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Abstract
We approximate the solution of the nonlinear Fredholm integro-differential equation
(NFID) in the complex plane by periodic quasi-wavelets (PQWs). This kind of wavelets
possesses orthonormality properties, the numbers of terms in the decomposition and
reconstruction formulas are strictly limited, and the localization is not emphasized. To
the best of our knowledge, there are no numerical methods to obtain the solution of
the NFID by PQWs. Here, we attempt to obtain the numerical solution of the NFID
based on B-spline functions. Finally, the simulation results are shown for three
examples.
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1 Introduction
In this paper, we use a kind of wavelet playing a key role in solving integral equations,
which is named the periodic quasi-wavelets (PQWs) based on B-spline functions that ap-
proximate smooth functions very well. Some researchers focused on investigating PQWs
and approximating of Fredholm integral equation [1, 2] and mixed Volterra–Fredholm in-
tegral [3]. The aim of this study is to present a numerical method for approximating the
nonlinear Fredholm integro-differential equation (NFIDE) defined as the following form:

ω′(x) = μ(x) + λ

∫ T

0
R
(
x, t,ω(t)

)
dt, λ ∈R, 0 ≤ x ≤ T , (1)

where ω(x) is an unknown complex function to be found, μ(x) : [0, T] → C and R(x, t,
ω(t)) : [0, T]2 ×C →C are continuous and Lipschitzian periodic functions such that

∣∣R(
x, t,ω1(t)

)
– R

(
x, t,ω2(t)

)∣∣ ≤ M
∣∣ω1(t) – ω2(t)

∣∣,

where M is a Lipschitz constant.
We approximate the solution of NFIDE by using the B-spline basis functions and apply-

ing the iterative method [4] in each iteration on the complex plane.
Every integro-differential equation (IDE) is an ordinary differential equation in which

one of the variables is integral. There are many equations in mathematical modeling, such
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as Maxwell’s equations, biological, radiative energy, engineering problems, potential the-
ory, and transfers problems of oscillations that can be formulated by this equation and
fractional integro-differential equations; see [5–7].

Some numerical algorithms that discuss the approximation of the solution of IDE can
be listed such as the nonsmooth initial data arising method [8], Haar and RH methods [9–
11], cubic B-spline finite element method [12], Runge–Kutta–Nystrom methods [13, 14],
and high-rank constant terms [15]. Furthermore, in [16, 17], by using a system of Cauchy
type and numerical method with graded meshes, singular integral equations were solved.

This article is organized as follows. Section 2 contains the notation and some proper-
ties of B-spline and PQWs. Then, in Sect. 3, we formulate a problem and approximate the
solution for the NFIDE in the complex plane. In Sect. 4, we analyze the error of the sug-
gested approach. In fact, we investigate the convergence analysis in that section. Finally,
in Sect. 5, we illustrate the proposed methodology in numerical examples. We conclude
our work in Sect. 6.

2 Preliminaries
We can define the B-spline Bn

i (x) as follows:

Bn
i (x) =

1
hnn!

n+1∑
j=0

(–1)j

(
n + 1

j

)
(x – yi+j)n

+, (2)

where yj = y0 + jh, y0 = – (n+1)h
2 , j = 1, 2, . . . , and

(x – y)n
+ =

⎧⎨
⎩

x – y, x ≥ y,

0, otherwise
(3)

and n ∈ N denotes the degree of splines. If we use ym
j instead of yj and hm instead of h,

then the family of {ym
j }j∈Z will be denoted by Sn(hm), where the length of step is hm and

km = 2mp, hm =
T
km

, T = hp, p ≥ k + 1, m ∈N.

Definition 2.1 ([18]) The periodic B-spline is defined by

B◦
0

n,m(x) = Bn
0(x, hm) = kn

m

∑
l∈Z

( sin( lπ
km

)
lπ

)n+1

exp

(
i2π lx

T

)
. (4)

Definition 2.2 ([18]) The functions {An,m
r (x)}km–1

r=0 are defined by

An,m
r (x) = Cn,m

r

km–1∑
l=0

exp

(
i2π lr

km

)
B◦

0
n,m(x – lhm), x ∈ R, (5)

where

Cn,m
r =

{
t0 + 2

n∑
λ=1

tλ cos

(
2πλrhm

T

)}–1/2

(6)
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and

tλ = B◦
0

2n+1(λ, 1). (7)

The functions {An,m
r (x)}km–1

r=0 are an orthonormal basis for S∼

n (hm).

Also, S∼

n (hm) is a class of periodic spline functions in Sn(hm), which is a set of polynomials
of degree n such as f ∈ Cn–1[0, T], on each interval [ym

j , ym
j + hm] that j = 0, 1, . . . , km – 1 and

Si(0) = Si(T), i = 0, 1, . . . , n – 1.

Also, we can rewrite An,m
r (x) by using the Fourier expansion, so we have

An,m
r (x) = Cn,m

r km
n+1

∑
λ∈Z

(
sin(rπ/km)
(r + λkm)π

)n+1

exp

(
i2π (r + λkm)x

T

)
. (8)

Definition 2.3 ([19]) Let m ∈ N. Then we define Vm and Wm as two spaces of functions
as follows:

Vm = S∼

n (hm), Wm = Vm+1 – Vm. (9)

Definition 2.4 ([19]) The function Dn,m
r (x) ∈ Wm is defined by

Dn,m
r (x) := –bn,m+1

r An,m+1
r (x) + an,m+1

r An,m+1
r+km

(x), x ∈R, (10)

where

an,m+1
r =

Cn,m
r

Cn,m+1
r

(
cos

rπ
km+1

)n+1

, (11)

bn,m+1
r =

Cn,m
r

Cn,m+1
r+km

(
sin

rπ
km+1

)n+1

, (12)

and

〈
Dn,m

r1 , Dn,m
r2

〉
= δr1,r2 for r1, r2 = 0, . . . , km – 1,

〈
Dn,m

r1 , An,m
r2

〉
= 0 for 0 ≤ r1, r2 ≤ km – 1,

(13)

which is called the periodic quasi-wavelet.

3 Approximation of the solutions of NFIDE
Integrating Eq. (1) from 0 to x yields

ω(x) = ω(0) +
∫ x

0
μ(s) ds + α

∫ x

0

∫ T

0
R
(
s, t,ω(t)

)
dt ds. (14)

Moreover, in Banach spaces, we present a continuous integral operator P such that the
Banach fixed point theorem guarantees that P has a unique fixed point; see [20]. That
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means that the NFIDE has exactly one solution. Let P be a contraction map and let P be
defined for Eq. (14) as

Pω(x) = ω(0) +
∫ x

0
μ(s) ds + α

∫ x

0

∫ T

0
R
(
s, t,ω(t)

)
dt ds. (15)

According to Eqs. (14) and (15), for every x, s ∈ [0, T] in the (k + 1)th iteration, we have

ωk+1(x) = ω(0) +
∫ x

0
μ(s) ds + α

∫ x

0

∫ T

0
R
(
s, t,ωk(t)

)
dt ds. (16)

We define the function ψm(s, t) as

ψm(s, t) = R
(
s, t,ωm(t)

)
. (17)

We assume that Qm ∈ Vm is an orthogonal projection. Using Definition 2.4, Eqs. (8) and
(10), and the interpolation property, we have

Qm(ψ)(s, t) = R

(
s, t,

Km–1∑
r=0

αm
r An,m

r (t)

)

or

Qm(ψ)(s, t) = R

(
s, t,

Km–1∑
r=0

βm
r Dn,m

r (t)

)
, (18)

where

(
αm+1

βm+1

)
=

(
LT

m+1 HT
m+1

)(
αm

βm

)
,

and Lm and Hm are, respectively, given as follows:

Lm =

⎛
⎜⎜⎜⎜⎝

an,m
0 0 0 · · · 0
0 an,m

1 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · an,m
km–1

⎞
⎟⎟⎟⎟⎠ ,

Hm =

⎛
⎜⎜⎜⎜⎝

bn,m
0 0 0 · · · 0
0 bn,m

1 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · bn,m
km–1

⎞
⎟⎟⎟⎟⎠ ,

and

αm =
(
αm

0 , . . . ,αm
km–1

)T , βm =
(
βm

0 , . . . ,βm
km–1

)T .
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Thus

Ωk+1(x) = Ω(0) +
∫ x

0
μ(s) ds + α

∫ x

0

∫ T

0
Qm

(
ψk(s, t)

)
dt ds, k = 1, 2, . . . . (19)

We can approximate the integral of any function of ω on [–1, 1] by LM+1(ξ ) (the Legendre
polynomial of order M + 1) as

∫ 1

–1
ω(ξ ) dξ �

M∑
j=0

γjω(ξj), (20)

where {ξj}M
j=0 are the zeros of Legendre polynomial of order M + 1 on [–1, 1] and

γj =
2

(1 – ξ 2
j )[L′

M+1(ξj)]2 , j = 0, 1, . . . , M. (21)

By changing the variable t = T
2 (ξ + 1), it can be written as

Ωm+1(x) = Ω(0) +
∫ x

0
μ(s) ds

+
Tα

2

∫ x

0

(∫ 1

–1
R

(
s,

T
2

(ξ + 1),
Km–1∑

r=0

αm
r An,m

r

(
T
2

(ξ + 1)
))

dξ

)
ds.

Applying (20) implies that

Ωm+1(x) � Ω(0) +
∫ x

0
μ(s) ds

+
Tα

2

∫ x

0

M∑
j=0

γjR

(
s,

T
2

(ξj + 1),
Km–1∑

r=0

αm
r An,m

r

(
T
2

(ξj + 1)
))

ds

or that

Ωm+1(x) � Ω(0) +
∫ x

0
μ(s) ds

+
Tα

2

M∑
j=0

γj

∫ x

0
R

(
s,

T
2

(ξj + 1),
Km–1∑

r=0

αm
r An,m

r

(
T
2

(ξj + 1)
))

ds. (22)

By changing the variable s = x
2 (τ + 1) in (22), we have

Ωm+1(x)

� Ω(0) +
∫ x

0
μ(s) ds

+
Tαx

4

M∑
j=0

γj

∫ 1

–1
(τ + 1)R

(
x(τ + 1)

2
,

T
2

(ξj + 1),
Km–1∑

r=0

αm
r An,m

r

(
T
2

(ξj + 1)
))

dτ ,
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and by applying (20) again, we have

Ωm+1(x)

� Ω(0) +
∫ x

0
μ(s) ds

+
Tαx

4

M∑
j=0

γj

M∑
i=0

λi(τi + 1)

× R

(
x(τi + 1)

2
,

T
2

(ξj + 1),
Km–1∑

r=0

αm
r An,m

r

(
T
2

(ξj + 1)
))

, (23)

where

γj =
2

(1 – ξ 2
j )[L′

M+1(ξj)]2 , λi =
2

(1 – τ 2
i )[L′

M+1(τi)]2 i, j = 0, 1, . . . , M. (24)

4 Convergence analysis and error estimates
In this section, we discuss the convergence and compute the order of convergence of (1)
by using the following lemma and theorem.

Lemma 4.1 Let R(s, t,ω(s)) : [0, T]× [0, T] → C be a continuous and Lipschitzian function
such that

∣∣R(
s, t,ω1(t)

)
– R

(
s, t,ω2(t)

)∣∣ ≤ M
∣∣ω1(t) – ω2(t)

∣∣,

where M is a Lipschitz constant. Then P defined in (15) has a unique fixed point and

∥∥ω – Pn(ω0)
∥∥∞ ≤ ∥∥P(ω0) – Ω0

∥∥∞

∞∑
j=n

β j, (25)

for all ω0 ∈ C([0, T]), where β = |α|M < 1.

Proof Applying (15) gives

∣∣Pω1(x) – Pω2(x)
∣∣ =

∣∣∣∣α
∫ x

0

∫ T

0

(
R
(
s, t,ω1(t)

)
– R

(
s, t,ω2(t)

))
dt ds

∣∣∣∣

≤ |α|
∫ x

0

∫ T

0

∣∣R(
s, t,ω1(t)

)
– R

(
s, t,ω2(t)

)∣∣dt ds

≤ |α|
∫ x

0

∫ T

0
M

∣∣ω1(t) – ω2(t)
∣∣ds dx

≤ |α|M∥∥ω1(t) – ω2(t)
∥∥∞.

Thus

∣∣Pω1(x) – Pω2(x)
∣∣ ≤ |α|M∥∥ω1(x) – ω2(x)

∥∥∞. (26)
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Induction on n ∈N implies that

∥∥Pnω1 – Pnω2
∥∥∞ ≤ (|α|M)n‖ω1 – ω2‖∞.

If we set β = |α|M < 1, then

∞∑
n=1

∥∥Pnω1 – Pnω2
∥∥∞ < ∞.

Thus, P has a unique fixed point, which means that Eq. (12) has a unique solution. �

Theorem 4.2 Assume that ψi–1 ∈C([0, T]2), that {ωi}i≥1 is a subset of C([0, T]), and that
ε1, ε2, . . . , εi > 0 for i ≥ 1. Then

‖ω – Ωi‖∞ ≤ ∥∥P(ω0) – ω0
∥∥∞

∞∑
j=i

β j +
i∑

j=1

β i–jεj.

Proof Let

∥∥P(ωi–1) – Ωi
∥∥∞ ≤ |α|

∥∥∥∥
∫ x

0

∫ T

0
ψi–1(s, t) – Qm(ψi–1)(s, t) dt ds

∥∥∥∥∞

≤ |α|∥∥ψi–1 – Qm(ψi–1)
∥∥∞. (27)

Suppose that

Li–1 = max

{∥∥∥∥∂ψi–1

∂t

∥∥∥∥∞
,
∥∥∥∥∂ψi–1

∂s

∥∥∥∥∞

}
(28)

for i = 1, 2, . . . . Since Li–1 is uniformly bounded, we have |Li–1| ≤ ξ for any ξ . We set
g(x, s) := ψi–1 – Qm(ψi–1),

xl =
1

2n1+1 +
v1

2n1
, l = 2n1 + v1, n1, n2 ≥ 1,

sj =
1

2n2+1 +
v2

2n2
, j = 2n2 + v2, s0 = x0 = 0.

Applying the interpolating property and the mean-value theorem implies

∥∥ψi–1 – Qm(ψi–1)
∥∥∞

=
∥∥∥∥g(xl, sj) +

∂g
∂x

(ξ ,γ )(ξ – xl) +
∂g
∂s

(ξ ,γ )(γ – sj)
∥∥∥∥∞

=
∥∥∥∥(I – Qm)

∂ψi–1

∂x
(ξ ,γ ) + (I – Qm)

∂ψi–1

∂s
(ξ ,γ )

∥∥∥∥∞

× max
{‖ξ – xl‖∞,‖γ – sj‖∞

}

≤ 2
2i

∥∥(I – Qm)
∥∥∞

∥∥∥∥∂ψi–1

∂x
(ξ ,γ ) +

∂ψi–1

∂s
(ξ ,γ )

∥∥∥∥∞
.
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So, we have

∥∥ψi–1 – Qm(ψi–1)
∥∥∞ ≤ |α|4Li–1

2i .

Therefore, inequality (27) can be expressed as follows:

∥∥P(ωi–1) – Ωi
∥∥∞ ≤ |α|4Li–1

2i .

If

|α|4Lk–1

2k < εk , k = 1, 2, . . . , i,

and ε1, ε2, . . . , εi > 0 for i ≥ 1, then

∥∥P(ωi–1) – Ωi
∥∥∞ < εi. (29)

Applying the triangle inequality, we achieve

‖ω – Ωi‖∞ ≤ ∥∥ω – Pi(ω0)
∥∥∞ +

i∑
j=1

β j∥∥P(ωj–1) – ωj
∥∥∞.

By using (21) and (25) and Lemma 4.1, we have

‖ω – Ωi‖∞ ≤ ∥∥P(ω0) – Ω0
∥∥∞

∞∑
j=i

β j +
i∑

j=1

β i–jεj. (30)

If we set β = 1
2 – 1

2l+1 < 1
2 at the geometric series

∞∑
j=n

β j =
βn

1 – β

and

‖ω – Ωi‖∞ ≤ ∥∥P(ω0) – Ω0
∥∥∞

βn

1 – β
+

i∑
j=1

(
1
2

–
1

2l+1

)i–j 4|α|Lj–1

2j , (31)

then from (31) and (28), we have

‖ω – Ωi‖∞ ≤ ∥∥P(ω0) – Ω0
∥∥∞

βn

1 – β
+

i∑
j=1

(
1
2

–
1

2l+1

)i–j 4|α|Lj–1

2j

=
∥∥P(ω0) – Ω0

∥∥∞
βn

1 – β
+ 4ξ |α|βn

n∑
j=1

(
1
2

–
1

2l+1

)–j 1
2j

=
∥∥P(ω0) – Ω0

∥∥∞
βn

1 – β
+ 4ξ |α|βn

n∑
j=1

(
1 +

1
2l – 1

)j

. (32)
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Since (1 + 1
2l–1 ) ≤ 2 for any l ∈N, inequality (32) implies

‖ω – Ωi‖∞ ≤ ∥∥P(ω0) – Ω0
∥∥∞

βn

1 – β
+ 4ξβn|α|

n∑
j=1

2j

≤ ∥∥P(ω0) – Ω0
∥∥∞

βn

1 – β
+ 4ξβn|α|n2n. (33)

Since β < 1
4 , we have

‖ω – Ωi‖∞ ≤ 4ξ |α|n(2β)n. (34)

Therefore the order of convergence is O(n(2β)n). �

5 Numerical results
In this section, we consider three examples to demonstrate the efficiency of the PQWs
based on B-spline functions. In fact, using Eqs. (8) and (15), we define the absolute error
for nodes

xi =
2iπ
km

for i = 0, 1, . . . , km – 1.

The corresponding computations are performed by Maple 18 software on a Intel core i7
Duo processor 2.4 GHz and 8 GB memory.

So far, to the best of our knowledge, no researcher has yet been attempted to solve this
integral equation by PQWs. Thus we use the rational Haar (RH) wavelet method for com-
paring results of the solution of integral equations. First we apply the change of the variable
t = x

2π
and the interval of integral changes to [0, 1]. Then, by using of m = 4 or a 25 Haar

wavelet basis, we approximate the solution of integral equations.

Example 5.1 Consider the NFID of the second kind as

ω′(x) = μ(x) +
∫ 2π

0
sin(x + t)ω2(t) dt. (35)

The exact solution of (35) is

ω(x) = 5 cos(x) + 2 sin(4x) + i
(
5 sin(x) + 2 cos(4x)

)
.

The absolute error for m = 2, 4 with different values of node xi = 2iπ
km

for i = 0, 1, . . . , km –1,
is shown in Table 1. Moreover, their running time is 1.250 and 11.890 seconds, respectively.
Also, in Fig. 1, we compare the numerical solution and the exact solution, and in Fig. 2,
the absolute errors of Example 5.1 are depicted.

Example 5.2 Consider the NFID of the second kind as

ω′(x) = μ(x) +
∫ 2π

0
sin

(
ω(t) + ix

)
cos(x + t) dt. (36)

Then the exact solution of (36) is ω(x) = – cos(2x) + i sin(2x).
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Table 1 Numerical results of Example 5.1

xi m = 2 m = 4 25 Haar wavelet basis

0.523 9.88E–8 1.55E–11 3.62E–6
1.047 1.92E–7 3.00E–11 8.90E–5
2.094 3.34E–7 5.20E–11 4.88E–4
3.141 3.79E–7 6.02E–11 9.83E–3
4.188 3.22E–7 5.23E–11 7.45E–3
5.235 1.86E–7 3.03E–11 5.40E–3
5.759 9.75E–8 1.57E–11 4.97E–3

CPU-Time (s) 1.250 11.890 15

Figure 1 Comparison between the exact and
numerical solution form = 4 of Example 5.1

Figure 2 Plot of the absolute errors form = 4 of
Example 5.1

For different values of xi, i = 1, 2, . . . , km – 1, in Table 2, the absolute errors for m = 2, 4
are given. Comparison between the numerical and exact solution and absolute errors of
Example 5.2 are shown in Figs. 3 and 4, respectively.

Example 5.3 Consider the NFID of the second kind

ω′(x) = μ(x) +
∫ 2π

0
sin(t)

(
11 + sin(x)

)
ω2(t) dt. (37)
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Table 2 Numerical results of Example 5.2

xi m = 2 m = 4 25 Haar wavelet basis

0.523 1.56E–8 4.44E–15 6.60E–6
1.047 2.70E–8 6.16E–15 8.93E–6
2.094 1.74E–8 9.04E–15 3.94E–5
3.141 1.01E–7 7.61E–14 8.21E–5
4.188 3.36E–7 1.72E–13 3.41E–4
5.235 2.31E–7 2.89E–13 5.30E–4
5.759 9.31E–7 7.97E–13 3.92E–4

CPU-Time (s) 3.610 17.922 17.45

Figure 3 The plot of comparison between the exact
and numerical solution form = 4 of Example 5.2

Figure 4 Plot of the absolute errors form = 4 of
Example 5.2

In this example, we choose the exact solution as

ω(x) = 3 cos(x) cos(4x) + 3i sin(x) sin(4x).

Similar to the previous examples, the absolute errors are shown in Table 3. Furthermore,
the comparison between the numerical and exact solutions and absolute errors of Example
5.3 are drawn in Figs. 5 and 6, respectively.



Erfanian et al. Advances in Difference Equations         (2020) 2020:52 Page 12 of 13

Table 3 Numerical results of Example 5.3

xi m = 2 m = 4 25 Haar wavelet basis

0.523 8.61E–7 2.23E–19 1.66E–5
1.047 1.75E–6 6.00E–20 7.08E–5
2.094 3.58E–6 6.05E–19 3.70E–4
3.141 5.34E–6 3.14E–19 5.00E–4
4.188 6.95E–6 7.14E–19 4.19E–3
5.235 8.49E–6 1.22E–18 8.38E–3
5.759 9.28E–6 1.22E–18 1.09E–2

CPU-Time (s) 3.869 21.490 36

Figure 5 The plot of comparison between the exact
and numerical solution form = 4 of Example 5.3

Figure 6 Plot of the absolute errors form = 4 of
Example 5.3

6 Conclusion
In this research article, we have proposed a new idea by introducing PQWs for solving
a class of NFID. In each iteration of this method, by using these basis functions and the
iterative method, we approximated the solution. We discussed the convergence and com-
puted the order of convergence of Eq. (1) by using some lemmas and theorems. Finally, we
demonstrated the efficiency and accuracy of the proposed method with several numerical
examples.
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