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Abstract
In this paper, we study the Adomian decomposition method (ADM for short)
including its iterative scheme and convergence analysis, which is a simple and
effective technique in dealing with some nonlinear problems. We take algebraic
equations and fractional differential equations as applications to illustrate ADM’s
efficiency.
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1 Introduction
As Alan Turing said: “Science is a differential equation”; many real-world physical phe-
nomena are described by differential equations including linear differential equations and
nonlinear differential equations. In order to see the nature of the background of these
phenomena, we have to solve differential equations. Generally speaking, we are good at
dealing with linear problems rather than nonlinear problems. However, in practical ap-
plications, we are faced with more and more nonlinear problems. Hence we want to ap-
proximate the exact solutions to nonlinear equations by all kinds of techniques, such as
linearization method, decomposition method, homotopy method, perturbation method.

With the development of science and technique, more and more phenomena cannot be
well described by the classical differential equations. For example, various physical process
have memory and hereditary properties and cannot be well depicted by the classical local
differential operators. We have to face these new problems and obtain a new excellent tool
(fractional differential equations, described by nonlocal operators) to describe these non-
local process. Similarly, we are faced with solving fractional differential equations as well,
and many methods have been proposed to tackle these problems: the residual power se-
ries method [1–13], the homotopy perturbation method [14–16], the homotopy analysis
method [17–19], the tanh method [20], the extended tanh-function method [21, 22], the
sine–cosine method [22, 23], the exp-function method [22, 24, 25], implicit hybrid meth-
ods [26], trigonometric basic functions [27], the polynomial least square method [28], the
reproducing kernel algorithm [29], and so on [30, 31].
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In this paper, we are concerned with the Adomian decomposition method (ADM for
short). ADM is a kind of algorithm, based on a technique of decomposition, to construct
the approximate solutions and even exact solutions with suitable initial data for nonlinear
systems. This method has many advantages, such as

• It is very easy to apply and can solve wide classes of nonlinear systems including
algebraic equation, ordinary differential equations, partial differential equations,
integral equations, integro-differential equations, and so on and so forth [32].

• It avoids the cumbersome integrations of the Picard method.
• It can solve some nonlinear problems which cannot be solved by other numerical

methods (iterative, etc.).
• The solutions series do not depend explicitly on this number, hence the number of

variables is not an inconvenience in applications.
In recent years, more and more researchers have applied this method to solving nonlin-
ear systems [33–35]. We firstly study the algorithm and convergence analysis of ADM,
and then apply ADM to constructing approximate solutions for nonlinear equations with
initial data, including algebraic equations, fractional ordinary differential equations and
fractional partial differential equations.

This paper is organized as follows: In Sect. 2, we introduce the iterative scheme and con-
vergence analysis of ADM. In Sect. 3, we apply ADM to construct approximate solutions
for algebraic equations, time-fractional Riccati equations, time-fractional Kawahara equa-
tions and modified time-fractional Kawahara equations. In Sect. 4, we make a concluding
remark about this paper.

2 Model: u – Nu = f
In this section, we introduce the ADM for the following functional equations:

u – Nu = f , (2.1)

where N is a nonlinear operator from a Hilbert space H into H , f is a given function
(system input) in H , and u is an unknown function (system output) in H [36], such a system
is called a nonlinear system if it contains the nonlinear term N(u). We are interested in
finding the exact solutions or approximate solutions to (2.1).

We will introduce the iterative scheme of ADM, and its convergence analysis obtained
by Cherruault [36], and then apply the ADM to obtain the approximate solutions to (2.1).

2.1 Adomian decomposition method
We are interested in constructing approximate solutions for (2.1). Assume that the solu-
tion to (2.1) is unique with the form

u =
∞∑

n=0

un. (2.2)

Hence the following problem is to determine every term un. However, notice that there is
a nonlinear term N in this equation, which brings about a great difficulty to complete our
goal. In the present paper, we introduce the ADM [36] to overcome this difficulty. The key
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step is to decompose the nonlinear term N as

Nu =
∞∑

n=0

An, (2.3)

where An are Adomian polynomials of u0, u1, . . . , un, that is,

An = An(u0, u1, . . . , un). (2.4)

Unluckily, we do not know the specific form of An. We shall complete this task by intro-
ducing an external parameter. For the sake of simplicity, set

v =
∞∑

n=0

λnun and Nv =
∞∑

n=0

λnAn, (2.5)

where λ is a parameter. It should be emphasized that if λ = 1, then v = u and Nv = Nu; if
λ �= 1, the desired An is the same as the case of λ = 1. Hence it is easy to see that

An =
1
n!

dn

dλn N

( ∞∑

n=0

λnun

)∣∣∣∣∣
λ=0

. (2.6)

Once An are obtained by (2.6), plugging (2.2) and (2.3) into (2.1), then one can see that

∞∑

n=0

un =
∞∑

n=0

An + f . (2.7)

In order to obtain un, define the following recurrent equations (we call these recurrent
equations by Adomian relation):

u0 = f , un+1 = An(u0, u1, . . . , un) (n ∈N), (2.8)

from which un are solvable formally. If we can solve un up to n ≤ N , then u =
∑

n≤N un is
called the N th approximate solution to (2.1).

Remark 2.1 If the nonlinearity has the form Nu = g(u), where g is a smooth function of u,
then one can obtain the first several Adomian polynomials as [32]:

A0 = g ′(u0); (2.9)

A1 = g ′(u0)u1; (2.10)

A2 = g ′(u0)u2 + g ′′(u0)
u2

1
2!

; (2.11)

A3 = g ′(u0)u3 + g ′′(u0)u1u2 + g(3)(u0)
u3

1
3!

; (2.12)

A4 = g ′(u0)u4 + g ′′(u0)
(

u2
2

2!
+ u1u3

)
+ g(3)(u0)

u2
1u2

2!
+ g(4)(u0)

u4
1

4!
. (2.13)
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2.2 Convergence analysis of ADM
In the above discussions, we obtain the approximate solutions to (2.1), but we do not know
whether the following two basic but essential questions:

• Is
∑

un convergent?
• Is

∑
un a solution to (2.1)?

are answered ‘yes’ or ‘no’. In [36], Cherruault answered the above two questions. He proved
that if N is contractive, then

∑
un is convergent to the solution of (2.1). This result is stated

as the following theorem.

Theorem 2.2 ([36, Theorem 3.1]) Set

S0 = 0; Sn = u1 + u2 + · · · + un, n = 1, 2, . . . . (2.14)

For every sequence y0 + Sn, approximating N(y0 + Sn) by

Nn(u0 + Sn) = A0 + A1 + · · · + An. (2.15)

Then
(1) the Adomian relation (2.8) is equivalent the following recurrent equations:

S0 = 0; Sn+1 = Nn(u0 + Sn), n = 1, 2, . . . . (2.16)

(2) If N is a contraction (i.e., ‖N‖ = δ < 1), and ‖Nn – N‖ = εn → 0 (n → ∞) (satisfied in
our case), then the sequence Sn given by (2.16) converges towards the solution S of
S = N(u0 + S).

Remark 2.3 We modify the original proof given by Cherruault [36] to obtain the above
iterative inequality, based on which we know that Sn converges to the solution S of S =
N(y0 + S).

Remark 2.4 The recurrent relation (2.16) may be associated with the functional equation

N(y0 + S) = S. (2.17)

For Eq. (2.17), if N is contractive, then the sequence Sn defined by (2.16) converges to the
only solution of (2.16). Also, for Eq. (2.1), if S∗ is a solution to (2.17), then u∗ � f + S∗ is a
solution to (2.1).

Remark 2.5 In [36], Cherruault discussed the convergence of ADM in more general situ-
ations and obtained the following important theorem.

Theorem 2.6 ([36, Theorem 4.1]) Set R = N – I , where I denotes the identity element.
Assume R satisfies the following hypotheses:

(1) R is hemicontinuous.
(2) For any u, v ∈ H , there exists a constant k > 0 such that

〈Ru – Rv, u – v〉 ≥ k‖u – v‖. (2.18)
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(3) For any N > 0, there exists a constant C(N) > 0, such that, for any u, v ∈ H with
‖u‖ ≤ N , ‖v‖ ≤ N , we have

〈Ru – Rv, w〉 ≤ C(N)‖u – v‖‖w‖, ∀w ∈ H . (2.19)

Then we have the following results:
(i) For every f ∈ H ′ (dual of Hilbert space H), (2.1) is solvable in H .

(ii) The sequence Sn defined by

Sn+1 = Sn – ρN(u0 + Sn), ρ > 0 (2.20)

is strongly convergent in H and its limit S the solution of

S = N(u0 + S). (2.21)

Corollary 2.7 S + u0 with u0 = f is a solution to (2.1).

Remark 2.8 In [35], Turkyilmazoglu speeded up the convergence of ADM, that is to say,
the convergence region of the series approximation is found to be enlarged to a bigger
physical domain.

3 Applications
3.1 Algebraic equations
In this subsection, we consider the approximate solution to algebraic equation with the
following general form:

anxn + an–1xn–1 + · · · + a2x2 + a1x + a0 = 0, (3.1)

where the degree N � n ≥ 2 and the leading coefficient an �= 0. For the algebraic equation
(3.1), mathematicians have obtained the following celebrated theorem.

Theorem 3.1 ([37, Fundamental theorem of algebra]) Every polynomial with real or com-
plex coefficients has at least one complex root.

From the fundamental theorem of algebra 3.1, the algebraic equation (3.1) is solvable in
the complex field. However, it does not tell us the specific form, or “distribution” of these
roots, which is also important in practical applications. As a result on the specific form of
solutions to (3.1), Abel proved the following celebrated theorem.

Theorem 3.2 ([38, Abel–Ruffini theorem or Abel’s impossibility theorem]) A general al-
gebraic equation of degree N � n ≥ 5 cannot be solved in radicals. This means that there
does not exist any formula which would express the roots of such equation as functions of the
coefficients by means of the algebraic operations (+, –,×,÷) and roots of natural degrees.

From the Abel–Ruffini theorem, Theorem 3.2, it is impossible to obtain a specific for-
mula for algebraic equation (3.1) as n ≥ 5. However, it is important to have some informa-
tion about (3.1). Hence, algebraic equation (3.1) is hoped to be solved approximately.
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Next, we shall apply the ADM to solve algebraic equation (3.1) approximately, and take
the quadratic equation

au2 + bu + c = 0, (3.2)

where a, b, c are constants and a �= 0, as an example to illustrate the validity of ADM.
In [39], Adomian and Rach applied the ADM to obtain an approximate solution of (3.2).

Here we will introduce the specific process of the ADM to solve (3.2).
In order to apply the ADM, rewrite (3.2) as

u = f + Nu, (3.3)

where

f = –
c
a

and Nu = g(u) = –
a
b

u2. (3.4)

By the ADM, we assume that Eq. (3.3) has a series solution

u∗ = u0 + u1 + u2 + · · · + un + · · · (3.5)

and the nonlinear term can be decomposed as

g(u) =
∞∑

n=0

An, (3.6)

where

An =
1
n!

dn

dλn g

( ∞∑

i=0

λiui

)∣∣∣∣∣
λ=0

(3.7)

= –
a
b

1
n!

dn

dλn

( ∞∑

i=0

λiui

)2∣∣∣∣∣
λ=0

(3.8)

= –
a
b

1
n!

dn

dλn

( ∞∑

i=0

λ2iu2
i + 2

∞∑

�=0

∑

0≤j<k≤�

λj+kujuk

)∣∣∣∣∣
λ=0

. (3.9)

Explicitly

A0 = –
a
b

u2
0, (3.10)

A1 = –
a
b

· 2u0u1, (3.11)

A2 = –
a
b

· (2u0u2 + u2
1
)
, (3.12)

A3 = –
b
2

· (2u0u3 + 2u1u2), (3.13)

... (3.14)
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A2m–1 = –
a
b

· (2u0u2m–1 + 2u1u2m–2 + · · · + 2uiu2m–1–i + 2um–1um) (3.15)

= –
a
b

·
(

2
2m–1∑

i=0

uiu2m–1–i

)
, (3.16)

A2m = –
a
b

· (2u0u2m + 2u1u2m–1 + · · · + 2uiu2m–i + 2um–1um+1 + u2
m
)

(3.17)

= –
a
b

·
(

2
2m∑

i=0

uiu2m–i + u2
m

)
. (3.18)

Hence

u0 = –
a
b

· bc
a2 , (3.19)

u1 = –
a
b

u2
0, (3.20)

u2 = –
a
b

· 2u0u1, (3.21)

u3 = –
a
b

· (2u0u2 + u2
1
)
, (3.22)

u4 = –
a
b

· (2u0u3 + 2u1u2), (3.23)

... (3.24)

u2m–2 = –
a
b

· (2u0u2m–1 + 2u1u2m–2 + · · · + 2uiu2m–1–i + 2um–1um) (3.25)

= –
a
b

·
(

2
2m–1∑

i=0

uiu2m–1–i

)
, (3.26)

u2m–1 = –
a
b

· (2u0u2m + 2u1u2m–1 + · · · + 2uiu2m–i + 2um–1um+1 + u2
m
)

(3.27)

= –
a
b

·
(

2
2m∑

i=0

uiu2m–i + u2
m

)
. (3.28)

We claim that

u∗ =
∞∑

n=0

un (3.29)

is a solution to (3.2). For the sake of convenience, permutating the coefficients of un

(n = 1, 2, . . .) as (– b
a ) times every element of the following table:

u0u0 u0u1 u0u2 u0u3 u0u4 · · ·
u1u0 u1u1 u1u2 u1u3 · · · · · ·
u2u0 u2u1 u2u2 · · · · · · · · ·
u3u0 u3u1 · · · · · · · · · · · ·
u4u0 · · · · · · · · · · · · · · ·

...
...

...
...

...
...

(3.30)
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and one can see that

u∗ = u0 + u1 + u2 + · · · + un + · · · (3.31)

= –
c
a

–
a
b
(
u2

0 + 2u0u1 + 2u0u2 + u2
1 + · · · ) (3.32)

= –
c
a

–
a
b

· u2
∗

(
u2

∗ can be computed by the table above
)
. (3.33)

Hence u satisfies

au2
∗ + bu∗ + c = 0, (3.34)

and this indicates that u∗ is a solution to (3.2).

3.2 Fractional differential equations
In this subsection, we will apply the ADM to constructing approximate solutions to the
Cauchy problems of fractional differential equations, including fractional ordinary differ-
ential equations and fractional partial differential equations.

At first, we introduce the definitions of fractional derivative and fractional integral, to-
gether with some basic formulas, which will be used frequently in the specific examples.

3.2.1 Fractional calculus
The concept of fractional calculus could be traced back to 1695 [40, 41]. With the devel-
opment of operator theory, fractional derivative has taken a huge leap, and there are many
kinds of fractional derivative, such as the Caputo derivative, the Riemann–Liouville inte-
gral. Unluckily, there is not an uniform definition for a fractional derivative and fractional
integral, which is an open problem. It should be emphasized that fractional calculus is
not only a simple generalization of the classical calculus, but also it is an excellent instru-
ment for the description of memory and hereditary properties of various physical process
[42, 43], because it is defined by an integral with a singular integral kernel.

Next we introduce some definitions and lemmas of fractional calculus used frequently
below.

Definition 3.3 ([44, Gamma Fuction]) The Gamma function is defined by

Γ (x) :=
∫ ∞

0
tx–1e–t dt, Re(x) > 0. (3.35)

Remark 3.4 For the Gamma function, we have the following important and useful prop-
erties:

• Γ (1) = 1 (this is simply the Euler integral).
• Γ (1/2) =

√
π (replace t by τ 2, and then apply multiple integral to calculate it).

• (Iterative formula) For any x such that Re(x) > 0, Γ (x + 1) = xΓ (x). Especially, for any
n ∈N, Γ (n + 1) = nΓ (n) = · · · = n!, from which it can be seen that the Gamma
function is a generalization of factorial operation (using integral by parts with the
“LIATE rule”).

Some more details of the Gamma function could found in the book [45] by Artin.
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Definition 3.5 ([46, Mittag-Leffler function]) The Mittag-Leffler function is defined by

Eα(x) :=
∞∑

k=0

xk

Γ (αk + 1)
, Re(α) > 0. (3.36)

Definition 3.6 ([44, Riemann–Liouville integral]) The (left sided) Riemann–Liouville
fractional integral of order β (β > 0) of a function u(x, t) ∈ Cp (p ≥ –1) is denoted by
Iβu(x, t) (with respect to t) and defined as

Iβu(x, t) :=
1

Γ (β)

∫ t

0
(t – τ )β–1u(x, τ ) dτ . (3.37)

Definition 3.7 ([44, Caputo derivative]) The (left sided) Caputo fractional derivative of
order β (β > 0) of a function u(x, t) ∈ Cm

l is denoted by Dβu(x, t) (with respect to t) and
defined as

Dβu(x, t) :=

⎧
⎨

⎩
∂m

t u(x, t), β = m ∈ N
∗,

Im–β∂m
t u(x, t), m – 1 < β < m.

(3.38)

Lemma 3.8 ([44, Integral formula]) For any m – 1 < β ≤ m ∈N
∗,

IβDβu(x, t) = u(x, t) –
m–1∑

k=0

∂ku(x, 0)
tk

k!
. (3.39)

Lemma 3.9 ([44, polynomial]) For any β , γ ,

Iβ tγ =
Γ (γ + 1)

Γ (β + γ + 1)
tβ+γ . (3.40)

3.2.2 Time-fractional Riccati equations
In this subsection, we take the following fractional Riccati equation:

Dαu = u2 + t (3.41)

as an example to illustrate the ADM, where Dα is the fractional derivative in the sense of
Caputo and 0 < α < 1 is a fraction. For the study of the fractional Riccati equation, Syam
et al. [26] modified the implicit hybrid method to solve the Cauchy problem of the frac-
tional Riccati equation in the sense of a conformable fractional derivative . In [27], Agheli
proposed a new method based on trigonometric basic functions to obtain an approxi-
mate solution to a time-fractional Riccati equation. In [28], Bota and Caruntu applied
the polynomial least square method to construct the analytical approximate solutions for
quadratic Riccati differential equations. In addition, there are also many other methods to
study time-fractional Riccati equations. In this paper, we shall apply the ADM to construct
approximate solutions to time-fractional Riccati equations in the Caputo sense.

Clearly, by (3.39), one can see that the solution to (3.41) is equivalent to the following
integral equation:

u(t) = u0 + Iαu2 + Iαt. (3.42)
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Furthermore, it follows (3.40) that

u(t) = u0 +
1

Γ (α + 2)
t1+α + Iαu2. (3.43)

Let

f � u0 +
1

Γ (α + 2)
t1+α , Nu � Iαu2. (3.44)

Then (3.43) has the following simple form:

u = f + Nu. (3.45)

By the idea of ADM, suppose (3.45) has a solution of the form

u∗ =
∞∑

n=0

un (3.46)

and the nonlinear term can be decomposed as

Nu =
∞∑

n=0

An, (3.47)

where

An =
1
n!

dn

dλn N

( ∞∑

i=0

λiui

)∣∣∣∣∣
λ=0

(3.48)

=
1
n!

dn

dλn Iα
( ∞∑

i=0

λiui

)2∣∣∣∣∣
λ=0

(3.49)

=
1
n!

dn

dλn Iα
( ∞∑

i=0

λ2iu2
i + 2

∞∑

�=1

∑

0≤i<j≤�

λi+juiuj

)∣∣∣∣∣
λ=0

(3.50)

=
1
n!

dn

dλn

( ∞∑

i=0

λ2iIαu2
i + 2

∞∑

�=1

∑

0≤i<j≤�

λi+jIαuiuj

)∣∣∣∣∣
λ=0

. (3.51)

Hence we obtain the iterative equations u0 = f and

un+1 =
1
n!

dn

dλn

( ∞∑

i=0

λ2iIαu2
i + 2

∞∑

�=1

∑

0≤i<j≤�

λi+jIαuiuj

)∣∣∣∣∣
λ=0

. (3.52)

After a “simple” computation, one can obtain the specific form of un as follows:

u1 = Iαu2
0 (3.53)

u2 = Iα2u0u1, (3.54)

u3 = Iα
(
u2

1 + 2u0u2
)
, (3.55)
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u4 = Iα(2u0u3 + 2u1u2), (3.56)

u5 = Iα
(
u2

2 + 2u0u4 + 2u1u3
)
, (3.57)

u6 = Iα(2u0u5 + 2u1u4 + 2u2u3), (3.58)

u7 = Iα
(
u2

3 + 2u0u6 + 2u1u5 + 2u2u4
)
, (3.59)

...

u2k–1 = Iα
(
u2

k–1 + 2u0u2k–2 + 2u1u2k–3 + · · · + 2uk–2uk
)
, (3.60)

u2k = Iα(2u0u2k–1 + 2u1u2k–2 + · · · + 2uk–1uk), (3.61)

for k = 2, 3, . . . . By a similar discussion to the table in (3.30), one can see that

u∗ := f +
∞∑

n=1

un (3.62)

satisfies the identity

u∗ – f = Iαu2
∗. (3.63)

By the operation of a fractional derivative and integral, we have

Dαu∗ – t = u2
∗, (3.64)

that is,

Dαu∗ = u2
∗ + t, (3.65)

which indicates that u∗ is exactly a solution to (3.41).

Remark 3.10 From the discussions above, it is easy to see that if we know the initial con-
dition of u, i.e. u0, then we can obtain an approximate solution for (3.41) using successive
iterations.

3.2.3 Time-fractional Kawahara equation
Consider the following time-fractional Kawahara equation:

Dαu + u∂xu + p∂xxxu – q∂xxxxxu = 0, (3.66)

where u = u(x, t), (x, t) ∈ R × R. This equation was derived by Hasimoto as a model of
capillary-gravity waves in an infinitely long canal over a flat bottom in a long wave regime
when the Bond number is nearly one third. This type of equation was first found by Kaku-
tani and Ono in an analysis of magnet-acoustic waves in a cold collision free plasma.
Then Hasimoto derived the above equation from capillary-gravity waves. Kawahara stud-
ied this type of equation numerically and observed that the equation has both oscillatory
and monotone solitary-wave solutions. Some more details on Kawahara equations can be
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found in [47–50]. In fact, the Kawahara equation can be viewed as a type of the fifth KdV
equation,

ut +
105
16

β2u∂xu +
13
4

δ∂xxxu + γ ∂xxxxxu = 0, (3.67)

for some special coefficients.
Next we shall apply the ADM to construct approximate solution to (3.66) with initial

condition.
Obviously, the time-fractional Kawahara equation (3.66) is equivalent to the following

integral form:

u = f + Nu, (3.68)

where

f = u(x, 0), Nu = –Iα{u∂xu + p∂xxxu – q∂xxxxxu}. (3.69)

By the ADM, suppose that (3.68) has a solution of the following form:

u =
∞∑

n=0

un (3.70)

and the nonlinear term could be decomposed as

Nu =
∞∑

n=0

An, (3.71)

where

An (3.72)

=
1
n!

dn

dλn N

( ∞∑

i=0

λiui

)∣∣∣∣∣
λ=0

(3.73)

= –Iα
1
n!

dn

dλn (3.74)

×
{( ∞∑

i=0

λiui

)
·
( ∞∑

i=0

λi∂xui

)
+ p

( ∞∑

i=0

λi∂xxxui

)
– q

( ∞∑

i=0

λi∂xxxxxui

)}∣∣∣∣∣
λ=0

(3.75)

= –Iα
{ n∑

j=0

ui∂xun–i + p∂xxxun – q∂xxxxxun

}
. (3.76)

Furthermore

u1 = A0(u0) (3.77)

= N

( ∞∑

n=0

λnun

)∣∣∣∣∣
λ=0

(3.78)
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= –Iα (3.79)

×
{( ∞∑

n=0

λnun

)
·
( ∞∑

n=0

λn∂xun

)
+ p

( ∞∑

n=0

λn∂xxxun

)
– q

( ∞∑

n=0

λn∂xxxxxun

)}∣∣∣∣∣
λ=0
(3.80)

= –Iα{u0∂xu0 + p∂xxxu0 – q∂xxxxxu0}, (3.81)

u2 = A1(u0, u1) (3.82)

=
d

dλ
N

( ∞∑

n=0

λnun

)∣∣∣∣∣
λ=0

(3.83)

= –Iα
d

dλ
(3.84)

×
{( ∞∑

n=0

λnun

)
·
( ∞∑

n=0

λn∂xun

)
+ p

( ∞∑

n=0

λn∂xxxun

)
– q

( ∞∑

n=0

λn∂xxxxxun

)}∣∣∣∣∣
λ=0
(3.85)

= –Iα{u0∂xu1 + u1∂xu0 + p∂xxxu1 – q∂xxxxxu1}, (3.86)

u3 = A2(u0, u1, u2) (3.87)

=
1
2!

d2

dλ2 N

( ∞∑

n=0

λnun

)∣∣∣∣∣
λ=0

(3.88)

= –Iα
1
2!

d2

dλ2 (3.89)

×
{( ∞∑

n=0

λnun

)
·
( ∞∑

n=0

λn∂xun

)
+ p

( ∞∑

n=0

λn∂xxxun

)
– q

( ∞∑

n=0

λn∂xxxxxun

)}∣∣∣∣∣
λ=0
(3.90)

= –Iα{u0∂xu2 + u1∂xu1 + u2∂xu0 + p∂xxxu2 – q∂xxxxxu2}, (3.91)

u4 = A2(u0, u1, u2, u3) (3.92)

=
1
3!

d3

dλ3 N

( ∞∑

n=0

λnun

)∣∣∣∣∣
λ=0

(3.93)

= –Iα
1
3!

d3

dλ3 (3.94)

×
{( ∞∑

n=0

λnun

)
·
( ∞∑

n=0

λn∂xun

)
+ p

( ∞∑

n=0

λn∂xxxun

)
– q

( ∞∑

n=0

λn∂xxxxxun

)}∣∣∣∣∣
λ=0
(3.95)

= –Iα{u0∂xu3 + u1∂xu2 + u2∂xu1 + u3∂xu0 + p∂xxxu3 – q∂xxxxxu3}, (3.96)

and so on.

Remark 3.11 We claim that with u∗ =
∑∞

n=0 un we have Eq. (3.66), and we do not verify it,
which is the same as the examples above.
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3.2.4 Modified time-fractional Kawahara equations
Consider the following modified time-fractional Kawahara equation:

Dαu + u2∂xu + p∂xxxu – q∂xxxxxu = 0, (3.97)

where u = u(x, t), (x, t) ∈R×R. The modified Kawahara equation is known as the critical
surface-tension model. This equation arises in the modeling of weakly nonlinear waves in
a wide variety of media. A variety of physical phenomena, like magneto acoustic waves in
a plasma, shallow-water waves with surface tension and capillary-gravity water waves, are
described by the modified Kawahara equation [47].

Now we start to construct an approximate solution to (3.97) with initial value via the
ADM.

Clearly, the modified time-fractional Kawahara equation (3.97) is equivalent to the fol-
lowing integral form:

u = f + Nu, (3.98)

where

f = u(x, 0), Nu = –Iα
{

u2∂xu + p∂xxxu – q∂xxxxxu
}

. (3.99)

By the ADM, suppose that (3.98) has a solution of the following form:

u =
∞∑

n=0

un (3.100)

and the nonlinear term could be decomposed as

Nu =
∞∑

n=0

An, (3.101)

where

An (3.102)

=
1
n!

dn

dλn N

( ∞∑

i=0

λiui

)∣∣∣∣∣
λ=0

(3.103)

= –Iα
1
n!

dn

dλn (3.104)

×
{( ∞∑

i=0

λiui

)2

·
( ∞∑

i=0

λi∂xui

)
+ p

( ∞∑

i=0

λi∂xxxui

)
– q

( ∞∑

i=0

λi∂xxxxxui

)}∣∣∣∣∣
λ=0
(3.105)

=

{
–Iα{∑k

j=0 uj∂xu2k–2j + p∂xxxun – q∂xxxxxun}, n = 2k;
–Iα{∑k

j=0 uj∂xu2k+1–2j + p∂xxxun – q∂xxxxxun}, n = 2k + 1.
(3.106)
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Furthermore

u1 = A0(u0) (3.107)

= N

( ∞∑

n=0

λnun

)∣∣∣∣∣
λ=0

(3.108)

= –Iα (3.109)

×
{( ∞∑

n=0

λnun

)2

·
( ∞∑

n=0

λn∂xun

)
+ p

( ∞∑

n=0

λn∂xxxun

)
– q

( ∞∑

n=0

λn∂xxxxxun

)}∣∣∣∣∣
λ=0

(3.110)

= –Iα
{

u2
0∂xu0 + p∂xxxu0 – q∂xxxxxu0

}
, (3.111)

u2 = A1(u0, u1) (3.112)

=
d

dλ
N

( ∞∑

n=0

λnun

)∣∣∣∣∣
λ=0

(3.113)

= –Iα
d

dλ
(3.114)

×
{( ∞∑

n=0

λnun

)2

·
( ∞∑

n=0

λn∂xun

)
+ p

( ∞∑

n=0

λn∂xxxun

)
– q

( ∞∑

n=0

λn∂xxxxxun

)}∣∣∣∣∣
λ=0

(3.115)

= –Iα
{

u2
0∂xu1 + p∂xxxu1 – q∂xxxxxu1

}
, (3.116)

u3 = A2(u0, u1, u2) (3.117)

=
1
2!

d2

dλ2 N

( ∞∑

n=0

λnun

)∣∣∣∣∣
λ=0

(3.118)

= –Iα
1
2!

d2

dλ2 (3.119)

×
{( ∞∑

n=0

λnun

)2

·
( ∞∑

n=0

λn∂xun

)
+ p

( ∞∑

n=0

λn∂xxxun

)
– q

( ∞∑

n=0

λn∂xxxxxun

)}∣∣∣∣∣
λ=0

(3.120)

= –Iα
{

u2
0∂xu2 + u2∂xu0 + p∂xxxu2 – q∂xxxxxu2

}
, (3.121)

and so on.

4 Concluding remark
In this paper, we study the Adomian decomposition method (ADM) including its con-
vergence analysis obtained by Cherrault, and it is really an effective technique in deal-
ing with nonlinear problems with initial data. By applying the ADM, one can construct
approximate solutions to algebraic equations, fractional ordinary differential equations
(time-fractional Riccati equations etc.), fractional partial differential equations (time-
fractional Kawahara equations, modified time-fractional Kawahara equations etc.), and
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even integro-differential equations, differential algebraic equations and so on. In practical
applications, we can take a finite sum according to the accuracy we need.
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