells and free pathogen particles. Moreover, condition C2(iii)
accounts that the infection rate starts growing even if the number of pathogens is very
small.

C3 (i) �j(ρ) > 0 for ρ > 0, �j(0) = 0, j = 1, . . . , 5;
(ii) �

′
j(ρ) > 0 for ρ > 0, j = 1, 2, 4, 5 and �

′
3(ρ) > 0 for ρ ≥ 0;

(iii) There are υj > 0, j = 1, . . . , 5, such that �j(ρ) ≥ υjρ for ρ ≥ 0.
Condition C3 indicates that the natural mortality rates of the infected cells, pathogens,

CTL, and antibodies monotonically grow with growth in their populations.
C4 ∂

∂H (Λ(F ,H)
�3(H) ) ≤ 0 for all H > 0.

The quantity Λ(F ,H)
�3(H) may be interpreted as the efficiency of the pathogen, that is, the ratio

of its infectivity to its removal. Condition C4 mentions that the efficiency of the pathogen
is nonincreasing with respect to the population of the pathogens [39].

Remark 1 There are several forms of the general functions which can satisfy C1–C4 such
as:

(i) Intrinsic growth rate function Θ(F): linear form Θ(F) = δ – βF [1] and logistic
growth form Θ(F) = δ – βF + rF(1 – F

Fmax
), where r < β [53, 54].

(ii) Incidence rate function Λ(F , H): bilinear incidence κFH [55], saturated incidence
κFH

1+uH [56], (iii) Holling-type II incidence κFH
1+wF [57], Beddington–DeAngelis
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incidence κFH
1+uH+wF [58], Crowley–Martin incidence κFH

(1+uH)(1+wF) [59], Hill-type
incidence κF�H

ζ �+F� [60], where κ , u, w, ζ , and � are positive constants.
(iii) Function �i(ρ): linear �i(ρ) = υiρ [1] and quadratic �i(ρ) = υiρ + υ iρ

2 [15], where
υi and υ i are positive constants.

We use the NSFD method [41] to discretize model (5)–(10). Let tn = nh, where h > 0 is
the time step size and n ∈N = {0, 1, 2, . . .}. Let (Fn, Kn, Sn, Hn, Yn, Zn) be the approximations
of the solution (F(tn), K(tn), S(tn), H(tn), Y (tn), Z(tn)) of system (5)–(10) at the discrete time
points tn. Assume that there exist integers mi ∈N, i = 1, 2, 3, with τi = hmi.

Fn+1 – Fn

φ(h)
= Θ(Fn+1) – Λ(Fn+1, Hn), (11)

Kn+1 – Kn

φ(h)
= (1 – ε)e–μ1τ1Λ(Fn–m1+1, Hn–m1 ) – (α + m)�1(Kn+1), (12)

Sn+1 – Sn

φ(h)
= εe–μ2τ2Λ(Fn–m2+1, Hn–m2 ) + m�1(Kn+1) – a�2(Sn+1)

– λ�2(Sn+1)�5(Zn+1), (13)

Hn+1 – Hn

φ(h)
= θe–μ3τ3�2(Sn–m3+1) – c�3(Hn+1) – d�3(Hn+1)�4(Yn+1), (14)

Yn+1 – Yn

φ(h)
= q�3(Hn+1)�4(Yn+1) – η�4(Yn+1), (15)

Zn+1 – Zn

φ(h)
= g�2(Sn+1)�5(Zn+1) – ξ�5(Zn+1). (16)

The function φ(h) is a denominator function [61, 62] where φ(h) = h + O(h2).
The initial conditions of system (11)–(16) are

Fω = ψ1
ω ≥ 0, Kω = ψ2

ω ≥ 0, Sω = ψ3
ω ≥ 0,

Hω = ψ4
ω ≥ 0, Yω = ψ5

ω ≥ 0, Zω = ψ6
ω ≥ 0

for all ω = –m, –m + 1, . . . , 0,

ψ i
0 > 0, i = 1, . . . , 6, (17)

where m = max{m1, m2, m3}.

2.1 Preliminaries
We define a compact set

Γ =
{

(F , K , S, H , Y , Z) : 0 < F , K , S < ϑ1, 0 < H < ϑ3, 0 < Y < ϑ4, 0 < Z < ϑ2
}

,

where ϑ1 = b
σ1

, ϑ2 = gϑ1
λ

, ϑ3 = θϑ1
σ2

, ϑ4 = qθϑ1
dσ2

, σ1 = min{b,αυ1, a, ξ}, and σ2 = min{c,η}.

Lemma 1 Suppose that Conditions C1–C3 are satisfied and �j(ρ) = ρ , j = 2, 3, 4, 5, then
any solution (Fn, Kn, Sn, Hn, Yn, Zn) of model (11)–(16) with initial conditions (17) is positive
and ultimately bounded.
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Lemma 2 For system (11)–(16), let Conditions C1–C4 hold true, then there exist four
threshold parameters R0 > 0, RY

1 > 0, RZ
1 > 0, and RZ

2 > 0 such that
(i) if R0 ≤ 1, then the system has only one equilibrium Q0.

(ii) if RY
1 ≤ 1 < R0 and RZ

1 ≤ 1 < R0, then the system has two equilibria Q0 and Q∗.
(iii) if RY

1 > 1 and RZ
2 ≤ 1, then the system has three equilibria Q0, Q∗, and Q.

(iv) if RZ
1 > 1 and RY

1 /RZ
2 ≤ 1, then the system has three equilibria Q0, Q∗, and Q̂.

(v) if RY
1 > RZ

2 > 1, then the system has five equilibria Q0, Q∗, Q, Q̂, and Q̃.

The proofs of Lemmas 1–2 are given in Appendix.

2.2 Global stability
We define the function

G(ρ) = ρ – lnρ – 1.

Clearly, G(ρ) ≥ 0 and G(1) = 0 for all ρ > 0, therefore

lnρ ≤ ρ – 1. (18)

Theorem 1 Suppose that Conditions C1–C4 are satisfied and R0 ≤ 1, then Q0 of model
(11)–(16) is G.A.S.

Remark 2 Conditions C2–C4 imply that

(
Λ(F , H) – Λ

(
F , H∗))

(
Λ(F , H)
�3(H)

–
Λ(F , H∗)
�3(H∗)

)

≤ 0,

which yields
(

1 –
Λ(F , H∗)
Λ(F , H)

)(
Λ(F , H)
Λ(F , H∗)

–
�3(H)
�3(H∗)

)

≤ 0. (19)

Lemma 3 Suppose that Conditions C1–C4 are satisfied and R0 > 1, then

(i) sgn
(
F – F∗) = sgn

(
H∗ – H

)
= sgn

(
RY

1 – 1
)
,

(ii) sgn
(
F̂ – F∗) = sgn

(
H∗ – Ĥ

)
= sgn

(
S∗ – Ŝ

)
= sgn

(
RZ

1 – 1
)
.

Theorem 2 Suppose that Conditions C1–C4 are satisfied, RY
1 ≤ 1 < R0 and RZ

1 ≤ 1 < R0,
then Q∗ of system (11)–(16) is G.A.S.

Theorem 3 If Conditions C1–C4 hold, RY
1 > 1 and RZ

2 ≤ 1, then Q of system (11)–(16) is
G.A.S.

Theorem 4 If Conditions C1–C4 are satisfied, RZ
1 > 1 and RY

1 /RZ
2 ≤ 1, then Q̂ of system

(11)–(16) is G.A.S.

Theorem 5 If Conditions C1–C4 are satisfied and RY
1 > RZ

2 > 1, then Q̃ of system (11)–
(16) is G.A.S.

The proofs of Theorems 1–5 and Lemma 3 are given in Appendix.
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3 Numerical simulations
We perform our simulation by choosing

Θ(F) = δ – βF + rF
(

1 –
F

Fmax

)

, Λ(F , H) =
κFH

1 + c1H
,

�i(ρ) = ρ, i = 1, . . . , 5,
(20)

where r > 0 is the maximum proliferation rate of the healthy cells and Fmax > 0 is the maxi-
mum level of healthy cells concentration in the body. If F reaches Fmax, it should decrease.
Therefore, system (11)–(16) becomes

Fn+1 – Fn

φ(h)
= δ – βFn+1 + rFn+1

(

1 –
Fn+1

Fmax

)

–
κFn+1Hn

1 + c1Hn
, (21)

Kn+1 – Kn

φ(h)
=

(1 – ε)e–μ1τ1κFn–m1+1Hn–m1

1 + c1Hn–m1
– (α + m)Kn+1, (22)

Sn+1 – Sn

φ(h)
=
εe–μ2τ2κFn–m2+1Hn–m2

1 + c1Hn–m2
+ mKn+1 – aSn+1 – λSn+1Zn+1, (23)

Hn+1 – Hn

φ(h)
= θe–μ3τ3 Sn–m3+1 – cHn+1 – dHn+1Yn+1, (24)

Yn+1 – Yn

φ(h)
= qHn+1Yn+1 – ηYn+1, (25)

Zn+1 – Zn

φ(h)
= gSn+1Zn+1 – ξZn+1. (26)

The denominator function φ(h) can take the form [61, 62]

φ(h) =
1 – e–βh

β
.

We assume that r < β [54]. Now we check the validity of Conditions C1–C4 for the func-
tions given by (20). We have Θ(0) = δ > 0, Θ(F0) = 0, where

F0 =
Fmax

2r

(

r – β +

√

(r – β)2 +
4rδ
Fmax

)

.

Since r < β , then

Θ ′(F) = –β + r –
2rF
Fmax

< 0.

It follows that Θ(F) > 0 for all F ∈ [0, F0) and

Θ(F) = δ – (β – r)F – r
F2

Fmax
< δ – (β – r)F .
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Let b = δ > 0 and b = β – r > 0. Thus, C1 is satisfied. We have also

Λ(F , H) =
κFH

1 + c1H
> 0 and Λ(0, H) = Λ(F , 0) = 0 for all F > 0, H > 0,

∂Λ(F , H)
∂F

=
κH

1 + c1H
> 0 for all F > 0 and H > 0,

∂Λ(F , H)
∂H

=
κF

(1 + c1H)2 > 0 for all F > 0 and H > 0,

∂Λ(F , 0)
∂H

= κF > 0 for all F > 0,

d
dF

(
∂Λ(F , 0)

∂H

)

= κ > 0 for all F > 0.

Therefore, Condition C2 is satisfied. We have �j(ρ) = ρ > 0 for all ρ > 0 and �j(0) = 0,
j = 1, . . . , 5, and �

′
j(ρ) = 1 > 0, j = 1, . . . , 5, for all ρ ≥ 0. Then Condition C3 is satisfied,

where υj = 1, j = 1, . . . , 5. Finally, we have

∂

∂H

(
Λ(F , H)
�3(H)

)

=
–κFc1

(1 + c1H)2 < 0 for all F > 0 and H > 0.

Therefore, Condition C4 holds true and hence Theorems 1–5 are applicable.
For this system, the threshold parameters are given by

R0 =
θγ κF0

ac
, RY

1 =
θγ κF

ac(1 + c1H)
,

RZ
1 =

θγ κF̂
ac(1 + c1Ĥ)

, RZ
2 =

eμ3τ3γ κF̃H̃
a(1 + c1H̃ )̃S

,

RY
1 \RZ

2 =
θe–μ3τ3ξg

cgη
,

where

F =
–B +

√
B2 – 4AC
2A

= F̃ ,

A = r + c1rH ,

B = –Fmax
(
r – β – κH + c1H(r – β)

)
,

C = –Fmaxδ(1 + c1H),

H =
η

q
= H̃ ,

and

F̂ =
–B̂ +

√
B̂2 – 4ÂĈ
2Â

,

Â = r + c1rĤ ,

B̂ = –Fmax
(
r – β – κĤ + c1Ĥ(r – β)

)
,
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Ĉ = –Fmaxδ(1 + c1Ĥ),

Ĥ =
θe–μ3τ3ξ

cg
, S̃ =

ξ

g
.

Numerical simulations for system (21)–(26) are performed using the following values: δ =
10, β = 0.01, r = 0.009, Fmax = 1200, ε = 0.3, α = 0.4, m = 0.1, a = 0.6, λ = 0.1, θ = 1.2, c = 4,
η = 0.1, ξ = 0.03, d = 0.8, h = 0.1, and μi = 0.1 (i = 1, 2, 3). The other parameters will be
chosen in what follows.

Let us consider the initial values:
IV1: ψ1

ω = 800, ψ2
ω = 8, ψ3

ω = 1, ψ4
ω = 0.5, ψ5

ω = 1, ψ6
ω = 0.5,

IV2: ψ1
ω = 600, ψ2

ω = 10, ψ3
ω = 3, ψ4

ω = 1, ψ5
ω = 3, ψ6

ω = 1, and
IV3: ψ1

ω = 400, ψ2
ω = 12, ψ3

ω = 5, ψ4
ω = 2, ψ5

ω = 5, ψ6
ω = 2, ω = –m, –m + 1, . . . , 0.

• Stability of equilibria
We choose τ1 = 0.1, τ2 = 0.5, τ3 = 0.9 and choose κ , η, and ξ are varied as follows.

Case (1) κ = 0.003, q = 0.05, and g = 0.002. This yields R0 = 0.634 < 1. Figure 1 shows
that the concentration of healthy cells increases and tends to the value F0 = 1089.96. More-
over, the concentrations of infected cells, free viruses, antibodies, and CTL cells decay and
reach zero for IV1–IV3. Consequently, there exists only one equilibrium that is Q0 and it
is G.A.S. This result supports the result of Theorem 1.

Case (2) κ = 0.01, q = 0.05, and g = 0.002. With these values we obtain RY
1 = 0.799 <

1 < R0 = 2.112 and RZ
1 = 0.440 < 1 < R0 = 2.112. Figure 2 displays that for all the

three initial values IV1–IV3, the solutions of the system reach the equilibrium Q∗ =
(523.57, 10.285, 5.244, 1.438, 0, 0). Consequently, Q∗ exists and it is G.A.S. This agrees with
the result of Theorem 2.

Case (3) κ = 0.01, q = 0.2, and g = 0.002 and then R0 = 2.112 > 1, RY
1 = 1.587 > 1, and

RZ
1 = 0.440 < 1. Figure 3 displays that the solutions of the system reach the equilibrium

Q = (823.137, 5.676, 2.894, 0.5, 2.934, 0) for all the initial values IV1–IV3. Thus Q exists
and it is G.A.S. This result is consistent with the result of Theorem 3.

Case (4) κ = 0.01, q = 0.005, and g = 0.01 and then R0 = 2.112 > 1, RZ
1 = 1.337 > 1, and

RY
1 /RZ

2 = 0.041 < 1. From Fig. 4 we can see that, for all the initial values IV1–IV3, the
solutions of the system tend to the equilibrium Q̂ = (695.628, 7.866, 3, 0.823, 0, 2.020). This
result shows that Q̂ exists and it is G.A.S, and this agrees with the result of Theorem 4.

Case (5) κ = 0.01, q = 0.3, and g = 0.02 and thenR0 = 2.112 > 1,RY
1 = 1.742 > 1, andRZ

2 =
1.412 > 1. From Fig. 5 we observe that the solutions of the system reach the equilibrium
Q̃ = (901.96, 4.153, 1.5, 0.333, 1.169, 2.469). This yields that Q̃ exists and it is G.A.S. This
illustrates the result of Theorem 5.

• Impact of time delay on the viral dynamics
Without loss of generality we let τ = τ1 = τ2 = τ3. We fix the values κ = 0.01, q = 0.3,

and g = 0.02 and select different values of τ . We solve the system with initial IV2. Figure 6
shows the influence of the time delay parameter τ on the stability of the equilibria. One
can see that as τ is increased, the concentration of healthy cells is increased, while the
concentrations of infected cells, free viruses, CTL cells, and antibodies are decreased. Let
us write R0 as follows:

R0(τ ) = F0
(

m(1 – ε)e–(μ1+μ3)τ

α + m
+ εe–(μ2+μ3)τ

)(
κθ

ac

)

.
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Figure 1 The simulation of trajectories of system (21)–(26) for CaseR0 ≤ 1

Since R0 is a decreasing function of τ , then the time delay can change the stability prop-
erties of equilibria. Using the values of the parameters and from Fig. 6 we can see that if
τ ≥ 4.373, then Q0 is G.A.S. Biologically, the time delays play a similar role of antiviral
treatment in eliminating the viruses from the body.

4 Conclusion
In this paper, we formulated and analyzed a discrete-time viral infection model with both
antibody and cell-mediated immune responses. We incorporated two categories of in-
fected cells, namely latently infected cells (such cells contain the virus but are not pro-
ducing) and actively infected cells (such cells produce new viruses). The production and
removal rates of the cells and viruses as well as the incidence rate were modeled by general
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Figure 2 The simulation of trajectories of system (21)–(26) for CaseRY
1 ≤ 1 <R0 andRZ

1 ≤ 1 <R0

nonlinear functions which satisfy a set of conditions. These general functions encompass
several specific forms commonly used in the virus dynamics literature. We incorporated
three types of time delays, in which the first and second delays describe the times between
a virus contacts a susceptible cell and the cell becomes latently infected and actively in-
fected cell, respectively. The third delay is the time from death of an infected cell until the
virus is active. We used nonstandard finite difference scheme to discretize the continuous-
time model. We showed that the solutions of the discrete-time model with given initial
states are positive and bounded. We derived four threshold parameters which fully de-
termine the existence and stability of the five equilibria of the model. Then, we proved
the global stability of the equilibria by constructing Lyapunov functions. Moreover, we
performed numerical simulations to support the global stability results. We studied the
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Figure 3 The simulation of trajectories of system (21)–(26) for CaseRY
1 > 1 andRZ

1 ≤ 1

effect of time delay on the virus dynamics. Since Q0 is the desired equilibrium to be sta-
bilized, we determined the critical time delay parameter τ critical by solving the equation
R0(τ critical) = 1 and showed that Q0 is globally asymptotically stable when τ ≥ τ critical. This
shows that the time delay can have a similar effect as the antiviral drugs. This gives some
impression to develop a new class of treatment to increase the delay period and then sup-
press the viral replication. It is worth emphasizing that the role of the delay term does
not only take into account the delay in the dynamical response of the interacting entities,
but also their heterogeneity. This can be accounted for by modeling interactions as shown
in [63]. Recently, many authors have argued that the virus moves freely in body and fol-
lows the Fickian diffusion (see, e.g., [64–66]). Therefore, it is more reasonable to study
reaction-diffusion versions of our model. We leave these points as possible future works.
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Figure 4 The simulation of trajectories of system (21)–(26) for CaseRZ
1 > 1 andRY

1/RZ
2 ≤ 1

Appendix

Proof of Lemma 1 First we put n = 0 and show that there exists positive and unique
(F1, K1, S1, H1, Y1, Z1). From Eq. (11) we have

F1 – F0 – φ(h)Θ(F1) + φ(h)Λ(F1, H0) = 0.

We define a function χ1(F) as follows:

χ1(F) = F – F0 – φ(h)Θ(F) + φ(h)Λ(F , H0) = 0.
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Figure 5 The simulation of trajectories of system (21)–(26) for CaseRY
1 >RZ

2 > 1

According to Conditions C1–C2 we have χ1 is a strictly increasing function in F and

χ1(0) = –F0 – φ(h)Θ(0) < 0,

lim
F→∞χ1(F) = ∞.

Hence, there exists unique F1 > 0 such that χ1(F1) = 0.
From Eq. (12) we have

K1 – K0 – φ(h)(1 – ε)e–μ1τ1Λ(F–m1+1, H–m1 ) + φ(h)(α + m)�1(K1) = 0.
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Figure 6 The simulation of trajectories of system (21)–(26) with different values of τ

Define a function χ2(K) as follows:

χ2(K) = K – K0 – φ(h)(1 – ε)e–μ1τ1Λ(F–m1+1, H–m1 ) + φ(h)(α + m)�1(K) = 0.

Conditions C2–C3 imply that χ2 is a strictly increasing function in K . In addition,

χ2(0) = –K0 – φ(h)(1 – ε)e–μ1τ1Λ(F–m1+1, H–m1 ) < 0,

lim
K→∞χ2(K) = ∞.

It follows that there exists unique K1 ∈ (0,∞) such that χ2(K1) = 0.
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Since �2(S1) = S1, �3(H1) = H1, �4(Y1) = Y1, and �5(Z1) = Z1, then from Eqs. (13) and
(16) we get

Z1 = Z0 +
φ(h)g[S0 + φ(h)εe–μ2τ2Λ(F–m2+1, H–m2 ) + φ(h)m�1(K1)]

1 + φ(h)(a + λZ1)
Z1

– φ(h)ξZ1.

Then

A1Z2
1 + B1Z1 + C1 = 0, (27)

where

A1 =
(
1 + φ(h)ξ

)
φ(h)λ,

B1 =
(
1 + φ(h)ξ

)(
1 + φ(h)a

)
– φ(h)λZ0

– φ(h)g
[
S0 + φ(h)e–μ2τ2Λ(F–m2+1, H–m2 ) + φ(h)m�1(K1)

]
,

C1 = –
(
1 + φ(h)a

)
Z0.

Since A1 > 0, C1 < 0, then B2
1 – 4A1C1 > 0, and hence there exists a unique positive root of

Eq. (27) Z1 > 0. It follows from Eq. (13)

S1 =
S0 + φ(h)εe–μ2τ2Λ(F–m2+1, H–m2 ) + φ(h)m�1(K1)

1 + φ(h)(a + λZ1)
> 0.

Then we have S1 > 0.
Now we show that Y1 > 0. From Eqs. (14)–(15) we get

Y1 = Y0 +
φ(h)q(H0 + φ(h)θe–μ3τ3 S–m3+1)

1 + φ(h)(c + dY1)
Y1 – φ(h)ηY1.

Then we get

A2Y 2
1 + B2Y1 + C2 = 0, (28)

where

A2 =
(
1 + φ(h)η

)
φ(h)d,

B2 =
(
1 + φ(h)η

)(
1 + φ(h)c

)
– φ(h) dY0 – φ(h)q

[
H0 + φ(h)θe–μ3τ3�2(S–m3+1)

]
,

C2 = –
(
1 + φ(h)c

)
Y0.

Since A2 > 0, C2 < 0, then B2
2 – 4A2C2 > 0, and hence there exists a unique positive root of

Eq. (28) Y1 > 0.
From Eq. (14) we get

H1 =
H0 + φ(h)θe–μ3τ3 S–m3+1

1 + φ(h)(c + dY1)
> 0.

Therefore, the solution (F1, K1, S1, H1, Y1, Z1) exists uniquely and is positive.
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Repeating the above process for n = 1, we can prove that (F2, K2, S2, H2, Y2, Z2) exists
uniquely and is positive. Therefore, mathematical induction yields that, for all n ∈ N,
(Fn, Kn, Sn, Hn, Yn, Zn) exists uniquely and is positive.

By induction, we obtain Fn > 0, Kn > 0, Sn > 0, Hn > 0, Yn > 0, and Zn > 0 ∀n ≥ 0. To
investigate the boundedness of solution, from Eq. (11) we have

Fn+1 – Fn

φ(h)
≤Θ(Fn+1) ≤ b – bFn+1.

Hence

Fn+1 ≤ Fn

1 + φ(h)b
+

φ(h)b
1 + φ(h)b

.

By Lemma 2.2 in [67] we have

Fn ≤
(

1
1 + φ(h)b

)n

F0 +
b
b

[

1 –
(

1
1 + φ(h)b

)n]

,

which implies that limn→∞ sup Fn ≤ b/b ≤ ϑ1. Define

Ωn = (1 – ε)e–μ1τ1 Fn–m1 + εe–μ2τ2 Fn–m2 + Kn + Sn +
λ

g
Zn.

Then

Ωn+1 – Ωn = (1 – ε)e–μ1τ1 (Fn–m1+1 – Fn–m1 ) + εe–μ2τ2 (Fn–m2+1 – Fn–m2 )

+ Kn+1 – Kn + Sn+1 – Sn +
λ

g
(Zn+1 – Zn)

= (1 – ε)e–μ1τ1φ(h)
[
Θ(Fn–m1+1) – Λ(Fn–m1+1, Hn–m1 )

]

+ εe–μ2τ2φ(h)
[
Θ(Fn–m2+1) – Λ(Fn–m2+1, Hn–m2 )

]

+ φ(h)
[
(1 – ε)e–μ1τ1Λ(Fn–m1+1, Hn–m1 ) – (α + m)�1(Kn+1)

]

+ φ(h)
[
εe–μ2τ2Λ(Fn–m2+1, Hn–m2 ) + m�1(Kn+1) – a�2(Sn+1)

– λ�2(Sn+1)�5(Zn+1)
]

+ φ(h)
λ

g
[
g�2(Sn+1)�5(Zn+1) – ξ�5(Zn+1)

]

= φ(h)
[

(1 – ε)e–μ1τ1Θ(Fn–m1+1) + εe–μ2τ2Θ(Fn–m2+1) – α�1(Kn+1)

– aSn+1 –
λξ

g
Zn+1

]

.

According to Conditions C1 and C3, we have

Ωn+1 – Ωn ≤ φ(h)
[

(1 – ε)e–μ1τ1 (b – bFn–m1+1) + εe–μ2τ2 (b – bFn–m2+1) – αυ1Kn+1

– aSn+1 –
λξ

g
Zn+1

]

.
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We have

(1 – ε)e–μ1τ1 b + εe–μ2τ2 b ≤ b(1 – ε) + bε = b.

Then

Ωn+1 – Ωn

≤ φ(h)b – φ(h)σ1

[

(1 – ε)e–μ1τ1 Fn–m1+1 + εe–μ2τ2 Fn–m2+1 + Kn+1 + Sn+1 +
λ

g
Zn+1

]

= φ(h)b – φ(h)σ1Ωn+1.

Hence

Ωn+1 ≤ Ωn

1 + φ(h)σ1
+

φ(h)b
1 + φ(h)σ1

.

Consequently, we get limn→∞ supΩn ≤ ϑ1, limn→∞ sup Kn ≤ ϑ1, limn→∞ sup Sn ≤ ϑ1, and
limn→∞ sup Zn ≤ ϑ2. Thus, for any � > 0, there exists an integer �� > 0 such that Sn ≤
ϑ1 + � for n ≥ �� . We define

Ψn = Hn +
d
q

Yn.

Then

Ψn+1 – Ψn = Hn+1 – Hn +
d
q

(Yn+1 – Yn)

= φ(h)
(

θe–μ3τ3 Sn–m3+1 – cHn+1 –
dη
q

Yn+1

)

≤ φ(h)
(

θe–μ3τ3 (ϑ1 + � ) – cHn+1 –
dη
q

Yn+1

)

≤ φ(h)
(
θe–μ3τ3 (ϑ1 + � ) – σ2Ψn+1

)
for n ≥ �� + m3.

Then limn→∞ supΨn ≤ θe–μ3τ3 (ϑ1+� )
σ2

≤ θ (ϑ1+� )
σ2

. The arbitrariness of � yields that
limn→∞ supΨn ≤ θϑ1

σ2
= ϑ3. Hence, limn→∞ sup Hn ≤ ϑ3 and limn→∞ sup Yn ≤ ϑ4. There-

fore, the solution (Fn, Kn, Sn, Hn, Yn, Zn) converges to Γ as n → ∞. �

Proof of Lemma 2 The equilibria of system (11)–(16) satisfy:

Θ(F) – Λ(F , H) = 0, (29)

(1 – ε)e–μ1τ1Λ(F , H) – (α + m)�1(K) = 0, (30)

εe–μ2τ2Λ(F , H) + m�1(K) – a�2(S) – λ�2(S)�5(Z) = 0, (31)

θe–μ3τ3�2(S) – c�3(H) – d�3(H)�4(Y ) = 0, (32)

q�3(H)�4(Y ) – η�4(Y ) = 0, (33)

gλ�2(S)�5(Z) – ξ�5(Z) = 0. (34)
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From Eq. (33), either �4(Y ) = 0 or �4(Y ) �= 0 (�3(H) = η

q ). By solving Eq. (34), we get
�5(Z) = 0 or �5(Z) �= 0 (�2(S) = ξ

g ). If Condition C3 �4(Y ) = 0 and �5(Z) = 0 imply that
Y = 0 and Z = 0, thus we have the following possibilities:

1. Y = Z = 0, then Condition C3 implies that �–1
i , i = 1, . . . , 5, exist and they are strictly

increasing functions. From Eqs. (29)–(32) we get

K = �
–1
1

(
(1 – ε)e–μ1τ1Θ(F)

α + m

)

= π1(F), (35)

S = �
–1
2

(
γ eμ3τ3Θ(F)

a

)

= π2(F), (36)

H = �
–1
3

(
θγΘ(F)

ac

)

= π3(F), (37)

where

γ =
m(1 – ε)e–μ1τ1–μ3τ3

α + m
+ εe–μ2τ2–μ3τ3 . (38)

Obviously, πi(0) > 0 and πi(F0) = 0, i = 1, 2, 3. Substituting Eq. (37) into Eq. (32), we obtain

θγ

a
Λ

(
F ,π3(F)

)
– c�3

(
π3(F)

)
= 0. (39)

Equation (39) admits a solution F = F0, which gives K = S = H = 0 and leads to the
pathogen-free equilibrium Q0 = (F0, 0, 0, 0, 0, 0). Let

ψ1(F) =
θγ

a
Λ

(
F ,π3(F)

)
– c�3

(
π3(F)

)
= 0.

Then from Conditions C1–C3 we have

ψ1(0) = –c�3
(
π3(0)

)
< 0,

ψ1
(
F0) = 0.

Moreover,

ψ ′
1(F) =

θγ

a

[
∂Λ

∂F
+ π ′

3(F)
∂Λ

∂H

]

– cπ ′
3(F)�′

3
(
π3(F)

)
,

ψ ′
1
(
F0) =

θγ

a

[
∂Λ(F0, 0)

∂F
+ π ′

3
(
F0)∂Λ(F0, 0)

∂H

]

– cπ ′
3
(
F0)

�
′
3(0).

Condition C2 implies that ∂Λ(F0,0)
∂F = 0. Also, from Condition C3, we have �

′
3(0) > 0, then

ψ ′
1
(
F0) = cπ ′

3
(
F0)

�
′
3(0)

(
θγ

ac�′
3(0)

∂Λ(F0, 0)
∂H

– 1
)

=
θγΘ ′(F0)

a

(
θγ

ac�′
3(0)

∂Λ(F0, 0)
∂H

– 1
)

.
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From Condition C1, we have Θ ′(F0) < 0. Therefore, if

θγ

ac�′
3(0)

∂Λ(F0, 0)
∂H

> 1,

hence ψ ′
1(F0) < 0 and there exists F∗ ∈ (0, F0) such that ψ1(F∗) = 0. From Eqs. (35)–(37)

we obtain K∗ = π1(F∗) > 0, S∗ = π2(F∗) > 0, and H∗ = π3(F∗) > 0. Therefore, a persis-
tent infection equilibrium without immune response Q∗(F∗, K∗, H∗, S∗, 0, 0) exists when

θγ

ac�′
3(0)

∂Λ(F0,0)
∂H > 1. Let us define

R0 =
θγ

ac�′
3(0)

∂Λ(F0, 0)
∂H

.

2. Y �= 0 and Z = 0, we have H = �
–1
3 ( ηq ) > 0. Let H = H in Eq. (29) and define ψ2 as

follows:

ψ2(F) = Θ(F) – Λ(F , H) = 0.

According to Conditions C1 and C2, we have

ψ2(0) = Θ(0) > 0 and ψ2
(
F0) = –Λ

(
F0, H

)
< 0.

Since ψ2(F) is a strictly decreasing function of F , then there exists unique F ∈ (0, F0) such
that ψ2(F) = 0. Now from Eqs. (32), (35), and (36) we obtain

K = π1(F), S = π2(F), Y = �
–1
4

(
c
d

(
θγΛ(F , H)
ac�3(H)

– 1
))

.

Clearly, K > 0 and S > 0; moreover, Y > 0 when θγΛ(F ,H)
ac�3(H) > 1. Now we define

RY
1 =

θγΛ(F , H)
ac�3(H)

.

Hence, Y can be rewritten as Y = �
–1
4 ( c

d (RY
1 – 1)). It follows that there exists a persistent

infection equilibrium with only humoral immune response Q(F , K , S, H , Y , 0) if RY
1 > 1.

3. Z �= 0 and Y = 0, we have Ŝ = �
–1
2 ( ξg ) > 0. Let S = Ŝ in Eq. (32), then we have

Ĥ = �
–1
3

(
θe–μ3τ3ξ

cg

)

> 0.

Let H = Ĥ in Eq. (29) and define ψ3 as follows:

ψ3(F) = Θ(F) – Λ(F , Ĥ) = 0.

Clearly,

ψ3(0) = Θ(0) > 0 and ψ3
(
F0) = –Λ

(
F0, Ĥ

)
< 0.
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According to Conditions C1 and C2, there exists unique F̂ ∈ (0, F0) such that ψ3(̂F) = 0.
From Eq. (35) we conclude that K̂ = π1(̂F) > 0. Now from Eqs. (30)–(32) we have Ẑ =
�

–1
5 ( a

λ
(RZ

1 – 1)), where

RZ
1 =

θγΛ(̂F , Ĥ)
ac�3(Ĥ)

.

Consequently, there exists a persistent infection equilibrium with only CTL immune re-
sponse Q̂(̂F , K̂ , Ŝ, Ĥ , 0, Ẑ) if RZ

1 > 1.
4. Z �= 0 and Y �= 0, we have H̃ = H = �

–1
3 ( ηq ) > 0 and S̃ = Ŝ = �

–1
2 ( ξg ) > 0. Let H = H̃ in

Eq. (29) and define ψ4 as follows:

ψ4(F) = Θ(F) – Λ(F , H̃) = 0.

Clearly,

ψ4(0) = Θ(0) > 0 and ψ4
(
F0) = –Λ

(
F0, H̃

)
< 0.

According to C1 and C2, there exists unique F̃ ∈ (0, F0) such that ψ4(̃F) = 0. Thus, we
conclude from Eq. (35) that K̃ = π1(̃F) > 0. Now from Eqs. (30)–(32) we have

Z̃ = �
–1
5

(
a
λ

(
RZ

2 – 1
)
)

and Ỹ = �
–1
4

(
c
d

((
RY

1 /RZ
2
)

– 1
)
)

> 0,

where

RZ
2 =

eμ3τ3γΛ(̃F , H̃)
a�2(̃S)

and RY
1 /RZ

2 =
θ�2(̃S)Λ(F , H)
c�3(H̃)Λ(̃F , H̃)

=
θe–μ3τ3ξq

cgη
.

It follows that there exists a persistent infection equilibrium with both humoral and CTL
immune responses Q̃(̃F , K̃ , S̃, H̃ , Ỹ , Z̃) if RY

1 > RZ
2 > 1. �

Proof of Theorem 1 Define

Ln =
1

φ(h)

[

γ

(

Fn – F0 –
∫ Fn

F0
lim

H→0+

Λ(F0, H)
Λ(ς , H)

dς
)

+
me–μ3τ3

α + m
Kn + e–μ3τ3 Sn +

a
θ

Hn

+
ad
θq

Yn +
λe–μ3τ3

g
Zn

]

+
ac
θ
�3(Hn) +

adη
θq

�4(Yn) +
λξe–μ3τ3

g
�5(Zn)

+
m(1 – ε)e–μ1τ1–μ3τ3

α + m

n–1∑

j=n–m1

Λ(Fj+1, Hj) + εe–μ2τ2–μ3τ3
n–1∑

j=n–m2

Λ(Fj+1, Hj)

+ ae–μ3τ3
n–1∑

j=n–m3

�2(Sj+1),

where γ is defined by Eq. (38). Hence, Ln > 0 for all Fn, Kn, Sn, Hn, Yn, Zn > 0, and Ln = 0 if
and only if Fn = F0, Kn = 0, Sn = 0, Hn = 0, Yn = 0, and Zn = 0. We compute the difference
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!Ln = Ln+1 – Ln as follows:

!Ln =
1

φ(h)

[

γ

(

Fn+1 – F0 –
∫ Fn+1

F0
lim

H→0+

Λ(F0, H)
Λ(ς , H)

dς
)

+
me–μ3τ3

α + m
Kn+1 + e–μ3τ3 Sn+1 +

a
θ

Hn+1

+
ad
θq

Yn+1 +
λe–μ3τ3

g
Zn+1

]

+
ac
θ
�3(Hn+1) +

adη
θq

�4(Yn+1)

+
λξe–μ3τ3

g
�5(Zn+1)

+
m(1 – ε)e–μ1τ1–μ3τ3

α + m

n∑

j=n–m1+1

Λ(Fj+1, Hj)

+ εe–μ2τ2–μ3τ3
n∑

j=n–m2+1

Λ(Fj+1, Hj) + ae–μ3τ3
n∑

j=n–m3+1

�2(Sj+1)

–
1

φ(h)

[

γ

(

Fn – F0 –
∫ Fn

F0
lim

H→0+

Λ(F0, H)
Λ(ς , H)

dς
)

+
me–μ3τ3

α + m
Kn

+ e–μ3τ3 Sn +
a
θ

Hn +
ad
θq

Yn

+
λe–μ3τ3

g
Zn

]

–
ac
θ
�3(Hn) –

adη
θq

�4(Yn) –
λξe–μ3τ3

g
�5(Zn)

–
m(1 – ε)e–μ1τ1–μ3τ3

α + m

n–1∑

j=n–m1

Λ(Fj+1, Hj)

– εe–μ2τ2–μ3τ3
n–1∑

j=n–m2

Λ(Fj+1, Hj) – ae–μ3τ3
n–1∑

j=n–m3

�2(Sj+1),

!Ln =
1

φ(h)

[

γ

(

Fn+1 – Fn –
∫ Fn+1

Fn

lim
H→0+

Λ(F0, H)
Λ(ς , H)

dς
)

+
me–μ3τ3

α + m
(Kn+1 – Kn)

+ e–μ3τ3 (Sn+1 – Sn) +
a
θ

(Hn+1 – Hn) +
ad
θq

(Yn+1 – Yn)

+
λe–μ3τ3

g
(Zn+1 – Zn)

]

+
ac
θ

[
�3(Hn+1) – �3(Hn)

]
+

adη
θq

[
�4(Yn+1) – �4(Yn)

]

+
λξe–μ3τ3

g
[
�5(Zn+1) – �5(Zn)

]

+
m(1 – ε)e–μ1τ1–μ3τ3

α + m

( n∑

j=n–m1+1

Λ(Fj+1, Hj) –
n–1∑

j=n–m1

Λ(Fj+1, Hj)

)

+ εe–μ2τ2–μ3τ3

( n∑

j=n–m2+1

Λ(Fj+1, Hj) –
n–1∑

j=n–m2

Λ(Fj+1, Hj)

)

+ ae–μ3τ3

( n∑

j=n–m3+1

�2(Sj+1) –
n–1∑

j=n–m3

�2(Sj+1)

)

.
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Using Lemma 3.1 [68], we get

lim
H→0+

Λ(F0, H)
Λ(Fn+1, H)

(Fn+1 – Fn) ≤
∫ Fn+1

Fn

lim
H→0+

Λ(F0, H)
Λ(ς , H)

dς

≤ lim
H→0+

Λ(F0, H)
Λ(Fn, H)

(Fn+1 – Fn).

Hence

!Ln ≤ 1
φ(h)

[

γ

(

1 – lim
H→0+

Λ(F0, H)
Λ(Fn+1, H)

)

(Fn+1 – Fn)

+
me–μ3τ3

α + m
(Kn+1 – Kn) + e–μ3τ3 (Sn+1 – Sn)

+
a
θ

(Hn+1 – Hn) +
ad
θq

(Yn+1 – Yn) +
λe–μ3τ3

g
(Zn+1 – Zn)

]

+
ac
θ

[
�3(Hn+1) – �3(Hn)

]

+
adη
θq

[
�4(Yn+1) – �4(Yn)

]
+
λξe–μ3τ3

g
[
�5(Zn+1) – �5(Zn)

]

+
m(1 – ε)e–μ1τ1–μ3τ3

α + m
[
Λ(Fn+1, Hn) – Λ(Fn–m1+1, Hn–m1 )

]

+ εe–μ2τ2–μ3τ3
[
Λ(Fn+1, Hn) – Λ(Fn–m2+1, Hn–m2 )

]

+ ae–μ3τ3
[
�2(Sn+1) – �2(Sn–m3+1)

]
.

From Eqs. (11)–(16) we have

!Ln ≤ γ

(

1 – lim
H→0+

Λ(F0, H)
Λ(Fn+1, H)

)
(
Θ(Fn+1) – Λ(Fn+1, Hn)

)

+
me–μ3τ3

α + m
[
(1 – ε)e–μ1τ1Λ(Fn–m1+1, Hn–m1 ) – (α + m)�1(Kn+1)

]

+ e–μ3τ3
[
εe–μ2τ2Λ(Fn–m2+1, Hn–m2 ) + m�1(Kn+1) – a�2(Sn+1)

– λ�2(Sn+1)�5(Zn+1)
]

+
a
θ

[
θe–μ3τ3�2(Sn–m3+1) – c�3(Hn+1) – d�3(Hn+1)�4(Yn+1)

]

+
ad
θq

[
q�3(Hn+1)�4(Yn+1) – η�4(Yn+1)

]

+
λe–μ3τ3

g
[
g�2(Sn+1)�5(Zn+1) – ξ�5(Zn+1)

]

+
ac
θ

[
�3(Hn+1) – �3(Hn)

]
+

adη
θq

[
�4(Yn+1) – �4(Yn)

]

+
λξe–μ3τ3

g
[
�5(Zn+1) – �5(Zn)

]

+
m(1 – ε)e–μ1τ1–μ3τ3

α + m
[
Λ(Fn+1, Hn) – Λ(Fn–m1+1, Hn–m1 )

]

+ εe–μ2τ2–μ3τ3
[
Λ(Fn+1, Hn) – Λ(Fn–m2+1, Hn–m2 )

]



Elaiw and Alshaikh Advances in Difference Equations         (2020) 2020:54 Page 24 of 51

+ ae–μ3τ3
[
�2(Sn+1) – �2(Sn–m3+1)

]

= γ

(

1 – lim
H→0+

Λ(F0, H)
Λ(Fn+1, H)

)

Θ(Fn+1) + γ lim
H→0+

Λ(F0, H)
Λ(Fn+1, H)

Λ(Fn+1, Hn)

–
ac
θ
�3(Hn) –

adη
θq

�4(Yn) –
λξe–μ3τ3

g
�5(Zn).

Using Θ(F0) = 0, we obtain

!Ln ≤ γ

(

1 –
∂Λ(F0, 0)/∂H
∂Λ(Fn+1, 0)/∂H

)
(
Θ(Fn+1) – Θ

(
F0)) + γ

∂Λ(F0, 0)/∂H
∂Λ(Fn+1, 0)/∂H

Λ(Fn+1, Hn)

–
ac
θ
�3(Hn) –

adη
θq

�4(Yn) –
λξe–μ3τ3

g
�5(Zn)

= γ

(

1 –
∂Λ(F0, 0)/∂H
∂Λ(Fn+1, 0)/∂H

)
(
Θ(Fn+1) – Θ

(
F0))

+
ac
θ

(
γ θ

ac
∂Λ(F0, 0)/∂H
∂Λ(Fn+1, 0)/∂H

Λ(Fn+1, Hn)
�3(Hn)

– 1
)

�3(Hn)

–
adη
θq

�4(Yn) –
λξe–μ3τ3

g
�5(Zn).

From Condition C4 we have

Λ(Fn+1, Hn)
�3(Hn)

≤ lim
H→0+

Λ(Fn+1, H)
�3(H)

=
∂Λ(Fn+1, 0)/∂H

�
′
3(0)

.

Then we get

!Ln ≤ γ

(

1 –
∂Λ(F0, 0)/∂H
∂Λ(Fn+1, 0)/∂H

)
(
Θ(Fn+1) – Θ

(
F0))

+
ac
θ

(
γ θ

ac
∂Λ(F0, 0)/∂H

�
′
3(0)

– 1
)

�3(Hn)

–
adη
θq

�4(Yn) –
λξe–μ3τ3

g
�5(Zn)

= γ

(

1 –
∂Λ(F0, 0)/∂H
∂Λ(Fn+1, 0)/∂H

)
(
Θ(Fn+1) – Θ

(
F0)) +

ac
θ

(R0 – 1)�3(Hn)

–
adη
θq

�4(Yn) –
λξe–μ3τ3

g
�5(Zn).

Conditions C1 and C2 imply that

(

1 –
∂Λ(F0, 0)/∂H
∂Λ(Fn+1, 0)/∂H

)
(
Θ(Fn+1) – Θ

(
F0)) ≤ 0.

Hence, if R0 ≤ 1, then we have !Ln ≤ 0 for all n ≥ 0. Obviously, limn→∞ !Ln = 0 if
limn→∞ Fn = F0, limn→∞(R0 – 1)�3(Hn) = 0, limn→∞ �4(Yn) = 0, and limn→∞ �5(Zn) = 0.
We have two cases:

• If R0 < 1, then limn→∞ �3(Hn) = 0, limn→∞ �4(Yn) = 0, limn→∞ �5(Zn) = 0, and from
Condition C3 we get limn→∞ Hn = 0, limn→∞ Yn = 0, and limn→∞ Zn = 0, then we get
from Eqs. (13)–(14) limn→∞ Kn = 0 and limn→∞ Sn = 0.
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• If R0 = 1, then limn→∞ !Kn = 0 when limn→∞ Yn = 0, limn→∞ Zn = 0, and
limn→∞ Fn = F0, and from Eq. (11) we obtain limn→∞ Λ(F0, Hn) = 0, then
limn→∞ Hn = 0. Moreover, from Eqs. (13)–(14) we get limn→∞ Kn = 0, limn→∞ Sn = 0.
Hence Q0 is G.A.S. �

Proof of Lemma 3 From Conditions C1 and C2, for F∗, F , F̂ , S∗, Ŝ, H∗, H , Ĥ > 0, we have

(
F∗ – F

)(
Θ(F) – Θ

(
F∗)) > 0, (40)

(
F – F∗)(Λ(F , H) – Λ

(
F∗, H

))
> 0, (41)

(
H – H∗)(Λ

(
F∗, H

)
– Λ

(
F∗, H∗)) > 0, (42)

(
H – H∗)(Λ(F , H) – Λ

(
F , H∗)) > 0. (43)

Using Condition C4, we get

(
H∗ – H

)
(
Λ(F∗, H)
�3(H)

–
Λ(F∗, H∗)
�3(H∗)

)

> 0. (44)

Suppose that sgn(F – F∗) = sgn(H – H∗). For the equilibria Q∗ and Q, we have

Θ(F) – Θ
(
F∗) = Λ(F , H) – Λ

(
F∗, H∗)

=
(
Λ(F , H) – Λ

(
F∗, H

))
+

(
Λ

(
F∗, H

)
– Λ

(
F∗, H∗)).

Therefore, from inequalities (40)–(43) we get

sgn
(
F∗ – F

)
= sgn

(
F – F∗),

which leads to a contradiction. Thus, sgn(F – F∗) = sgn(H∗ – H). Using the equilibrium
conditions for Q∗, we have θγΛ(F∗ ,H∗)

ac�3(H∗) = 1, then

RY
1 – 1 =

θγΛ(F , H)
ac�3(H)

–
θγΛ(F∗, H∗)

ac�3(H∗)

=
θγ

ac

[
Λ(F , H)
�3(H)

–
Λ(F∗, H∗)
�3(H∗)

]

=
θγ

ac

[
1

�3(H)
(
Λ(F , H) – Λ

(
F∗, H

))
+
Λ(F∗, H)
�3(H)

–
Λ(F∗, H∗)
�3(H∗)

]

.

Thus, from inequalities (41)–(44) we get sgn(RY
1 – 1) = sgn(H∗ – H). Similarly, one can

show that sgn(̂F – F∗) = sgn(H∗ – Ĥ) = sgn(RZ
1 – 1). Moreover, we have

�2
(
S∗) – �2(̂S) =

ceμ3τ3

θ

(
�3

(
H∗) – �3(Ĥ)

)
,

which gives us sgn(H∗ – Ĥ) = sgn(S∗ – Ŝ). �
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Proof of Theorem 2 Consider a function Un(Fn, Kn, Sn, Hn, Yn, Zn) as follows:

Un =
1

φ(h)

[

γ

(

Fn – F∗ –
∫ Fn

F∗

Λ(F∗, H∗)
Λ(ς , H∗)

dς
)

+
me–μ3τ3

α + m

(

Kn – K∗ –
∫ Kn

K∗

�1(K∗)
�1(ς )

dς
)

+ e–μ3τ3

(

Sn – S∗ –
∫ Sn

S∗

�2(S∗)
�2(ς )

dς
)

+
a
θ

(

Hn – H∗ –
∫ Hn

H∗

�3(H∗)
�3(ς )

dς
)

+
ad
θq

Yn +
λe–μ3τ3

g
Zn

]

+
ac
θ
�3

(
H∗)G

(
�3(Hn)
�3(H∗)

)

+
m(1 – ε)e–μ1τ1–μ3τ3

α + m
Λ

(
F∗, H∗)

n–1∑

j=n–m1

G
(
Λ(Fj+1, Hj)
Λ(F∗, H∗)

)

+ εe–μ2τ2–μ3τ3Λ
(
F∗, H∗)

n–1∑

j=n–m2

G
(
Λ(Fj+1, Hj)
Λ(F∗, H∗)

)

+ ae–μ3τ3�2
(
S∗)

n–1∑

j=n–m3

G
(
�2(Sj+1)
�2(S∗)

)

.

We have Un(Fn, Kn, Sn, Hn, Yn, Zn) > 0 for all Fn, Kn, Sn, Hn, Yn, Zn > 0; moreover, Un(F∗, K∗,
S∗, H∗, 0, 0) = 0. We compute !Un = Un+1 – Un as follows:

�Un =
1

φ(h)

[

γ

(

Fn+1 – F∗ –
∫ Fn+1

F∗

Λ(F∗, H∗)
Λ(ς , H∗)

dς
)

+
me–μ3τ3

α + m

(

Kn+1 – K∗ –
∫ Kn+1

K∗

�1(K∗)
�1(ς )

dς
)

+ e–μ3τ3

(

Sn+1 – S∗ –
∫ Sn+1

S∗

�2(S∗)
�2(ς )

dς
)

+
a
θ

(

Hn+1 – H∗ –
∫ Hn+1

H∗

�3(H∗)
�3(ς )

dς
)

+
ad
θq

Yn+1 +
λe–μ3τ3

g
Zn+1

]

+
ac
θ
�3

(
H∗)G

(
�3(Hn+1)
�3(H∗)

)

+
m(1 – ε)e–μ1τ1–μ3τ3

α + m
Λ

(
F∗, H∗)

n∑

j=n–m1+1

G
(
Λ(Fj+1, Hj)
Λ(F∗, H∗)

)

+ εe–μ2τ2–μ3τ3Λ
(
F∗, H∗)

n∑

j=n–m2+1

G
(
Λ(Fj+1, Hj)
Λ(F∗, H∗)

)

+ ae–μ3τ3�2
(
S∗)

n∑

j=n–m3+1

G
(
�2(Sj+1)
�2(S∗)

)

–
1

φ(h)

[

γ

(

Fn – F∗ –
∫ Fn

F∗

Λ(F∗, H∗)
Λ(ς , H∗)

dς
)

+
me–μ3τ3

α + m

(

Kn – K∗ –
∫ Kn

K∗

�1(K∗)
�1(ς )

dς
)

+ e–μ3τ3

(

Sn – S∗ –
∫ Sn

S∗

�2(S∗)
�2(ς )

dς
)
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+
a
θ

(

Hn – H∗ –
∫ Hn

H∗

�3(H∗)
�3(ς )

dς
)

+
ad
θq

Yn +
λe–μ3τ3

g
Zn

]

–
ac
θ
�3

(
H∗)G

(
�3(Hn)
�3(H∗)

)

–
m(1 – ε)e–μ1τ1–μ3τ3

α + m
Λ

(
F∗, H∗)

n–1∑

j=n–m1

G
(
Λ(Fj+1, Hj)
Λ(F∗, H∗)

)

– εe–μ2τ2–μ3τ3Λ
(
F∗, H∗)

n–1∑

j=n–m2

G
(
Λ(Fj+1, Hj)
Λ(F∗, H∗)

)

– ae–μ3τ3�2
(
S∗)

n–1∑

j=n–m3

G
(
�2(Sj+1)
�2(S∗)

)

,

�Un =
1

φ(h)

[

γ

(

Fn+1 – Fn –
∫ Fn+1

Fn

Λ(F∗, H∗)
Λ(ς , H∗)

dς
)

+
me–μ3τ3

α + m

(

Kn+1 – Kn –
∫ Kn+1

Kn

�1(K∗)
�1(ς )

dς
)

+ e–μ3τ3

(

Sn+1 – Sn –
∫ Sn+1

Sn

�2(S∗)
�2(ς )

dς
)

+
a
θ

(

Hn+1 – Hn –
∫ Hn+1

Hn

�3(H∗)
�3(ς )

dς
)

+
ad
θq

(Yn+1 – Yn) +
λe–μ3τ3

g
(Zn+1 – Zn)

]

+
ac
θ
�3

(
H∗)

[

G
(
�3(Hn+1)
�3(H∗)

)

– G
(
�3(Hn)
�3(H∗)

)]

+
m(1 – ε)e–μ1τ1–μ3τ3

α + m
Λ

(
F∗, H∗)

[

G
(
Λ(Fn+1, Hn)
Λ(F∗, H∗)

)

– G
(
Λ(Fn–m1+1, Hn–m1 )

Λ(F∗, H∗)

)]

+ εe–μ2τ2–μ3τ3Λ
(
F∗, H∗)

[

G
(
Λ(Fn+1, Hn)
Λ(F∗, H∗)

)

– G
(
Λ(Fn–m2+1, Hn–m2 )

Λ(F∗, H∗)

)]

+ ae–μ3τ3�2
(
S∗)

[

G
(
�2(Sn+1)
�2(S∗)

)

– G
(
�2(Sn–m3+1)

�2(S∗)

)]

.

We have

(

1 –
Λ(F∗, H∗)
Λ(Fn, H∗)

)

(Fn+1 – Fn) ≤ Fn+1 – Fn –
∫ Fn+1

Fn

Λ(F∗, H∗)
Λ(ς , H∗)

dς

≤
(

1 –
Λ(F∗, H∗)
Λ(Fn+1, H∗)

)

(Fn+1 – Fn), (45)

(

1 –
�i(ρ∗)
�i(ρn)

)

(ρn+1 – ρn) ≤ ρn+1 – ρn –
∫ ρn+1

ρn

�i(ρ∗)
�i(ς )

dς

≤
(

1 –
�i(ρ∗)
�i(ρn+1)

)

(ρn+1 – ρn), (46)

i = 1, . . . , 5, ρ∗ ∈ {K∗, S∗, H∗}.
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Then

!Un ≤ 1
φ(h)

[

γ

(

1 –
Λ(F∗, H∗)
Λ(Fn+1, H∗)

)

(Fn+1 – Fn) +
me–μ3τ3

α + m

(

1 –
�1(K∗)
�1(Kn+1)

)

(Kn+1 – Kn)

+ e–μ3τ3

(

1 –
�2(S∗)
�2(Sn+1)

)

(Sn+1 – Sn) +
a
θ

(

1 –
�3(H∗)
�3(Hn+1)

)

(Hn+1 – Hn)

+
ad
θq

(Yn+1 – Yn)

+
λe–μ3τ3

g
(Zn+1 – Zn)

]

+
ac
θ
�3

(
H∗)

[
�3(Hn+1)
�3(H∗)

–
�3(Hn)
�3(H∗)

+ ln

(
�3(Hn)
�3(Hn+1)

)]

+
m(1 – ε)e–μ1τ1–μ3τ3

α + m
Λ

(
F∗, H∗)

[
Λ(Fn+1, Hn)
Λ(F∗, H∗)

–
Λ(Fn–m1+1, Hn–m1 )

Λ(F∗, H∗)

+ ln

(
Λ(Fn–m1+1, Hn–m1 )

Λ(Fn+1, Hn)

)]

+ εe–μ2τ2–μ3τ3Λ
(
F∗, H∗)

[
Λ(Fn+1, Hn)
Λ(F∗, H∗)

–
Λ(Fn–m2+1, Hn–m2 )

Λ(F∗, H∗)

+ ln

(
Λ(Fn–m2+1, Hn–m2 )

Λ(Fn+1, Hn)

)]

+ ae–μ3τ3�2
(
S∗)

[
�2(Sn+1)
�2(S∗)

–
�2(Sn–m3+1)

�2(S∗)
+ ln

(
�2(Sn–m3+1)
�2(Sn+1)

)]

.

From Eqs. (11)–(16) we have

!Un ≤ γ

(

1 –
Λ(F∗, H∗)
Λ(Fn+1, H∗)

)
(
Θ(Fn+1) – Λ(Fn+1, Hn)

)

+
me–μ3τ3

α + m

(

1 –
�1(K∗)
�1(Kn+1)

)
[
(1 – ε)e–μ1τ1Λ(Fn–m1+1, Hn–m1 )

– (α + m)�1(Kn+1)
]

+ e–μ3τ3

(

1 –
�2(S∗)
�2(Sn+1)

)
[
εe–μ2τ2Λ(Fn–m2+1, Hn–m2 ) + m�1(Kn+1) – a�2(Sn+1)

– λ�2(Sn+1)�5(Zn+1)
]

+
a
θ

(

1 –
�3(H∗)
�3(Hn+1)

)
[
θe–μ3τ3�2(Sn–m3+1) – c�3(Hn+1) – d�3(Hn+1)�4(Yn+1)

]

+
ad
θq

[
q�3(Hn+1)�4(Yn+1) – η�4(Yn+1)

]

+
λe–μ3τ3

g
[
g�2(Sn+1)�5(Zn+1) – ξ�5(Zn+1)

]

+
ac
θ
�3

(
H∗)

[
�3(Hn+1)
�3(H∗)

–
�3(Hn)
�3(H∗)

+ ln

(
�3(Hn)
�3(Hn+1)

)]

+
m(1 – ε)e–μ1τ1–μ3τ3

α + m
Λ

(
F∗, H∗)

[
Λ(Fn+1, Hn)
Λ(F∗, H∗)

–
Λ(Fn–m1+1, Hn–m1 )

Λ(F∗, H∗)

+ ln

(
Λ(Fn–m1+1, Hn–m1 )

Λ(Fn+1, Hn)

)]
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+ εe–μ2τ2–μ3τ3Λ
(
F∗, H∗)

[
Λ(Fn+1, Hn)
Λ(F∗, H∗)

–
Λ(Fn–m2+1, Hn–m2 )

Λ(F∗, H∗)

+ ln

(
Λ(Fn–m2+1, Hn–m2 )

Λ(Fn+1, Hn)

)]

+ ae–μ3τ3�2
(
S∗)

[
�2(Sn+1)
�2(S∗)

–
�2(Sn–m3+1)

�2(S∗)
+ ln

(
�2(Sn–m3+1)
�2(Sn+1)

)]

. (47)

Collecting terms of Eq. (47), we get

!Un ≤ γ

(

1 –
Λ(F∗, H∗)
Λ(Fn+1, H∗)

)
(
Θ(Fn+1) – Θ

(
F∗)) + γΘ

(
F∗)

(

1 –
Λ(F∗, H∗)
Λ(Fn+1, H∗)

)

+ γ
Λ(F∗, H∗)
Λ(Fn+1, H∗)

Λ(Fn+1, Hn) –
m(1 – ε)
α + m

e–μ1τ1–μ3τ3Λ(Fn–m1+1, Hn–m1 )
�1(K∗)
�1(Kn+1)

+ me–μ3τ3�1
(
K∗) – εe–μ2τ2–μ3τ3Λ(Fn–m2+1, Hn–m2 )

�2(S∗)
�2(Sn+1)

– me–μ3τ3�1(Kn+1)
�2(S∗)
�2(Sn+1)

+ ae–μ3τ3�2
(
S∗) + λe–μ3τ3�2

(
S∗)

�5(Zn+1) – ae–μ3τ3�2(Sn–m3+1)
�3(H∗)
�3(Hn+1)

+
ac
θ
�3

(
H∗)

+
ad
θ
�3

(
H∗)

�4(Yn+1) –
adη
θq

�4(Yn+1) –
λξe–μ3τ3

g
�5(Zn+1) –

ac
θ
�3(Hn)

+
ac
θ
�3

(
H∗) ln

(
�3(Hn)
�3(Hn+1)

)

+
m(1 – ε)e–μ1τ1–μ3τ3

α + m
Λ

(
F∗, H∗) ln

(
Λ(Fn–m1+1, Hn–m1 )

Λ(Fn+1, Hn)

)

+ εe–μ2τ2–μ3τ3Λ
(
F∗, H∗) ln

(
Λ(Fn–m2+1, Hn–m2 )

Λ(Fn+1, Hn)

)

+ ae–μ3τ3�2
(
S∗) ln

(
�2(Sn–m3+1)
�2(Sn+1)

)

.

Using the conditions of Q∗

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Θ(F∗) = Λ(F∗, H∗),

(1 – ε)e–μ1τ1Λ(F∗, H∗) = (α + m)�1(K∗),

εe–μ2τ2–μ3τ3Λ(F∗, H∗) + me–μ3τ3�1(K∗) = γΛ(F∗, H∗) = ae–μ3τ3�2(S∗),

θe–μ3τ3�2(S∗) = c�3(H∗),

(48)

we get

!Un ≤ γ

(

1 –
Λ(F∗, H∗)
Λ(Fn+1, H∗)

)
(
Θ(Fn+1) – Θ

(
F∗))

+ γΛ
(
F∗, H∗)

(

1 –
Λ(F∗, H∗)
Λ(Fn+1, H∗)

)
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+ γΛ
(
F∗, H∗)Λ(Fn+1, Hn)

Λ(Fn+1, H∗)

–
m(1 – ε)
α + m

e–μ1τ1–μ3τ3Λ
(
F∗, H∗)�1(K∗)Λ(Fn–m1+1, Hn–m1 )

�1(Kn+1)Λ(F∗, H∗)

+
m(1 – ε)
α + m

e–μ1τ1–μ3τ3Λ
(
F∗, H∗)

– εe–μ2τ2–μ3τ3Λ
(
F∗, H∗)�2(S∗)Λ(Fn–m2+1, Hn–m2 )

�2(Sn+1)Λ(F∗, H∗)

–
m(1 – ε)
α + m

e–μ1τ1–μ3τ3Λ
(
F∗, H∗)�2(S∗)�1(Kn+1)

�2(Sn+1)�1(K∗)
+ γΛ

(
F∗, H∗)

– γΛ
(
F∗, H∗)�3(H∗)�2(Sn–m3+1)

�3(Hn+1)�2(S∗)
+ γΛ

(
F∗, H∗)

+
ad
θ

(

�3
(
H∗) –

η

q

)

�4(Yn+1)

+ λe–μ3τ3

(

�2
(
S∗) –

ξ

g

)

�5(Zn+1) – γΛ
(
F∗, H∗)�3(Hn)

�3(H∗)

+ γΛ
(
F∗, H∗) ln

(
�3(Hn)
�3(Hn+1)

)

+
m(1 – ε)e–μ1τ1–μ3τ3

α + m
Λ

(
F∗, H∗) ln

(
Λ(Fn–m1+1, Hn–m1 )

Λ(Fn+1, Hn)

)

+ εe–μ2τ2–μ3τ3Λ
(
F∗, H∗) ln

(
Λ(Fn–m2+1, Hn–m2 )

Λ(Fn+1, Hn)

)

+ γΛ
(
F∗, H∗) ln

(
�2(Sn–m3+1)
�2(Sn+1)

)

.

It follows that

!Un ≤ γ

(

1 –
Λ(F∗, H∗)
Λ(Fn+1, H∗)

)
(
Θ(Fn+1) – Θ

(
F∗))

+
m(1 – ε)e–μ1τ1–μ3τ3

α + m
Λ

(
F∗, H∗)

×
[

5 –
Λ(F∗, H∗)
Λ(Fn+1, H∗)

–
�1(K∗)Λ(Fn–m1+1, Hn–m1 )

�1(Kn+1)Λ(F∗, H∗)

–
�2(S∗)�1(Kn+1)
�2(Sn+1)�1(K∗)

–
�3(H∗)�2(Sn–m3+1)
�3(Hn+1)�2(S∗)

–
Λ(Fn+1, H∗)�3(Hn)
Λ(Fn+1, Hn)�3(H∗)

+ ln

(
�3(Hn)Λ(Fn–m1+1, Hn–m1 )�2(Sn–m3+1)

�3(Hn+1)Λ(Fn+1, Hn)�2(Sn+1)

)]

+ εe–μ2τ2–μ3τ3Λ
(
F∗, H∗)

[

4 –
Λ(F∗, H∗)
Λ(Fn+1, H∗)

–
�2(S∗)Λ(Fn–m2+1, Hn–m2 )

�2(Sn+1)Λ(F∗, H∗)

–
�3(H∗)�2(Sn–m3+1)
�3(Hn+1)�2(S∗)

–
Λ(Fn+1, H∗)�3(Hn)
Λ(Fn+1, Hn)�3(H∗)

+ ln

(
�3(Hn)Λ(Fn–m2+1, Hn–m2 )�2(Sn–m3+1)

�3(Hn+1)Λ(Fn+1, Hn)�2(Sn+1)

)]

+
ad
θ

(
�3

(
H∗) – �3(H)

)
�4(Yn+1) + λe–μ3τ3

(
�2

(
S∗) – �2(̂S)

)
�5(Sn+1)
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+ γΛ
(
F∗, H∗)

[

–1 +
Λ(Fn+1, H∗)�3(Hn)
Λ(Fn+1, Hn)�3(H∗)

+
Λ(Fn+1, Hn)
Λ(Fn+1, H∗)

–
�3(Hn)
�3(H∗)

]

= γ

(

1 –
Λ(F∗, H∗)
Λ(Fn+1, H∗)

)
(
Θ(Fn+1) – Θ

(
F∗))

–
m(1 – ε)e–μ1τ1–μ3τ3

α + m
Λ

(
F∗, H∗)

[

G
(

Λ(F∗, H∗)
Λ(Fn+1, H∗)

)

+ G
(
�1(K∗)Λ(Fn–m1+1, Hn–m1 )

�1(Kn+1)Λ(F∗, H∗)

)

+ G
(
�2(S∗)�1(Kn+1)
�2(Sn+1)�1(K∗)

)

+ G
(
�3(H∗)�2(Sn–m3+1)
�3(Hn+1)�2(S∗)

)

+ G
(
Λ(Fn+1, H∗)�3(Hn)
Λ(Fn+1, Hn)�3(H∗)

)]

– εe–μ2τ2–μ3τ3Λ
(
F∗, H∗)

[

G
(

Λ(F∗, H∗)
Λ(Fn+1, H∗)

)

+ G
(
�2(S∗)Λ(Fn–m2+1, Hn–m2 )

�2(Sn+1)Λ(F∗, H∗)

)

+ G
(
�3(H∗)�2(Sn–m3+1)
�3(Hn+1)�2(S∗)

)

+ G
(
Λ(Fn+1, H∗)�3(Hn)
Λ(Fn+1, Hn)�3(H∗)

)]

+
ad
θ

(
�3

(
H∗) – �3(H)

)
�4(Yn+1) + λe–μ3τ3

(
�2

(
S∗) – �2(̂S)

)
�5(Zn+1)

+ γΛ
(
F∗, H∗)

(

1 –
Λ(Fn+1, H∗)
Λ(Fn+1, Hn)

)(
Λ(Fn+1, Hn)
Λ(Fn+1, H∗)

–
�3(Hn)
�3(H∗)

)

. (49)

Conditions C1–C4 imply that the first and last terms of Eq. (49) are less than or equal
to zero. If RY

1 ≤ 1, then from Lemma 3 we have H∗ ≤ H and from Condition C3 we
get �3(H∗) ≤ �3(H). Moreover, if RZ

1 ≤ 1, then �2(S∗) ≤ �2(̂S). Therefore, !Un ≤ 0,
and thus Un is a monotone decreasing sequence. Since Un ≥ 0, then there is a limit
limn→∞ Un ≥ 0. Therefore, limn→∞ !Un = 0, which implies that limn→∞ Fn = F∗,
limn→∞ Kn = K∗, limn→∞ Sn = S∗, limn→∞ Hn = H∗, limn→∞ Yn = 0, and limn→∞ Zn = 0.
We have four cases as follows:

• RY
1 = 1, RZ

1 = 1, then from Eq. (13)

0 = εe–μ2τ2Λ
(
F∗, H∗) + m�1

(
K∗) – a�2

(
S∗)

– λ�2
(
S∗) lim

n→∞�5(Zn+1). (50)

Using equilibrium condition (48), we get limn→∞ Zn = 0. Moreover, from Eq. (14) we
have

0 = θe–μ3τ3�2
(
S∗) – c�3

(
H∗) – d�3

(
H∗) lim

n→∞�4(Yn+1). (51)

From Eq. (48) we get limn→∞ Yn = 0.
• RY

1 = 1, RZ
1 < 1, and limn→∞ Zn = 0. From Eq. (51) we get limn→∞ Yn = 0.

• RY
1 < 1, RZ

1 = 1, limn→∞ Yn = 0. From Eq. (50) we get limn→∞ Zn = 0.
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• RY
1 < 1, RZ

1 < 1, limn→∞ Yn = 0, and limn→∞ Zn = 0. It follows that if RZ
1 ≤ 1 and

RY
1 ≤ 1, then limn→∞ Fn = F∗, limn→∞ Kn = K∗, limn→∞ Sn = S∗, limn→∞ Hn = H∗,

limn→∞ Yn = 0, and limn→∞ Zn = 0. Then Q∗ is G.A.S. �

Proof of Theorem 3 Define Wn(Fn, Kn, Sn, Hn, Yn, Zn)

Wn =
1

φ(h)

[

γ

(

Fn – F –
∫ Fn

F

Λ(F , H)
Λ(ς , H)

dς
)

+
me–μ3τ3

α + m

(

Kn – K –
∫ Kn

K

�1(K)
�1(ς )

dς
)

+ e–μ3τ3

(

Sn – S –
∫ Sn

S

�2(S)
�2(ς )

dς
)

+
a
θ

(

Hn – H –
∫ Hn

H

�3(H)
�3(ς )

dς
)

+
ad
θq

(

Yn – Y –
∫ Yn

Y

�4(Y )
�4(ς )

dς
)

+
λe–μ3τ3

g
Zn

]

+
a
θ

(
c + d�4(Y )

)
�3(H)G

(
�3(Hn)
�3(H)

)

+
m(1 – ε)e–μ1τ1–μ3τ3

α + m
Λ(F , H)

n–1∑

j=n–m1

G
(
Λ(Fj+1, Hj)
Λ(F , H)

)

+ εe–μ2τ2–μ3τ3Λ(F , H)
n–1∑

j=n–m2

G
(
Λ(Fj+1, Hj)
Λ(F , H)

)

+ ae–μ3τ3�2(S)
n–1∑

j=n–m3

G
(
�2(Sj+1)
�2(S)

)

.

Clearly, Wn(Fn, Kn, Sn, Hn, Yn, Zn) > 0 for all Fn, Kn, Sn, Hn, Yn, Zn > 0 and Wn(F , K , S,
H , Y , 0) = 0. We compute !Wn = Wn+1 – Wn as follows:

�Wn =
1

φ(h)

[

γ

(

Fn+1 – F –
∫ Fn+1

F

Λ(F , H)
Λ(ς , H)

dς
)

+
me–μ3τ3

α + m

(

Kn+1 – K –
∫ Kn+1

K

�1(K)
�1(ς )

dς
)

+ e–μ3τ3

(

Sn+1 – S –
∫ Sn+1

S

�2(S)
�2(ς )

dς
)

+
a
θ

(

Hn+1 – H –
∫ Hn+1

H

�3(H)
�3(ς )

dς
)

+
ad
θq

(

Yn+1 – Y –
∫ Yn+1

Y

�4(Y )
�4(ς )

dς
)

+
λe–μ3τ3

g
Zn+1

]

+
a
θ

(
c + d�4(Y )

)
�3(H)G

(
�3(Hn+1)
�3(H)

)

+
m(1 – ε)e–μ1τ1–μ3τ3

α + m
Λ(F , H)

n∑

j=n–m1+1

G
(
Λ(Fj+1, Hj)
Λ(F , H)

)

+ εe–μ2τ2–μ3τ3Λ(F , H)
n∑

j=n–m2+1

G
(
Λ(Fj+1, Hj)
Λ(F , H)

)

+ ae–μ3τ3�2(S)
n∑

j=n–m3+1

G
(
�2(Sj+1)
�2(S)

)
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–
1

φ(h)

[

γ

(

Fn – F –
∫ Fn

F

Λ(F , H)
Λ(ς , H)

dς
)

+
me–μ3τ3

α + m

(

Kn – K –
∫ Kn

K

�1(K)
�1(ς )

dς
)

+ e–μ3τ3

(

Sn – S –
∫ Sn

S

�2(S)
�2(ς )

dς
)

+
a
θ

(

Hn – H –
∫ Hn

H

�3(H)
�3(ς )

dς
)

+
ad
θq

(

Yn – Y –
∫ Yn

Y

�4(Y )
�4(ς )

dς
)

+
λe–μ3τ3

g
Zn

]

–
a
θ

(
c + d�4(Y )

)
�3(H)G

(
�3(Hn)
�3(H)

)

–
m(1 – ε)e–μ1τ1–μ3τ3

α + m
Λ(F , H)

n–1∑

j=n–m1

G
(
Λ(Fj+1, Hj)
Λ(F , H)

)

– εe–μ2τ2–μ3τ3Λ(F , H)
n–1∑

j=n–m2

G
(
Λ(Fj+1, Hj)
Λ(F , H)

)

– ae–μ3τ3�2(S)
n–1∑

j=n–m3

G
(
�2(Sj+1)
�2(S)

)

,

�Wn =
1

φ(h)

[

γ

(

Fn+1 – Fn –
∫ Fn+1

Fn

Λ(F , H)
Λ(ς , H)

dς
)

+
me–μ3τ3

α + m

(

Kn+1 – Kn –
∫ Kn+1

Kn

�1(K)
�1(ς )

dς
)

+ e–μ3τ3

(

Sn+1 – Sn –
∫ Sn+1

Sn

�2(S)
�2(ς )

dς
)

+
a
θ

(

Hn+1 – Hn –
∫ Hn+1

Hn

�3(H)
�3(ς )

dς
)

+
ad
θq

(

Yn+1 – Yn –
∫ Yn+1

Yn

�4(Y )
�4(ς )

dς
)

+
λe–μ3τ3

g
(Zn+1 – Zn)

]

+
a
θ

(
c + d�4(Y )

)
�3(H)

[

G
(
�3(Hn+1)
�3(H)

)

– G
(
�3(Hn)
�3(H)

)]

+
m(1 – ε)e–μ1τ1–μ3τ3

α + m
Λ(F , H)

( n∑

j=n–m1+1

G
(
Λ(Fj+1, Hj)
Λ(F , H)

)

–
n–1∑

j=n–m1

G
(
Λ(Fj+1, Hj)
Λ(F , H)

))

+ εe–μ2τ2–μ3τ3Λ(F , H)

( n∑

j=n–m2+1

G
(
Λ(Fj+1, Hj)
Λ(F , H)

)

–
n–1∑

j=n–m2

G
(
Λ(Fj+1, Hj)
Λ(F , H)

))

+ ae–μ3τ3�2(S)

( n∑

j=n–m3+1

G
(
�2(Sj+1)
�2(S)

)

–
n–1∑

j=n–m3

G
(
�2(Sj+1)
�2(S)

))

.

Using inequalities (45) and (46) by replacing F∗, H∗, ρ∗ with F , H , ρ , we obtain

!Wn ≤ 1
φ(h)

[

γ

(

1 –
Λ(F , H)

Λ(Fn+1, H)

)

(Fn+1 – Fn) +
me–μ3τ3

α + m

(

1 –
�1(K)

�1(Kn+1)

)

(Kn+1 – Kn)

+ e–μ3τ3

(

1 –
�2(S)

�2(Sn+1)

)

(Sn+1 – Sn) +
a
θ

(

1 –
�3(H)

�3(Hn+1)

)

(Hn+1 – Hn)
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+
ad
θq

(

1 –
�4(Y )

�4(Yn+1)

)

(Yn+1 – Yn) +
λe–μ3τ3

g
(Zn+1 – Zn)

]

+
a
θ

(
c + d�4(Y )

)
�3(H)

[
�3(Hn+1)
�3(H)

–
�3(Hn)
�3(H)

+ ln

(
�3(Hn)
�3(Hn+1)

)]

+
m(1 – ε)e–μ1τ1–μ3τ3

α + m
Λ(F , H)

(
Λ(Fn+1, Hn)
Λ(F , H)

–
Λ(Fn–m1+1, Hn–m1 )

Λ(F , H)

+ ln

(
Λ(Fn–m1+1, Hn–m1 )

Λ(Fn+1, Hn)

))

+ εe–μ2τ2–μ3τ3Λ(F , H)
(
Λ(Fn+1, Hn)
Λ(F , H)

–
Λ(Fn–m2+1, Hn–m2 )

Λ(F , H)

+ ln

(
Λ(Fn–m2+1, Hn–m2 )

Λ(Fn+1, Hn)

))

+ ae–μ3τ3�2(S)
(
�2(Sn+1)
�2(S)

–
�2(Sn–m3+1)

�2(S)
+ ln

(
�2(Sn–m3+1)
�2(Sn+1)

))

.

From Eqs. (11)–(16) we have

!Wn ≤ γ

(

1 –
Λ(F , H)

Λ(Fn+1, H)

)
[
Θ(Fn+1) – Λ(Fn+1, Hn)

]

+
me–μ3τ3

α + m

(

1 –
�1(K)

�1(Kn+1)

)
[
(1 – ε)e–μ1τ1Λ(Fn–m1+1, Hn–m1 )

– (α + m)�1(Kn+1)
]

+ e–μ3τ3

(

1 –
�2(S)

�2(Sn+1)

)
[
εe–μ2τ2Λ(Fn–m2+1, Hn–m2 ) + m�1(Kn+1) – a�2(Sn+1)

– λ�2(Sn+1)�5(Zn+1)
]

+
a
θ

(

1 –
�3(H)

�3(Hn+1)

)
[
θe–μ3τ3�2(Sn–m3+1) – c�3(Hn+1) – d�3(Hn+1)�4(Yn+1)

]

+
ad
θq

(

1 –
�4(Y )

�4(Yn+1)

)
[
q�3(Hn+1)�4(Yn+1) – η�4(Yn+1)

]

+
λe–μ3τ3

g
[
g�2(Sn+1)�5(Zn+1) – ξ�5(Zn+1)

]

+
a
θ

(
c + d�4(Y )

)
�3(H)

[
�3(Hn+1)
�3(H)

–
�3(Hn)
�3(H)

+ ln

(
�3(Hn)
�3(Hn+1)

)]

+
m(1 – ε)e–μ1τ1–μ3τ3

α + m
Λ(F , H)

(
Λ(Fn+1, Hn)
Λ(F , H)

–
Λ(Fn–m1+1, Hn–m1 )

Λ(F , H)

+ ln

(
Λ(Fn–m1+1, Hn–m1 )

Λ(Fn+1, Hn)

))

+ εe–μ2τ2–μ3τ3Λ(F , H)
(
Λ(Fn+1, Hn)
Λ(F , H)

–
Λ(Fn–m2+1, Hn–m2 )

Λ(F , H)

+ ln

(
Λ(Fn–m2+1, Hn–m2 )

Λ(Fn+1, Hn)

))

+ ae–μ3τ3�2(S)
(
�2(Sn+1)
�2(S)

–
�2(Sn–m3+1)

�2(S)
+ ln

(
�2(Sn–m3+1)
�2(Sn+1)

))
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= γ

(

1 –
Λ(F , H)

Λ(Fn+1, H)

)
(
Θ(Fn+1) – Θ(F)

)
+ γΘ(F)

(

1 –
Λ(F , H)

Λ(Fn+1, H)

)

+ γ
Λ(F , H)

Λ(Fn+1, H)
Λ(Fn+1, Hn) –

m(1 – ε)e–μ1τ1–μ3τ3

α + m
Λ(Fn–m1+1, Hn–m1 )

�1(K)
�1(Kn+1)

+ me–μ3τ3�1(K) – εe–μ2τ2–μ3τ3Λ(Fn–m2+1, Hn–m2 )
�2(S)

�2(Sn+1)

– me–μ3τ3�1(Kn+1)
�2(S)

�2(Sn+1)

+ ae–μ3τ3�2(S) + λe–μ3τ3�2(S)�5(Zn+1) – ae–μ3τ3�2(Sn–m3+1)
�3(H)

�3(Hn+1)

+
ac
θ
�3(H)

+
ad
θ
�3(H)�4(Yn+1) –

adη
θq

�4(Yn+1) +
adη
θq

�4(Y ) –
λe–μ3τ3ξ

g
�5(Zn+1)

–
a
θ

(
c + d�4(Y )

)
�3(Hn) +

a
θ

(
c + d�4(Y )

)
�3(H) ln

(
�3(Hn)
�3(Hn+1)

)

+
m(1 – ε)e–μ1τ1–μ3τ3

α + m
Λ(F , H) ln

(
Λ(Fn–m1+1, Hn–m1 )

Λ(Fn+1, Hn)

)

+ εe–μ2τ2–μ3τ3Λ(F , H) ln

(
Λ(Fn–m2+1, Hn–m2 )

Λ(Fn+1, Hn)

)

+ ae–μ3τ3�2(S) ln

(
�2(Sn–m3+1)
�2(Sn+1)

)

.

Using the conditions of Q

Θ(F) = Λ(F , H),

(1 – ε)e–μ1τ1Λ(F , H) = (α + m)�1(K),

εe–μ2τ2–μ3τ3Λ(F , H) + me–μ3τ3�1(K) = γΛ(F , H) = ae–μ3τ3�2(S),

θe–μ3τ3�2(S) =
(
c + d�4(Y )

)
�3(H),

η = q�3(H),

we get

!Wn ≤ γ

(

1 –
Λ(F , H)

Λ(Fn+1, H)

)
(
Θ(Fn+1) – Θ(F)

)
+ γΛ(F , H)

(

1 –
Λ(F , H)

Λ(Fn+1, H)

)

+ γΛ(F , H)
Λ(Fn+1, Hn)
Λ(Fn+1, H)

–
m(1 – ε)e–μ1τ1–μ3τ3

α + m
Λ(F , H)

Λ(Fn–m1+1, Hn–m1 )�1(K)
Λ(F , H)�1(Kn+1)

+
m(1 – ε)e–μ1τ1–μ3τ3

α + m
Λ(F , H)

– εe–μ2τ2–μ3τ3Λ(F , H)
Λ(Fn–m2+1, Hn–m2 )�2(S)

Λ(F , H)�2(Sn+1)
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–
m(1 – ε)e–μ1τ1–μ3τ3

α + m
Λ(F , H)

�1(Kn+1)�2(S)
�1(K)�2(Sn+1)

+ γΛ(F , H)

– γΛ(F , H)
�3(H)�2(Sn–m3+1)
�3(Hn+1)�2(S)

+ γΛ(F , H) – γΛ(F , H)
�3(Hn)
�3(H)

+ λe–μ3τ3

(

�2(S) –
ξ

g

)

�5(Zn+1)

+ γΛ(F , H) ln

(
�3(Hn)
�3(Hn+1)

)

+
m(1 – ε)e–μ1τ1–μ3τ3

α + m
Λ(F , H) ln

(
Λ(Fn–m1+1, Hn–m1 )

Λ(Fn+1, Hn)

)

+ εe–μ2τ2–μ3τ3Λ(F , H) ln

(
Λ(Fn–m2+1, Hn–m2 )

Λ(Fn+1, Hn)

)

+ γΛ(F , H) ln

(
�2(Sn–m3+1)
�2(Sn+1)

)

= γ

(

1 –
Λ(F , H)

Λ(Fn+1, H)

)
(
Θ(Fn+1) – Θ(F)

)

+
m(1 – ε)e–μ1τ1–μ3τ3

α + m
Λ(F , H)

[

5 –
Λ(F , H)

Λ(Fn+1, H)

–
Λ(Fn–m1+1, Hn–m1 )�1(K)

Λ(F , H)�1(Kn+1)

–
�1(Kn+1)�2(S)
�1(K)�2(Sn+1)

–
�3(H)�2(Sn–m3+1)
�3(Hn+1)�2(S)

–
Λ(Fn+1, H)�3(Hn)
Λ(Fn+1, Hn)�3(H)

(52)

+ ln

(
Λ(Fn–m1+1, Hn–m1 )�2(Sn–m3+1)�3(Hn)

Λ(Fn+1, Hn)�2(Sn+1)�3(Hn+1)

)]

+ εe–μ2τ2–μ3τ3Λ(F , H)
[

4 –
Λ(F , H)

Λ(Fn+1, H)

–
Λ(Fn–m2+1, Hn–m2 )�2(S)

Λ(F , H)�2(Sn+1)
–
�3(H)�2(Sn–m3+1)
�3(Hn+1)�2(S)

–
Λ(Fn+1, H)�3(Hn)
Λ(Fn+1, Hn)�3(H)

+ ln

(
Λ(Fn–m2+1, Hn–m2 )�2(Sn–m3+1)�3(Hn)

Λ(Fn+1, Hn)�2(Sn+1)�3(Hn+1)

)]

+ λe–μ3τ3
(
�2(S) – �2(̃S)

)
�5(Zn+1)

+ γΛ(F , H)
[

–1 +
Λ(Fn+1, H)�3(Hn)
Λ(Fn+1, Hn)�3(H)

+
Λ(Fn+1, Hn)
Λ(Fn+1, H)

–
�3(Hn)
�3(H)

]

,

!Wn ≤ γ

(

1 –
Λ(F , H)

Λ(Fn+1, H)

)
(
Θ(Fn+1) – Θ(F)

)

–
m(1 – ε)e–μ1τ1–μ3τ3

α + m
Λ(F , H)

[

G
(

Λ(F , H)
Λ(Fn+1, H)

)

+ G
(
Λ(Fn–m1+1, Hn–m1 )�1(K)

Λ(F , H)�1(Kn+1)

)

+ G
(
�1(Kn+1)�2(S)
�1(K)�2(Sn+1)

)

+ G
(
�3(H)�2(Sn–m3+1)
�3(Hn+1)�2(S)

)
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+ G
(
Λ(Fn+1, H)�3(Hn)
Λ(Fn+1, Hn)�3(H)

)]

– εe–μ2τ2–μ3τ3Λ(F , H)
[

G
(

Λ(F , H)
Λ(Fn+1, H)

)

+ G
(
Λ(Fn–m2+1, Hn–m2 )�2(S)

Λ(F , H)�2(Sn+1)

)

+ G
(
�3(H)�2(Sn–m3+1)
�3(Hn+1)�2(S)

)

+ G
(
Λ(Fn+1, H)�3(Hn)
Λ(Fn+1, Hn)�3(H)

)]

+ λe–μ3τ3�2(̃S)
(
RZ

2 – 1
)
�5(Zn+1)

+ γΛ(F , H)
(

1 –
Λ(Fn+1, H)
Λ(Fn+1, Hn)

)(
Λ(Fn+1, Hn)
Λ(Fn+1, H)

–
�3(Hn)
�3(H)

)

.

Using Conditions C1–C4, we get that the first and last terms of Eq. (52) are less than
or equal to zero. Moreover, if RZ

2 ≤ 1, we get !Wn ≤ 0, and thus Wn is a monotone
decreasing sequence. Since Wn ≥ 0, then there is a limit limn→∞ Wn ≥ 0. Therefore,
limn→∞ !Wn = 0, which implies that limn→∞ Fn = F , limn→∞ Kn = K , limn→∞ Sn = S,
limn→∞ Hn = H , and limn→∞(RZ

2 – 1)�5(Zn+1) = 0 We have two cases:
• RZ

2 = 1, then from Eq. (13)

0 = εe–μ2τ2Λ(F ,H) + m�1(K) – a�2(S) – λ�2(S) lim
n→∞�5(Zn+1), (53)

we get limn→∞ Zn = 0. From Eq. (14) we get

0 = θe–μ3τ3�2(S) – c�3(H) – d�3(H) lim
n→∞�4(Yn+1). (54)

This gives limn→∞ Yn = Y .
• RZ

2 < 1, limn→∞ �5(Zn) = 0. From Eq. (54) we get limn→∞ Yn = Y . Hence, Q is G.A.S.
�

Proof of Theorem 4 Define Mn(Fn, Kn, Sn, Hn, Yn, Zn):

Mn =
1

φ(h)

[

γ

(

Fn – F̂ –
∫ Fn

F̂

Λ(̂F , Ĥ)
Λ(ς , Ĥ)

dς
)

+
me–μ3τ3

α + m

(

Kn – K̂ –
∫ Kn

K̂

�1(K̂)
�1(ς )

dς
)

+ e–μ3τ3

(

Sn – Ŝ –
∫ Sn

Ŝ

�2(̂S)
�2(ς )

dς
)

+
(a + λ�5(Ẑ))

θ

(

Hn – Ĥ –
∫ Hn

Ĥ

�3(Ĥ)
�3(ς )

dς
)

+
d(a + λ�5(Ẑ))

qθ
Yn +

λe–μ3τ3

g

(

Zn – Ẑ –
∫ Zn

Ẑ

�5(Ẑ)
�5(ς )

dς
)]

+
c
θ

(
a + λ�5(Ẑ)

)
�3(Ĥ)G

(
�3(Hn)
�3(Ĥ)

)

+
m(1 – ε)e–μ1τ1–μ3τ3

α + m
Λ(̂F , Ĥ)

n–1∑

j=n–m1

G
(
Λ(Fj+1, Hj)
Λ(̂F , Ĥ)

)

+ εe–μ2τ2–μ3τ3Λ(̂F , Ĥ)
n–1∑

j=n–m2

G
(
Λ(Fj+1, Hj)
Λ(̂F , Ĥ)

)

+ γΛ(̂F , Ĥ)
n–1∑

j=n–m3

G
(
�2(Sj+1)
�2(̂S)

)

.
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Clearly, Mn(Fn, Kn, Sn, Hn, Yn, Zn) > 0 for all Fn, Kn, Sn, Hn, Yn, Zn > 0 and Mn (̂F , K̂ , Ŝ, Ĥ ,
0, Ẑ) = 0. We compute !Mn = Mn – Mn as follows:

�Mn =
1

φ(h)

[

γ

(

Fn+1 – F̂ –
∫ Fn+1

F̂

Λ(̂F , Ĥ)
Λ(ς , Ĥ)

dς
)

+
me–μ3τ3

α + m

(

Kn+1 – K̂ –
∫ Kn+1

K̂

�1(K̂)
�1(ς )

dς
)

+ e–μ3τ3

(

Sn+1 – Ŝ –
∫ Sn+1

Ŝ

�2(̂S)
�2(ς )

dς
)

+
(a + λ�5(Ẑ))

θ

(

Hn+1 – Ĥ –
∫ Hn+1

Ĥ

�3(Ĥ)
�3(ς )

dς
)

+
d(a + λ�5(Ẑ))

qθ
Yn+1 +

λe–μ3τ3

g

(

Zn+1 – Ẑ –
∫ Zn+1

Ẑ

�5(Ẑ)
�5(ς )

dς
)]

+
c
θ

(
a + λ�5(Ẑ)

)
�3(Ĥ)G

(
�3(Hn+1)
�3(Ĥ)

)

+
m(1 – ε)e–μ1τ1–μ3τ3

α + m
Λ(̂F , Ĥ)

n∑

j=n–m1+1

G
(
Λ(Fj+1, Hj)
Λ(̂F , Ĥ)

)

+ εe–μ2τ2–μ3τ3Λ(̂F , Ĥ)
n∑

j=n–m2+1

G
(
Λ(Fj+1, Hj)
Λ(̂F , Ĥ)

)

+ γΛ(̂F , Ĥ)
n∑

j=n–m3+1

G
(
�2(Sj+1)
�2(̂S)

)

–
1

φ(h)

[

γ

(

Fn – F̂ –
∫ Fn

F̂

Λ(̂F , Ĥ)
Λ(ς , Ĥ)

dς
)

+
me–μ3τ3

α + m

(

Kn – K̂ –
∫ Kn

K̂

�1(K̂)
�1(ς )

dς
)

+ e–μ3τ3

(

Sn – Ŝ –
∫ Sn

Ŝ

�2(̂S)
�2(ς )

dς
)

+
(a + λ�5(Ẑ))

θ

(

Hn – Ĥ –
∫ Hn

Ĥ

�3(Ĥ)
�3(ς )

dς
)

+
d(a + λ�5(Ẑ))

qθ
Yn +

λe–μ3τ3

g

(

Zn – Ẑ –
∫ Zn

Ẑ

�5(Ẑ)
�5(ς )

dς
)]

–
c
θ

(
a + λ�5(Ẑ)

)
�3(Ĥ)G

(
�3(Hn)
�3(Ĥ)

)

–
m(1 – ε)e–μ1τ1–μ3τ3

α + m
Λ(̂F , Ĥ)

n–1∑

j=n–m1

G
(
Λ(Fj+1, Hj)
Λ(̂F , Ĥ)

)

– εe–μ2τ2–μ3τ3Λ(̂F , Ĥ)
n–1∑

j=n–m2

G
(
Λ(Fj+1, Hj)
Λ(̂F , Ĥ)

)

– γΛ(̂F , Ĥ)
n–1∑

j=n–m3

G
(
�2(Sj+1)
�2(̂S)

)

,
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�Mn =
1

φ(h)

[

γ

(

Fn+1 – Fn –
∫ Fn+1

Fn

Λ(̂F , Ĥ)
Λ(ς , Ĥ)

dς
)

+
me–μ3τ3

α + m

(

Kn+1 – Kn –
∫ Kn+1

Kn

�1(K̂)
�1(ς )

dς
)

+ e–μ3τ3

(

Sn+1 – Sn –
∫ Sn+1

Sn

�2(̂S)
�2(ς )

dς
)

+
(a + λ�5(Ẑ))

θ

(

Hn+1 – Hn –
∫ Hn+1

Hn

�3(Ĥ)
�3(ς )

dς
)

+
d(a + λ�5(Ẑ))

qθ
(Yn+1 – Yn) +

λe–μ3τ3

g

(

Zn+1 – Zn –
∫ Zn+1

Zn

�5(Ẑ)
�5(ς )

dς
)]

+
c
θ

(
a + λ�5(Ẑ)

)
�3(Ĥ)

[

G
(
�3(Hn+1)
�3(Ĥ)

)

– G
(
�3(Hn)
�3(Ĥ)

)]

+
m(1 – ε)e–μ1τ1–μ3τ3

α + m
Λ(̂F , Ĥ)

( n∑

j=n–m1+1

G
(
Λ(Fj+1, Hj)
Λ(̂F , Ĥ)

)

–
n–1∑

j=n–m1

G
(
Λ(Fj+1, Hj)
Λ(̂F , Ĥ)

))

+ εe–μ2τ2–μ3τ3Λ(̂F , Ĥ)

( n∑

j=n–m2+1

G
(
Λ(Fj+1, Hj)
Λ(̂F , Ĥ)

)

–
n–1∑

j=n–m2

G
(
Λ(Fj+1, Hj)
Λ(̂F , Ĥ)

))

+ γΛ(̂F , Ĥ)

( n∑

j=n–m3+1

G
(
�2(Sj+1)
�2(̂S)

)

–
n–1∑

j=n–m3

G
(
�2(Sj+1)
�2(̂S)

))

.

Using inequalities (45) and (46) by replacing F∗, H∗, ρ∗ with F̂ , Ĥ , ρ̂ , we get

!Mn ≤ 1
φ(h)

[

γ

(

1 –
Λ(̂F , Ĥ)

Λ(Fn+1, Ĥ)

)

(Fn+1 – Fn)

+
me–μ3τ3

α + m

(

1 –
�1(K̂)

�1(Kn+1)

)

(Kn+1 – Kn)

+ e–μ3τ3

(

1 –
�2(̂S)

�2(Sn+1)

)

(Sn+1 – Sn)

+
(a + λ�5(Ẑ))

θ

(

1 –
�3(Ĥ)

�3(Hn+1)

)

(Hn+1 – Hn)

+
d(a + λ�5(Ẑ))

qθ
(Yn+1 – Yn) +

λe–μ3τ3

g

(

1 –
�5(Ẑ)

�5(Zn+1)

)

(Zn+1 – Zn)
]

+
c
θ

(
a + λ�5(Ẑ)

)
�3(Ĥ)

[
�3(Hn+1)
�3(Ĥ)

–
�3(Hn)
�3(Ĥ)

+ ln

(
�3(Hn)
�3(Hn+1)

)]

+
m(1 – ε)e–μ1τ1–μ3τ3

α + m
Λ(̂F , Ĥ)

[
Λ(Fn+1, Hn)
Λ(̂F , Ĥ)

–
Λ(Fn–m1+1, Hn–m1 )

Λ(̂F , Ĥ)

+ ln

(
Λ(Fn–m1+1, Hn–m1 )

Λ(Fn+1, Hn)

)]

+ εe–μ2τ2–μ3τ3Λ(̂F , Ĥ)
[
Λ(Fn+1, Hn)
Λ(̂F , Ĥ)

–
Λ(Fn–m2+1, Hn–m2 )

Λ(̂F , Ĥ)
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+ ln

(
Λ(Fn–m2+1, Hn–m2 )

Λ(Fn+1, Hn)

)]

+ γΛ(̂F , Ĥ)
[
�2(Sn+1)
�2(̂S)

–
�2(Sn–m3+1)

�2(̂S)
+ ln

(
�2(Sn–m3+1)
�2(Sn+1)

)]

.

From Eqs. (11)–(16) we have

!Mn ≤ γ

(

1 –
Λ(̂F , Ĥ)

Λ(Fn+1, Ĥ)

)
(
Θ(Fn+1) – Λ(Fn+1, Hn)

)

+
me–μ3τ3

α + m

(

1 –
�1(K̂)

�1(Kn+1)

)
[
(1 – ε)e–μ1τ1Λ(Fn–m1+1, Hn–m1 )

– (α + m)�1(Kn+1)
]

+ e–μ3τ3

(

1 –
�2(̂S)

�2(Sn+1)

)
[
εe–μ2τ2Λ(Fn–m2+1, Hn–m2 ) + m�1(Kn+1)

– a�2(Sn+1) – λ�2(Sn+1)�5(Zn+1)
]

+
(a + λ�5(Ẑ))

θ

(

1 –
�3(Ĥ)

�3(Hn+1)

)
[
θe–μ3τ3�2(Sn–m3+1) – c�3(Hn+1)

– d�3(Hn+1)�4(Yn+1)
]

+
d(a + λ�5(Ẑ))

qθ
[
q�3(Hn+1)�4(Yn+1) – η�4(Yn+1)

]

+
λe–μ3τ3

g

(

1 –
�5(Ẑ)

�5(Zn+1)

)
[
g�2(Sn+1)�5(Zn+1) – ξ�5(Zn+1)

]

+
c
θ

(
a + λ�5(Ẑ)

)
�3(Ĥ)

[
�3(Hn+1)
�3(Ĥ)

–
�3(Hn)
�3(Ĥ)

+ ln

(
�3(Hn)
�3(Hn+1)

)]

+
m(1 – ε)e–μ1τ1–μ3τ3

α + m
Λ(̂F , Ĥ)

[
Λ(Fn+1, Hn)
Λ(̂F , Ĥ)

–
Λ(Fn–m1+1, Hn–m1 )

Λ(̂F , Ĥ)

+ ln

(
Λ(Fn–m1+1, Hn–m1 )

Λ(Fn+1, Hn)

)]

+ εe–μ2τ2–μ3τ3Λ(̂F , Ĥ)
[
Λ(Fn+1, Hn)
Λ(̂F , Ĥ)

–
Λ(Fn–m2+1, Hn–m2 )

Λ(̂F , Ĥ)

+ ln

(
Λ(Fn–m2+1, Hn–m2 )

Λ(Fn+1, Hn)

)]

+ γΛ(̂F , Ĥ)
[
�2(Sn+1)
�2(̂S)

–
�2(Sn–m3+1)

�2(̂S)
+ ln

(
�2(Sn–m3+1)
�2(Sn+1)

)]

. (55)

Collecting terms of Eq. (55), we get

!Mn ≤ γ

(

1 –
Λ(̂F , Ĥ)

Λ(Fn+1, Ĥ)

)
(
Θ(Fn+1) – Θ (̂F)

)
+ γΘ (̂F)

(

1 –
Λ(̂F , Ĥ)

Λ(Fn+1, Ĥ)

)

+ γ
Λ(̂F , Ĥ)

Λ(Fn+1, Ĥ)
Λ(Fn+1, Hn)

–
m(1 – ε)e–μ1τ1–μ3τ3

α + m
Λ(Fn–m1+1, Hn–m1 )

�1(K̂)
�1(Kn+1)
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+ me–μ3τ3�1(K̂) – εe–μ2τ2–μ3τ3Λ(Fn–m2+1, Hn–m2 )
�2(̂S)

�2(Sn+1)

– me–μ3τ3�1(Kn+1)
�2(̂S)

�2(Sn+1)

– ae–μ3τ3�2(Sn+1) + λe–μ3τ3�2(̂S)�5(Zn+1) + ae–μ3τ3�2(̂S)

+
(
a + λ�5(Ẑ)

)
e–μ3τ3�2(Sn–m3+1)

–
(
a + λ�5(Ẑ)

)
e–μ3τ3�2(Sn–m3+1)

�3(Ĥ)
�3(Hn+1)

+
c(a + λ�5(Ẑ))

θ
�3(Ĥ) +

d(a + λ�5(Ẑ))
θ

�3(Ĥ)�4(Yn+1)

–
d(a + λ�5(Ẑ))η

qθ
�4(Yn+1)

– λe–μ3τ3�5(Ẑ)�2(Sn+1) –
λe–μ3τ3ξ

g
�5(Zn+1) +

λe–μ3τ3ξ

g
�5(Ẑ)

–
c
θ

(
a + λ�5(Ẑ)

)
�3(Hn) +

c
θ

(
a + λ�5(Ẑ)

)
�3(Ĥ) ln

(
�3(Hn)
�3(Hn+1)

)

+
m(1 – ε)e–μ1τ1–μ3τ3

α + m
Λ(̂F , Ĥ) ln

(
Λ(Fn–m1+1, Hn–m1 )

Λ(Fn+1, Hn)

)

+ εe–μ2τ2–μ3τ3Λ(̂F , Ĥ) ln

(
Λ(Fn–m2+1, Hn–m2 )

Λ(Fn+1, Hn)

)

+ γΛ(̂F , Ĥ)
(
�2(Sn+1)
�2(̂S)

–
�2(Sn–m3+1)

�2(̂S)
+ ln

�2(Sn–m3+1)
�2(Sn+1)

)

.

Using the conditions of Q̂

Θ (̂F) = Λ(̂F , Ĥ),

(1 – ε)e–μ1τ1Λ(̂F , Ĥ) = (α + m)�1(K̂),

εe–μ2τ2–μ3τ3Λ(̂F , Ĥ) + me–μ3τ3�1(K̂) = γΛ(̂F , Ĥ) =
(
a + λ�5(Ẑ)

)
e–μ3τ3�2(̂S),

θe–μ3τ3�2(̂S) = c�3(Ĥ),

�2(̂S) =
ξ

g
,

we get

!Mn ≤ γ

(

1 –
Λ(̂F , Ĥ)

Λ(Fn+1, Ĥ)

)
(
Θ(Fn+1) – Θ (̂F)

)
+ γΛ(̂F , Ĥ)

(

1 –
Λ(̂F , Ĥ)

Λ(Fn+1, Ĥ)

)

+ γΛ(̂F , Ĥ)
Λ(Fn+1, Hn)
Λ(Fn+1, Ĥ)

–
m(1 – ε)e–μ1τ1–μ3τ3

α + m
Λ(̂F , Ĥ)

Λ(Fn–m1+1, Hn–m1 )�1(K̂)
Λ(̂F , Ĥ)�1(Kn+1)

+
m(1 – ε)e–μ1τ1–μ3τ3

α + m
Λ(̂F , Ĥ)
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– εe–μ2τ2–μ3τ3Λ(̂F , Ĥ)
Λ(Fn–m2+1, Hn–m2 )�2(̂S)

Λ(̂F , Ĥ)�2(Sn+1)

–
m(1 – ε)e–μ1τ1–μ3τ3

α + m
Λ(̂F , Ĥ)

�1(Kn+1)�2(̂S)
�1(K̂)�2(Sn+1)

+ γΛ(̂F , Ĥ)

– γΛ(̂F , Ĥ)
�3(Ĥ)�2(Sn–m3+1)
�3(Hn+1)�2(̂S)

+ γΛ(̂F , Ĥ) – γΛ(̂F , Ĥ)
�3(Hn)
�3(Ĥ)

+
d(a + λ�5(Ẑ))

θ

(

�3(Ĥ) –
η

q

)

�4(Yn+1)

+ γΛ(̂F , Ĥ) ln

(
�3(Hn)
�3(Hn+1)

)

+
m(1 – ε)e–μ1τ1–μ3τ3

α + m
Λ(̂F , Ĥ) ln

(
Λ(Fn–m1+1, Hn–m1 )

Λ(Fn+1, Hn)

)

+ εe–μ2τ2–μ3τ3Λ(̂F , Ĥ) ln

(
Λ(Fn–m2+1, Hn–m2 )

Λ(Fn+1, Hn)

)

+ γΛ(̂F , Ĥ) ln

(
�2(Sn–m3+1)
�2(Sn+1)

)

= γ

(

1 –
Λ(̂F , Ĥ)

Λ(Fn+1, Ĥ)

)
(
Θ(Fn+1) – Θ (̂F)

)

+
m(1 – ε)e–μ1τ1–μ3τ3

α + m
Λ(̂F , Ĥ)

[

5 –
Λ(̂F , Ĥ)

Λ(Fn+1, Ĥ)

–
Λ(Fn–m1+1, Hn–m1 )�1(K̂)

Λ(̂F , Ĥ)�1(Kn+1)
–
�1(Kn+1)�2(̂S)
�1(K̂)�2(Sn+1)

–
�3(Ĥ)�2(Sn–m3+1)
�3(Hn+1)�2(̂S)

–
Λ(Fn+1, Ĥ)�3(Hn)
Λ(Fn+1, Hn)�3(Ĥ)

(56)

+ ln

(
Λ(Fn–m1+1, Hn–m1 )�2(Sn–m3+1)�3(Hn)

Λ(Fn+1, Hn)�2(Sn+1)�3(Hn+1)

)]

+ εe–μ2τ2–μ3τ3Λ(̂F , Ĥ)
[

4 –
Λ(̂F , Ĥ)

Λ(Fn+1, Ĥ)
–
Λ(Fn–m2+1, Hn–m2 )�2(̂S)

Λ(̂F , Ĥ)�2(Sn+1)

–
�3(Ĥ)�2(Sn–m3+1)
�3(Hn+1)�2(̂S)

–
Λ(Fn+1, Ĥ)�3(Hn)
Λ(Fn+1, Hn)�3(Ĥ)

+ ln

(
Λ(Fn–m2+1, Hn–m2 )�2(Sn–m3+1)�3(Hn)

Λ(Fn+1, Hn)�2(Sn+1)�3(Hn+1)

)]

+
d(a + λ�5(Ẑ))

θ

(
�3(Ĥ) – �3(H̃)

)
�4(Yn+1)

+ γΛ(̂F , Ĥ)
[

–1 +
Λ(Fn+1, Ĥ)�3(Hn)
Λ(Fn+1, Hn)�3(Ĥ)

+
Λ(Fn+1, Hn)
Λ(Fn+1, Ĥ)

–
�3(Hn)
�3(Ĥ)

]

,

!Mn ≤ γ

(

1 –
Λ(̂F , Ĥ)

Λ(Fn+1, Ĥ)

)
(
Θ(Fn+1) – Θ (̂F)

)

–
m(1 – ε)e–μ1τ1–μ3τ3

α + m
Λ(̂F , Ĥ)

[

G
(

Λ(̂F , Ĥ)
Λ(Fn+1, Ĥ)

)

+ G
(
Λ(Fn–m1+1, Hn–m1 )�1(K̂)

Λ(̂F , Ĥ)�1(Kn+1)

)

+ G
(
�1(Kn+1)�2(̂S)
�1(K̂)�2(Sn+1)

)
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+ G
(
�3(Ĥ)�2(Sn–m3+1)
�3(Hn+1)�2(̂S)

)

+ G
(
Λ(Fn+1, Ĥ)�3(Hn)
Λ(Fn+1, Hn)�3(Ĥ)

)]

– εe–μ2τ2–μ3τ3Λ(̂F , Ĥ)
[

G
(

Λ(̂F , Ĥ)
Λ(Fn+1, Ĥ)

)

+ G
(
Λ(Fn–m2+1, Hn–m2 )�2(̂S)

Λ(̂F , Ĥ)�2(Sn+1)

)

+ G
(
�3(Ĥ)�2(Sn–m3+1)
�3(Hn+1)�2(̂S)

)

+ G
(
Λ(Fn+1, Ĥ)�3(Hn)
Λ(Fn+1, Hn)�3(Ĥ)

)]

+
d(a + λ�5(Ẑ))

θ
�3(H̃)

(
RY

1 /RZ
2 – 1

)
�4(Yn+1)

+ γΛ(̂F , Ĥ)
(

1 –
Λ(Fn+1, Ĥ)
Λ(Fn+1, Hn)

)(
Λ(Fn+1, Hn)
Λ(Fn+1, Ĥ)

–
�3(Hn)
�3(Ĥ)

)

.

Using Conditions C1–C4, we get that the first and last terms of Eq. (56) are less than
or equal to zero. Moreover, if RY

1 /RZ
2 ≤ 1, we get !Mn ≤ 0, and thus Mn is a mono-

tone decreasing sequence. Since Mn ≥ 0, then there is a limit limn→∞ Mn ≥ 0. There-
fore, limn→∞ !Mn = 0, which implies that limn→∞ Fn = F̂ , limn→∞ Kn = K̂ , limn→∞ Sn = Ŝ,
limn→∞ Hn = Ĥ , and limn→∞(RY

1 /RZ
2 – 1)Yn+1 = 0. We have two cases as follows:

• RY
1 /RZ

2 = 1, from Eq. (13)

0 = εe–μ2τ2Λ(̂F , Ĥ) + m�1(K̂) – a�2(̂S) – λ�2(̂S) lim
n→∞�5(Zn+1), (57)

and this gives limn→∞ Zn = Ẑ. Moreover, from Eq. (14) we have

0 = θe–μ3τ3�2(̂S) – c�3(Ĥ) – d�3(Ĥ) lim
n→∞�4(Yn+1), (58)

then we get limn→∞ Yn = 0.
• RY

1 /RZ
2 < 1, limn→∞ Yn = 0. From Eq. (57) we get limn→∞ Zn = Ẑ. Then we get that Q̂

is G.A.S. �

Proof of Theorem 5 Define Vn(Fn, Kn, Sn, Hn, Yn, Zn):

Vn =
1

φ(h)

[

γ

(

Fn – F̃ –
∫ Fn

F̃

Λ(̃F , H̃)
Λ(ς , H̃)

dς
)

+
me–μ3τ3

α + m

(

Kn – K̃ –
∫ Kn

K̃

�1(K̃)
�1(ς )

dς
)

+ e–μ3τ3

(

Sn – S̃ –
∫ Sn

S̃

�2(̃S)
�2(ς )

dς
)

+
(a + λ�5(Z̃))

θ

(

Hn – H̃ –
∫ Hn

H̃

�3(H̃)
�3(ς )

dς
)

+
d(a + λ�5(Z̃))

qθ

(

Yn – Ỹ –
∫ Yn

Ỹ

�4(Ỹ )
�4(ς )

dς
)

+
λe–μ3τ3

g

(

Zn – Z̃ –
∫ Zn

Z̃

�5(Z̃)
�5(ς )

dς
)]

+
(c + d�4(Ỹ ))

θ

(
a + λ�5(Z̃)

)
�3(H̃)G

(
�3(Hn)
�3(H̃)

)
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+
m(1 – ε)e–μ1τ1–μ3τ3

α + m
Λ(̃F , H̃)

n–1∑

j=n–m1

G
(
Λ(Fj+1, Hj)
Λ(̃F , H̃)

)

+ εe–μ2τ2–μ3τ3Λ(̃F , H̃)
n–1∑

j=n–m2

G
(
Λ(Fj+1, Hj)
Λ(̃F , H̃)

)

+ γΛ(̃F , H̃)
n–1∑

j=n–m3

G
(
�2(Sj+1)
�2(̃S)

)

.

Clearly, Vn(Fn, Kn, Sn, Hn, Yn, Zn) > 0 for all Fn, Kn, Sn, Hn, Yn, Zn > 0 and Vn (̃F , K̃ , S̃, H̃ , Ỹ ,
Z̃) = 0. We compute !Vn = Vn+1 – Vn as follows:

�Vn =
1

φ(h)

[

γ

(

Fn+1 – F̃ –
∫ Fn+1

F̃

Λ(̃F , H̃)
Λ(ς , H̃)

dς
)

+
me–μ3τ3

α + m

(

Kn+1 – K̃ –
∫ Kn+1

K̃

�1(K̃)
�1(ς )

dς
)

+ e–μ3τ3

(

Sn+1 – S̃ –
∫ Sn+1

S̃

�2(̃S)
�2(ς )

dς
)

+
(a + λ�5(Z̃))

θ

(

Hn+1 – H̃ –
∫ Hn+1

H̃

�3(H̃)
�3(ς )

dς
)

+
d(a + λ�5(Z̃))

qθ

(

Yn+1 – Ỹ –
∫ Yn+1

Ỹ

�4(Ỹ )
�4(ς )

dς
)

+
λe–μ3τ3

g

(

Zn+1 – Z̃ –
∫ Zn+1

Z̃

�5(Z̃)
�5(ς )

dς
)]

+
(c + d�4(Ỹ ))

θ

(
a + λ�5(Z̃)

)
�3(H̃)G

(
�3(Hn+1)
�3(H̃)

)

+
m(1 – ε)e–μ1τ1–μ3τ3

α + m
Λ(̃F , H̃)

n∑

j=n–m1+1

G
(
Λ(Fj+1, Hj)
Λ(̃F , H̃)

)

+ εe–μ2τ2–μ3τ3Λ(̃F , H̃)
n∑

j=n–m2+1

G
(
Λ(Fj+1, Hj)
Λ(̃F , H̃)

)

+ γΛ(̃F , H̃)
n∑

j=n–m3+1

G
(
�2(Sj+1)
�2(̃S)

)

–
1

φ(h)

[

γ

(

Fn – F̃ –
∫ Fn

F̃

Λ(̃F , H̃)
Λ(ς , H̃)

dς
)

+
me–μ3τ3

α + m

(

Kn – K̃ –
∫ Kn

K̃

�1(K̃)
�1(ς )

dς
)

+ e–μ3τ3

(

Sn – S̃ –
∫ Sn

S̃

�2(̃S)
�2(ς )

dς
)

+
(a + λ�5(Z̃))

θ

(

Hn – H̃ –
∫ Hn

H̃

�3(H̃)
�3(ς )

dς
)

+
d(a + λ�5(Z̃))

qθ

(

Yn – Ỹ –
∫ Yn

Ỹ

�4(Ỹ )
�4(ς )

dς
)

+
λe–μ3τ3

g

(

Zn – Z̃ –
∫ Zn

Z̃

�5(Z̃)
�5(ς )

dς
)]

–
(c + d�4(Ỹ ))

θ

(
a + λ�5(Z̃)

)
�3(H̃)G

(
�3(Hn)
�3(H̃)

)

–
m(1 – ε)e–μ1τ1–μ3τ3

α + m
Λ(̃F , H̃)

n–1∑

j=n–m1

G
(
Λ(Fj+1, Hj)
Λ(̃F , H̃)

)
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– εe–μ2τ2–μ3τ3Λ(̃F , H̃)
n–1∑

j=n–m2

G
(
Λ(Fj+1, Hj)
Λ(̃F , H̃)

)

– γΛ(̃F , H̃)
n–1∑

j=n–m3

G
(
�2(Sj+1)
�2(̃S)

)

,

!Vn =
1

φ(h)

[

γ

(

Fn+1 – Fn –
∫ Fn+1

Fn

Λ(̃F , H̃)
Λ(ς , H̃)

dς
)

+
me–μ3τ3

α + m

(

Kn+1 – Kn –
∫ Kn+1

Kn

�1(K̃)
�1(ς )

dς
)

+ e–μ3τ3

(

Sn+1 – Sn –
∫ Sn+1

Sn

�2(̃S)
�2(ς )

dς
)

+
(a + λ�5(Z̃))

θ

(

Hn+1 – Hn –
∫ Hn+1

Hn

�3(H̃)
�3(ς )

dς
)

+
d(a + λ�5(Z̃))

qθ

(

Yn+1 – Yn –
∫ Yn+1

Yn

�4(Ỹ )
�4(ς )

dς
)

+
λe–μ3τ3

g

(

Zn+1 – Zn –
∫ Zn+1

Zn

�5(Z̃)
�5(ς )

dς
)]

+
(c + d�4(Ỹ ))

θ

(
a + λ�5(Z̃)

)
�3(H̃)

[

G
(
�3(Hn+1)
�3(H̃)

)

– G
(
�3(Hn)
�3(H̃)

)]

+
m(1 – ε)e–μ1τ1–μ3τ3

α + m
Λ(̃F , H̃)

( n∑

j=n–m1+1

G
(
Λ(Fj+1, Hj)
Λ(̃F , H̃)

)

–
n–1∑

j=n–m1

G
(
Λ(Fj+1, Hj)
Λ(̃F , H̃)

))

+ εe–μ2τ2–μ3τ3Λ(̃F , H̃)

( n∑

j=n–m2+1

G
(
Λ(Fj+1, Hj)
Λ(̃F , H̃)

)

–
n–1∑

j=n–m2

G
(
Λ(Fj+1, Hj)
Λ(̃F , H̃)

))

+ γΛ(̃F , H̃)

( n∑

j=n–m3+1

G
(
�2(Sj+1)
�2(̃S)

)

–
n–1∑

j=n–m3

G
(
�2(Sj+1)
�2(̃S)

))

.

Using inequalities (45) and (46) by replacing F∗, H∗, ρ∗ with F̃ , H̃ , ρ̃ , we obtain

!Vn ≤ 1
φ(h)

[

γ

(

1 –
Λ(̃F , H̃)

Λ(Fn+1, H̃)

)

(Fn+1 – Fn) +
me–μ3τ3

α + m

(

1 –
�1(K̃)

�1(Kn+1)

)

(Kn+1 – Kn)

+ e–μ3τ3

(

1 –
�2(̃S)

�2(Sn+1)

)

(Sn+1 – Sn)

+
(a + λ�5(Z̃))

θ

(

1 –
�3(H̃)

�3(Hn+1)

)

(Hn+1 – Hn)

+
d(a + λ�5(Z̃))

qθ

(

1 –
�4(Ỹ )

�4(Yn+1)

)

(Yn+1 – Yn)

+
λe–μ3τ3

g

(

1 –
�5(Z̃)

�5(Zn+1)

)

(Zn+1 – Zn)
]

+
(c + d�4(Ỹ ))

θ

(
a + λ�5(Z̃)

)
�3(H̃)

[
�3(Hn+1)
�3(H̃)

–
�3(Hn)
�3(H̃)

+ ln

(
�3(Hn)
�3(Hn+1)

)]



Elaiw and Alshaikh Advances in Difference Equations         (2020) 2020:54 Page 46 of 51

+
m(1 – ε)e–μ1τ1–μ3τ3

α + m
Λ(̃F , H̃)

[
Λ(Fn+1, Hn)
Λ(̃F , H̃)

–
Λ(Fn–m1+1, Hn–m1 )

Λ(̃F , H̃)

+ ln

(
Λ(Fn–m1+1, Hn–m1 )

Λ(Fn+1, Hn)

)]

+ εe–μ2τ2–μ3τ3Λ(̃F , H̃)
[
Λ(Fn+1, Hn)
Λ(̃F , H̃)

–
Λ(Fn–m2+1, Hn–m2 )

Λ(̃F , H̃)

+ ln

(
Λ(Fn–m2+1, Hn–m2 )

Λ(Fn+1, Hn)

)]

+ γΛ(̃F , H̃)
[
�2(Sn+1)
�2(̃S)

–
�2(Sn–m3+1)

�2(̃S)
+ ln

(
�2(Sn–m3+1)
�2(Sn+1)

)]

.

From Eqs. (11)–(16) we have

!Vn ≤ γ

(

1 –
Λ(̃F , H̃)

Λ(Fn+1, H̃)

)
(
Θ(Fn+1) – Λ(Fn+1, Hn)

)

+
me–μ3τ3

α + m

(

1 –
�1(K̃)

�1(Kn+1)

)
[
(1 – ε)e–μ1τ1Λ(Fn–m1+1, Hn–m1 )

– (α + m)�1(Kn+1)
]

+ e–μ3τ3

(

1 –
�2(̃S)

�2(Sn+1)

)
[
εe–μ2τ2Λ(Fn–m2+1, Hn–m2 ) + m�1(Kn+1) – a�2(Sn+1)

– λ�2(Sn+1)�5(Zn+1)
]

+
(a + λ�5(Z̃))

θ

(

1 –
�3(H̃)

�3(Hn+1)

)
[
θe–μ3τ3�2(Sn–m3+1) – c�3(Hn+1)

– d�3(Hn+1)�4(Yn+1)
]

+
d(a + λ�5(Z̃))

qθ

(

1 –
�4(Ỹ )

�4(Yn+1)

)
[
q�3(Hn+1)�4(Yn+1) – η�4(Yn+1)

]

+
λe–μ3τ3

g

(

1 –
�5(Z̃)

�5(Zn+1)

)
[
g�2(Sn+1)�5(Zn+1) – ξ�5(Zn+1)

]

+
(c + d�4(Ỹ ))

θ

(
a + λ�5(Z̃)

)
�3(H̃)

[
�3(Hn+1)
�3(H̃)

–
�3(Hn)
�3(H̃)

+ ln

(
�3(Hn)
�3(Hn+1)

)]

+
m(1 – ε)e–μ1τ1–μ3τ3

α + m
Λ(̃F , H̃)

[
Λ(Fn+1, Hn)
Λ(̃F , H̃)

–
Λ(Fn–m1+1, Hn–m1 )

Λ(̃F , H̃)

+ ln

(
Λ(Fn–m1+1, Hn–m1 )

Λ(Fn+1, Hn)

)]

+ εe–μ2τ2–μ3τ3Λ(̃F , H̃)
[
Λ(Fn+1, Hn)
Λ(̃F , H̃)

–
Λ(Fn–m2+1, Hn–m2 )

Λ(̃F , H̃)

+ ln

(
Λ(Fn–m2+1, Hn–m2 )

Λ(Fn+1, Hn)

)]

+ γΛ(̃F , H̃)
[
�2(Sn+1)
�2(̃S)

–
�2(Sn–m3+1)

�2(̃S)
+ ln

(
�2(Sn–m3+1)
�2(Sn+1)

)]

,

!Vn ≤ γ

(

1 –
Λ(̃F , H̃)

Λ(Fn+1, H̃)

)
(
Θ(Fn+1) – Θ (̃F)

)
+ γΘ (̃F)

(

1 –
Λ(̃F , H̃)

Λ(Fn+1, H̃)

)
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+ γ
Λ(̃F , H̃)

Λ(Fn+1, H̃)
Λ(Fn+1, Hn) –

m(1 – ε)e–μ1τ1–μ3τ3

α + m
Λ(Fn–m1+1, Hn–m1 )

�1(K̃)
�1(Kn+1)

+ me–μ3τ3�1(K̃) – εe–μ2τ2–μ3τ3Λ(Fn–m2+1, Hn–m2 )
�2(̃S)

�2(Sn+1)

– me–μ3τ3�1(Kn+1)
�2(̃S)

�2(Sn+1)

– ae–μ3τ3�2(Sn+1) + λe–μ3τ3�2(̃S)�5(Zn+1) + ae–μ3τ3�2(̃S)

+
(
a + λ�5(Z̃)

)
e–μ3τ3�2(Sn–m3+1)

–
(
a + λ�5(Z̃)

)
e–μ3τ3�2(Sn–m3+1)

�3(H̃)
�3(Hn+1)

+
(a + λ�5(Z̃))c

θ
�3(H̃)

+
d(a + λ�5(Z̃))

qθ
�3(H̃)�4(Yn+1) –

d(a + λ�5(Z̃))η
qθ

�4(Yn+1)

+
d(a + λ�5(Z̃))η

qθ
�4(Ỹ ) – λe–μ3τ3�5(Z̃)�2(Sn+1) –

λe–μ3τ3ξ

g
�5(Zn+1)

+
λe–μ3τ3ξ

g
�5(Z̃)

–
(c + d�4(Ỹ ))

θ

(
a + λ�5(Z̃)

)
�3(Hn)

+
(c + d�4(Ỹ ))

θ

(
a + λ�5(Z̃)

)
�3(H̃) ln

(
�3(Hn)
�3(Hn+1)

)

+
m(1 – ε)e–μ1τ1–μ3τ3

α + m
Λ(̃F , H̃) ln

(
Λ(Fn–m1+1, Hn–m1 )

Λ(Fn+1, Hn)

)

+ εe–μ2τ2–μ3τ3Λ(̃F , H̃) ln

(
Λ(Fn–m2+1, Hn–m2 )

Λ(Fn+1, Hn)

)

+ γΛ(̃F , H̃)
(
�2(Sn+1)
�2(̃S)

–
�2(Sn–m3+1)

�2(̃S)
+ ln

(
�2(Sn–m3+1)
�2(Sn+1)

))

.

Using the conditions of Q̃

Θ (̃F) = Λ(̃F , H̃),

(1 – ε)e–μ1τ1Λ(̃F , H̃) = (α + m)�1(K̃),

εe–μ2τ2–μ3τ3Λ(̃F , H̃) + me–μ3τ3�1(K̃) = γΛ(̃F , H̃) =
(
a + λ�5(Z̃)

)
e–μ3τ3�2(̃S),

θe–μ3τ3�2(̃S) =
(
c + d�4(Ỹ )

)
�3(H̃),

�2(̃S) =
ξ

g
, �3(H̃) =

η

q
,

we get

!Vn ≤ γ

(

1 –
Λ(̃F , H̃)

Λ(Fn+1, H̃)

)
(
Θ(Fn+1) – Θ (̃F)

)
+ γΛ(̃F , H̃)

(

1 –
Λ(̃F , H̃)

Λ(Fn+1, H̃)

)

+ γΛ(̃F , H̃)
Λ(Fn+1, Hn)
Λ(Fn+1, H̃)
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–
m(1 – ε)e–μ1τ1–μ3τ3

α + m
Λ(̃F , H̃)

Λ(Fn–m1+1, Hn–m1 )�1(K̃)
Λ(̃F , H̃)�1(Kn+1)

+
m(1 – ε)e–μ1τ1–μ3τ3

α + m
Λ(̃F , H̃)

– εe–μ2τ2–μ3τ3Λ(̃F , H̃)
Λ(Fn–m2+1, Hn–m2 )�2(̃S)

Λ(̃F , H̃)�2(Sn+1)

–
m(1 – ε)e–μ1τ1–μ3τ3

α + m
Λ(̃F , H̃)

�1(Kn+1)�2(̃S)
�1(K̃)�2(Sn+1)

+ γΛ(̃F , H̃)

– γΛ(̃F , H̃)
�3(H̃)�2(Sn–m3+1)
�3(Hn+1)�2(̃S)

+ γΛ(̃F , H̃) – γΛ(̃F , H̃)
�3(Hn)
�3(H̃)

+ γΛ(̃F , H̃) ln

(
�3(Hn)
�3(Hn+1)

)

+
m(1 – ε)e–μ1τ1–μ3τ3

α + m
Λ(̃F , H̃) ln

(
Λ(Fn–m1+1, Hn–m1 )

Λ(Fn+1, Hn)

)

+ εe–μ2τ2–μ3τ3Λ(̃F , H̃) ln

(
Λ(Fn–m2+1, Hn–m2 )

Λ(Fn+1, Hn)

)

+ γΛ(̃F , H̃) ln

(
�2(Sn–m3+1)
�2(Sn+1)

)

= γ

(

1 –
Λ(̃F , H̃)

Λ(Fn+1, H̃)

)
(
Θ(Fn+1) – Θ (̃F)

)

+
m(1 – ε)e–μ1τ1–μ3τ3

α + m
Λ(̃F , H̃)

[

5 –
Λ(̃F , H̃)

Λ(Fn+1, H̃)

–
Λ(Fn–m1+1, Hn–m1 )�1(K̃)

Λ(̃F , H̃)�1(Kn+1)
–
�1(Kn+1)�2(̃S)
�1(K̃)�2(Sn+1)

(59)

–
�3(H̃)�2(Sn–m3+1)
�3(Hn+1)�2(̃S)

–
Λ(Fn+1, H̃)�3(Hn)
Λ(Fn+1, Hn)�3(H̃)

+ ln

(
Λ(Fn–m1+1, Hn–m1 )�2(Sn–m3+1)�3(Hn)

Λ(Fn+1, Hn)�2(Sn+1)�3(Hn+1)

)]

+ εe–μ2τ2–μ3τ3Λ(̃F , H̃)
[

4 –
Λ(̃F , H̃)

Λ(Fn+1, H̃)
–
Λ(Fn–m2+1, Hn–m2 )�2(̃S)

Λ(̃F , H̃)�2(Sn+1)

–
�3(H̃)�2(Sn–m3+1)
�3(Hn+1)�2(̃S)

–
Λ(Fn+1, H̃)�3(Hn)
Λ(Fn+1, Hn)�3(H̃)

+ ln

(
Λ(Fn–m2+1, Hn–m2 )�2(Sn–m3+1)�3(Hn)

Λ(Fn+1, Hn)�2(Sn+1)�3(Hn+1)

)]

+ γΛ(̃F , H̃)
[

–1 +
Λ(Fn+1, H̃)�3(Hn)
Λ(Fn+1, Hn)�3(H̃)

+
Λ(Fn+1, Hn)
Λ(Fn+1, H̃)

–
�3(Hn)
�3(H̃)

]

,

!Vn ≤ γ

(

1 –
Λ(̃F , H̃)

Λ(Fn+1, H̃)

)
(
Θ(Fn+1) – Θ (̃F)

)

–
m(1 – ε)e–μ1τ1–μ3τ3

α + m
Λ(̃F , H̃)

[

G
(

Λ(̃F , H̃)
Λ(Fn+1, H̃)

)
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+ G
(
Λ(Fn–m1+1, Hn–m1 )�1(K̃)

Λ(̃F , H̃)�1(Kn+1)

)

+ G
(
�1(Kn+1)�2(̃S)
�1(K̃)�2(Sn+1)

)

+ G
(
�3(H̃)�2(Sn–m3+1)
�3(Hn+1)�2(̃S)

)

+ G
(
Λ(Fn+1, H̃)�3(Hn)
Λ(Fn+1, Hn)�3(H̃)

)]

– εe–μ2τ2–μ3τ3Λ(̃F , H̃)
[

G
(

Λ(̃F , H̃)
Λ(Fn+1, H̃)

)

+ G
(
Λ(Fn–m2+1, Hn–m2 )�2(̃S)

Λ(̃F , H̃)�2(Sn+1)

)

+ G
(
�3(H̃)�2(Sn–m3+1)
�3(Hn+1)�2(̃S)

)

+ G
(
Λ(Fn+1, H̃)�3(Hn)
Λ(Fn+1, Hn)�3(H̃)

)]

+ γΛ(̃F , H̃)
(

1 –
Λ(Fn+1, H̃)
Λ(Fn+1, Hn)

)(
Λ(Fn+1, Hn)
Λ(Fn+1, H̃)

–
�3(Hn)
�3(H̃)

)

.

Using Conditions C1–C4, we get that the first and last terms of Eq. (59) are less than or
equal to zero. Thus, Vn is a monotone decreasing sequence. Since Vn ≥ 0, then there is
a limit limn→∞ Vn ≥ 0. Therefore, limn→∞ !Vn = 0, which implies that limn→∞ Fn = F̃ ,
limn→∞ Kn = K̃ , limn→∞ Sn = S̃, limn→∞ Hn = H̃ . From Eqs. (13) and (14) we have

0 = εe–μ2τ2Λ(̃F , H̃) + m�1(K̃) – a�2(̃S) – λ�2(̃S) lim
n→∞�5(Zn+1),

0 = θe–μ3τ3�2(̃S) – c�3(H̃) – d�2(H̃) lim
n→∞�4(Yn+1),

then limn→∞ Yn = Ỹ and limn→∞ Zn = Z̃. Then we get Q̃ is G.A.S. �
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