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Abstract
A coupled Chen–Lee–Liu (CLL) system is proposed and its linear Lax pair is given.
Many kinds of nonlocal-derivative NLS (DNLS) equations arise from the group
symmetry reductions of the coupled CLL system. P̂T̂ Ĉ-symmetry invariant one-soliton
solution and periodic two-soliton solution of a two-place DNLS (TDNLS) system are
obtained. A group symmetry invariant two-soliton solution of a four-place DNLS
(FDNLS) system is worked out. New characteristics of the two-soliton interactions for
the TDNLS system and FDNLS system are analyzed.
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1 Introduction
It is well known that many physical problems may occur in two or more places which
are linked to each other, which can be called multi-place problem. To describe two-place
problems, Alice–Bob systems (ABs) [1] are proposed. That is, if A(x, t) is Alice’s state and
B(x′, t′) is Bob’s state, there is a suitable operator f̂ which can linked to the two states at
the same time,

B
(
x′, t′) = f̂ A(x, t) = Af̂ , A(x, t) = f̂ –1B

(
x′, t′) = Bf̂ –1

. (1)

The equivalence assumption requires that the operator f̂ satisfies f̂ 2 = 1. Usually, (x′, t′)
is far from (x, t). Hence, the two-place systems or Alice–Bob systems (ABs) are nonlocal.
When the operator f̂ is taken as a special case, many kinds of nonlocal integrable sys-
tems can be obtained. For example, this nonlocal nonlinear Schrödinger (NLS) equation
is proposed by Ablowitz and Musslimani [2]:

iAt + Axx ± A2B = 0,

B = f̂ A = P̂ĈA = A∗(–x, t),
(2)

with f̂ = P̂Ĉ, where P̂ and Ĉ are the parity and charge conjugation operators, respectively,
∗ is for the complex conjugate. Recently, the nonlocal NLS equation was derived in a phys-
ical application of magnetics [3]. Excited by the pioneering work, the nonlocal integrable
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systems have attracted considerable attention in recent years. At present, the nonlocal
KdV equation [4, 5], the nonlocal mKdV equation [6–8], the nonlocal discrete NLS equa-
tion [9], the nonlocal KP equation [10, 11], the nonlocal DS equation [12–14], and so on
[15–17] have been studied.

Solitons represent robust nonlinear coherent structures and have been theoretically
studied and observed in experiments in physical, chemical and biological science [18–20].
At present, many methods [21–40] have been developed to search for solitons of nonlin-
ear evolution equations. Among them, the function expansion method [21–25], the bilin-
ear method [33, 34], Darboux transformation [35, 36], the symmetry reduction method
[37, 38] and the Riemann–Hilbert approach [39, 40] are very effective and widely used
methods. For example, in [22], soliton solutions for a type of mKdV equation with a first
local-derivative term are obtained based on the Riccati–Bernoulli sub-ordinary differen-
tial equation and a modified tanh–coth method. New solitary solutions for the Zakharov–
Kuznetsov equation are worked out by a generalized exponential rational function method
in [23]. The dark, bright, dark–bright, dark–singular and singular soliton of the NLS equa-
tion with quadratic–cubic nonlinearity are derived by adopting the sine-Gordon expan-
sion method in [24]. The exact traveling wave solutions for the fractional equations and
the heat transfer equations are worked out in Refs. [41–48].

With the advent of the nonlocal systems, the methods mentioned above have been de-
veloped to construct the soliton solutions of the nonlocal systems [49–57]. Meanwhile,
there is few work about the soliton solutions of the nonlocal four-place systems. In this
paper, new nonlocal two-place DNLS (TDNLS) and four-place DNLS (FDNLS) systems
are derived based on the coupled Chen–Lee–Liu (CLL) system and the P̂T̂Ĉ-symmetry
group. A linear Lax pair is given which guarantees the integrability of the nonlocal TDNLS
system and FDNLS system. In order to construct the group-invariant soliton solutions, we
first rewrite the solutions of the DNLS equation [58] in the form expressed by hyperbolic
and triangular functions. Then the P̂T̂Ĉ-symmetry invariant one-soliton solution and pe-
riodic two-soliton solution of a new TDNLS system are obtained. Further, we also work
out the group-invariant two-soliton solution of a FDNLS system. There is some inter-
esting dynamics appearing in the TDNLS system and FDNLS system, different from the
dynamics of the local DNLS equation.

The paper is organized as follows. In Sect. 2, we construct the coupled CLL system
and its Lax pair is given. Some new nonlocal TDNLS system and FDNLS system arise
from the group symmetry reductions of the coupled CLL system. In Sect. 3, the expres-
sions of group-invariant soliton solutions for the nonlocal DNLS system are presented and
the multi-soliton solutions of the TDNLS system and the FDNLS system are worked out.
A conclusion is given in the last section.

2 Nonlocal multi-place derivative NLS system
The derivative NLS (DNLS) equation

iqt + qxx + 2iqq∗qx = 0 (3)

can be reduced from the Chen–Lee–Liu (CLL) system [59]

qt = qxx + 2qrqx,

rt = –rxx + 2qrrx,
(4)
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by setting r = q∗ and replacing t by it and x by –ix. From the coupled system (4), some
different kinds of nonlocal integrable DNLS equations can be obtained by using the P̂T̂Ĉ-
symmetry reductions. In the following, we first find some kinds of integrable coupled CLL
systems. Here is the first non-trivial coupled CLL system

qt = qxx + 2(p + q)2(r + s)(pr – qs) + 2q(r + s)(px + qx) + 2
[
(p + q)(qs – pr)

]
x,

pt = pxx – 2(p + q)2(r + s)(pr – qs) + 2p(r + s)(px + qx) + 2
[
(p + q)(pr – qs)

]
x,

rt = –rxx + 2(p + q)(r + s)2(pr – qs) + 2r(p + q)(rx + sx) + 2
[
(r + s)(pr – qs)

]
x,

st = –sxx – 2(p + q)(r + s)2(pr – qs) + 2s(p + q)(rx + sx) + 2
[
(r + s)(qs – pr)

]
x.

(5)

It is obvious that the coupled CLL system (5) can be reduced to the standard CLL system if
we take p = q and r = s. The integrability of the coupled CLL system (5) can be guaranteed
by the following Lax pair:

Ψx = MΨ ,

Ψt = NΨ , Ψ = (ψ1,ψ2)T ,
(6)

with

M =

⎡

⎢
⎢
⎣

– 1
2 (λ2 – (p + q)(r + s)) (q + q)λ 0 0

(r + s)λ 1
2 (λ2 – (p + q)(r + s)) 0 0

0 (p – q)λ – 1
2 (λ2 – (p + q)(r + s)) (q + q)λ

(r – s)λ 0 (r + s)λ 1
2 (λ2 – (p + q)(r + s))

⎤

⎥
⎥
⎦,

N =

⎡

⎢
⎢⎢
⎣

n11 n12 0 0
n21 –n11 0 0
n31 n32 n11 n12

n41 –n31 n21 –n11

⎤

⎥
⎥⎥
⎦

,

where

n11 = αλ4 + (p + q)(r + s)λ2 –
1
2

(p + q)2(r + s)2 –
1
2

(r + s)(px + qx) +
1
2

(p + q)(rx + sx),

n12 = (p + q)λ3 +
[
–(p + q)x – (p + q)2(r + s)

]
λ,

n21 = (r + s)λ3 +
[
(r + s)x – (p + q)(r + s)2]λ,

n31 = βλ4 + 2(pr – qs)λ2 + 8(p + q)(r + s)(qs – pr) – 2rpx + 2sqx + 2prx – 2qsx,

n41 = (r – s)λ3 +
[
rx – sx – 4(r + s)(pr – qs) – (p + q)(r + s)(r – s)

]
λ.

The full P̂T̂Ĉ-symmetry group Θ possesses the form [10]

Θ = {1, P̂, T̂Ĉ, P̂T̂Ĉ} ∪ Ĉ{1, P̂, T̂Ĉ, P̂T̂Ĉ} = Θ1 ∪ ΘC
1 .
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Using the sub-symmetry group Θ1 and the symmetry coset ΘC
1 , we obtain two kinds of

symmetry reductions from the coupled CLL system (5)

qt = qxx + 2
(
qf̂k + q

)2(r + rf̂k
)(

qf̂k r – qrf̂k
)

+ 2q
(
r + rf̂k

)(
qf̂k + q

)
x

+ 2
[(

qf̂k + q
)(

qrf̂k – qf̂k r
)]

x,

rt = –rxx + 2
(
qf̂k + q

)(
r + rf̂k

)2(qf̂k r – qrf̂k
)

+ 2r
(
qf̂k + q

)(
r + rf̂k

)
x

+ 2
[(

r + rf̂k
)(

qf̂k r – qrf̂k
)]

x,

f̂k ∈ Θ1 = {1, P̂, T̂Ĉ, P̂T̂Ĉ}, (p, s) = f̂k(q, r),

(7)

and

qt = qxx + 2(p + q)2(qĝj + pĝj
)(

pqĝj – qpĝj
)

+ 2q
(
qĝj + pĝj

)
(px + qx)

+ 2
[
(p + q)

(
qpĝj – pqĝj

)]
x,

pt = pxx – 2(p + q)2(qĝj + pĝj
)(

pqĝj – qpĝj
)

+ 2p
(
qĝj + pĝj

)
(px + qx)

+ 2
[
(p + q)

(
pqĝj – qpĝj

)]
x,

ĝj ∈ ΘC
1 = {Ĉ, T̂ , ĈP̂, P̂T̂}, (r, s) = ĝj(q, p),

(8)

respectively. Furthermore, based on the systems (7) and (8), we can work out 16 different
types of DNLS systems

qt = qxx + 2
(
qf̂k + q

)2(qĝj + qf̂k ĝj
)(

qf̂k qĝj – qqf̂k ĝj
)

+ 2q
(
qĝj + qf̂k ĝj

)(
qf̂k + q

)
x + 2

[(
qf̂k + q

)(
qqf̂k ĝj – qf̂k qĝj

)]
x,

(p, r, s) =
(
qf̂k , qĝj , qf̂k ĝj

)
,

f̂k ∈ Θ1 = {1, P̂, T̂Ĉ, P̂T̂Ĉ}, ĝj ∈ ΘC
1 = {Ĉ, T̂ , ĈP̂, P̂T̂}.

(9)

For example, if we take f̂k = 1, ĝj = Ĉ in (9), the local DNLS equation is given by

qt = qxx + 8qq∗qx.

When we take f̂k = 1, ĝj = {T̂ , P̂Ĉ, P̂T̂} or ĝj = Ĉ, f̂k = {P̂, T̂Ĉ, P̂T̂Ĉ}, a two-place nonlocal
DNLS systems can be obtained:

qt = qxx + 2(p + q)2(r + s)(pr – qs) + 2q(r + s)(px + qx) + 2
[
(p + q)(qs – pr)

]
x,

(p, r, s) =
(
qf̂k , qĝj , qf̂k ĝj

)
.

(10)

For instance, for f̂k = 1, ĝj = P̂Ĉ, Eq. (10) becomes

qt = qxx + 8qq∗(–x, t)qx. (11)
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For f̂k = P̂T̂Ĉ, ĝj = Ĉ, Eq. (10) becomes

qt = qxx + 2
[
q + q∗(–x, –t)

]2[q∗ + q(–x, –t)
][

q∗q∗(–x, –t) – qq(–x, –t)
]

+ 2q
[
q∗ + q(–x, –t)

][
q + q∗(–x, –t)

]
x

+ 2
[(

q + q∗(–x, –t)
)(

qq(–x, –t) – q∗q∗(–x, –t)
)]

x. (12)

The systems (10) to (12) are all called two-place nonlocal DNLS equation.
If we take f̂k = P̂, ĝj = {T̂ , P̂T̂}, f̂k = T̂Ĉ, ĝj = {ĈP̂, P̂T̂} or f̂k = P̂T̂Ĉ, ĝj = {T̂ , P̂Ĉ}, some

four-place nonlocal DNLS equations can be obtained:

qt = qxx + 2(p + q)2(r + s)(pr – qs) + 2q(r + s)(px + qx) + 2
[
(p + q)(qs – pr)

]
x,

(p, r, s) =
(
qf̂k , qĝj , qf̂k ĝj

)
,

(f̂k , ĝj) =
(
P̂, T̂(1, P̂)

)
,
(
T̂Ĉ, P̂(Ĉ, T̂)

)
,
(
P̂T̂Ĉ, (T̂ , P̂Ĉ)

)
.

(13)

For example, for f̂k = T̂Ĉ, ĝj = P̂Ĉ, Eq. (13) becomes

qt = qxx + 2
[
q + q∗(x, –t)

]2[q(–x, t) + q∗(–x, t)
][

q∗(–x, t)q∗(x, –t) – qq(–x, –t)
]

+ 2q
[
q∗(–x, t) + q(–x, –t)

][
q∗(x, –t) + q

]
x

+ 2
[(

q + q∗(x, –t)
)(

qq(–x, –t) – q∗(x, –t)q∗(–x, t)
)]

x. (14)

For f̂k = P̂T̂Ĉ, ĝj = P̂Ĉ, Eq. (13) becomes

qt = qxx + 2
[
q + q∗(–x, –t)

]2[q(x, –t) + q∗(–x, t)
][

q∗(–x, –t)q∗(–x, t) – qq(x, –t)
]

+ 2q
[
q∗(–x, t) + q(x, –t)

][
q∗(–x, –t) + q

]
x

+ 2
[(

q + q∗(–x, –t)
)(

qq(x, –t) – q∗(–x, –t)q∗(–x, t)
)]

x. (15)

Equations (13) to (15) are all four-place nonlocal DNLS equations.

3 P̂T̂Ĉ-invariant multi-soliton solutions of the DNLS type multi-place system
In Ref. [58], the bilinear form of the generalized DNLS equation

qt = qxx + 2qrqx,

rt = –rxx + 2qrrx,
(16)

is worked out and

(
Dt – D2

x
)
g · f = 0,

(
Dt + D2

x
)
h · s = 0,

D2
xf · s = iDxg · h,

Dxf · s = gh,

(17)
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by taking the variable transformation q = g
f , r = h

s and making use of some identities. As
a case of reduction, taking r = q∗, i.e. s = f ∗, h = g∗ and replacing t by it and x by –ix,
the generalized DNLS equation (16) reduces to the DNLS equation (3) and the bilinear
equation (17) reduces to

(
iDt + D2

x
)
g · f = 0,

D2
xf · f ∗ = iDxg · g∗,

Dxf · f ∗ = igg∗.

(18)

Equation (18) just is the bilinear equation of the the DNLS equation (3).
Its N-soliton solutions can be uniformly written as

gn =
∑

μ=0,1

A2(μ) exp

[ 2n∑

j=1

μjξ
′
j +

2n∑

1≤j<ρ

μjμρθjρ

]

,

fn =
∑

μ=0,1

A1(μ) exp

[ 2n∑

j=1

μjξ
′′
j +

2n∑

1≤j<ρ

μjμρθjρ

]

,

(19)

where

ξj = ikjx – ik2
j t + ξ

(0)
j , ξ ′

j = ξj, ξ ′
n+j = ξ ∗

j + log k∗
j ,

ξ ′′
j = ξj + log kj, ξ ′′

n+j = ξ ∗
j (j = 1, 2, . . . , n),

eθj,n+ρ =
1

(kj – k∗
ρ)2 (j,ρ = 1, 2, . . . , n),

eθj,ρ = (kj – kρ)2, eθn+j,n+ρ =
(
k∗

j – k∗
ρ

)2 (j < ρ = 2, 3, . . . , n),

with arbitrary complex constants ξ
(0)
j , j = 1, 2, . . . , n.

The summations A1(μ) and A2(μ) are taken over all possible combinations of μj = 0, 1
(j = 1, 2, . . . , 2n) and satisfy the following conditions:

n∑

j=1

μj =
n∑

j=1

μn+j,
n∑

j=1

μj =
n∑

j=1

μn+j + 1,

respectively.
It is clear that the solution (19) is not P̂T̂ Ĉ-invariant for arbitrary ξ

(0)
j . So it is not the

solution of the DNLS type multi-place system. In order to find P̂T̂ Ĉ-invariant solutions
from (19), we rewrite ξj as

ξj = ikjx – ik2
j t + η0j –

1
2

j–1∑

ρ=1

θρj –
1
2

2n∑

ρ=j+1

θjρ –
1
2

log kj

= ηj –
1
2

j–1∑

ρ=1

θρj –
1
2

2n∑

ρ=j+1

θjρ –
1
2

log kj,

ξ ∗
j = η∗

j –
1
2

j–1∑

ρ=1

θ∗
ρj –

1
2

2n∑

ρ=j+1

θ∗
jρ –

1
2

log k∗
j .

(20)
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We can prove that the solution (19) with (20) can be written as hyperbolic and triangular
functions, which guarantees the P̂T̂ Ĉ-invariance when an appropriate constant is chosen.
However, the general expression in terms of the hyperbolic and triangular functions is very
complicated. So we only write down two examples for n = 1 and n = 2.

When n = 1, the one-soliton solution for the DNLS equation (3) can be rewritten as

q =
(k1 – k∗

1 )e(iη1I + 1
4 log k∗

1 – 3
4 log k1)

2 cosh(η1R + 1
4 log k1 – 1

4 log k∗
1 )

. (21)

When n = 2, the two-soliton solution for the DNLS equation (3) can be rewritten as

q =
(

|k1 – k2|
∣
∣k1 – k∗

2
∣
∣
√

k∗
1 k∗

2

[
k1 – k∗

1√|k1|k1k2
eiη1I cosh

[
η2R + i(α – β)

+
1
4
(
log k∗

2 – log k2
)]

+
k2 – k∗

2√|k2|k1k2
eiη2I cosh

[
η1R + i(α + β) +

1
4
(
log k∗

1 – log k1
)]])

/(
|k1 – k2|2 cosh

(
η1R + η2R +

1
4

log
k1k2

k∗
1 k∗

2

)

+
∣∣k1 – k∗

2
∣∣2

cosh

(
η1R – η2R +

1
4

log
k1k∗

2
k∗

1 k2

)

– 4k1Ik2I cos

(
η1I – η2I –

i
4

log
k1k∗

1
k2k∗

2

))
. (22)

Here

kj = kjR + ikjI , j = 1, 2

α = arctan
k1I – k2I

k1R – k2R
, β = arctan

k1I + k2I

k1R – k2R
,

and ηjR, ηjI are real and imaginary parts of ηj, respectively,

ηjR = –kjIx + 2kjRkjI t + ηj0R,

ηjI = kjRx –
(
k2

jR – k2
jI
)
t + ηj0I ,

ηj0R, ηj0I are arbitrary constants.
It is straightforward to test that (21) is P̂T̂ Ĉ-invariant for η10R = 0, η10I =

1
2 arccos

k
3
2

1 +(k
3
2

1 )∗
2(k1–k∗

1 )2
√

k1k∗
1

. Equation (22) is P̂T̂ Ĉ-invariant for ηj0R = 1
4 log

kj
k∗

j
, η10I =

– i
2 log

√
kjk∗

j k1k2

(kj–k∗
j )2 (j = 1, 2) if kj + k∗

j = 0. As for the solution (22), we consider the reduction of

k1 = –k2. In the case of reduction, it can be tested that (22) is P̂T̂Ĉ-invariant, T̂Ĉ-invariant

and P̂-invariant if ηj0R = 0, ηj0I = 1
2 arccos

i
√

k2
jR+k2

jI kjR

2kjI
(j = 1, 2).

3.1 P̂T̂Ĉ-invariant solutions of a nonlocal two-place DNLS equation
In this section, we will give the P̂T̂Ĉ-invariant multi-soliton solutions of a new nonlocal
two-place DNLS equation. Replacing t by it, x by –ix and q by 1

2 q in Eq. (12), we obtain
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the following nonlocal two-place DNLS equation:

iqt + qxx –
1
8
[
q + q∗(–x, –t)

]2[q∗ + q(–x, –t)
][

q∗q∗(–x, –t) – qq(–x, –t)
]

+
i
2

q
[
q∗ + q(–x, –t)

]

× [
q + q∗(–x, –t)

]
x +

i
2
[(

q + q∗(–x, –t)
)(

qq(–x, –t) – q∗q∗(–x, –t)
)]

x = 0. (23)

Setting q = q∗(–x, –t), Eq. (23) can be reduced to the DNLS equation (3), so
q|

η10I = 1
4 arccos

(k2
1R–k2

1I )2–4k1Rk1I
16k2

1I (k2
1R+k2

1I )
,η10R=0

in Eq. (21) can solve the nonlocal two-place DNLS equa-

tion (23) with f̂ = P̂T̂ . Thus Eq. (23) has the following one-soliton solution:

q =
ei(k1Rx–(k2

1R–k2
1I )t)

2 cosh(–k1Rx + 2k1Rk1I t + i
2θ )

(24)

with

θ = arctant
k1I

k1R
.

This is a traveling wave at the speed of 2k1Rk1I with an initial phase 1
2 arctant k1I

k1R
. Figure 1

shows the shape and motion of the one-soliton case for t = 0 and t = 1.
When take kj = ikjI (j = 1, 2) in Eq. (22), we can obtain the following two-soliton solutions

of Eq. (23):

q =
(

|k1 – k2|
∣
∣k1 – k∗

2
∣
∣
√

k∗
1 k∗

2

[
k1 – k∗

1√|k1|k1k2
eiη1I cosh

[
η2R + i(α – β) +

1
4
(
log k∗

2 – log k2
)]

+
k2 – k∗

2√|k2|k1k2
eiη2I cosh

[
η1R + i(α + β) +

1
4
(
log k∗

1 – log k1
)]])

/(
|k1 – k2|2 cosh

(
η1R + η2R +

1
4

log
k1k2

k∗
1 k∗

2

)

Figure 1 Motion of the one-soliton for the nonlocal two-place DNLS equation (23). The green one is the
density distributions |q|2 for t = 0 and the red one is for t = 1 with k1R = 1, k1I = 2
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+
∣
∣k1 – k∗

2
∣
∣2

cosh

(
η1R – η2R +

1
4

log
k1k∗

2
k∗

1 k2

)

– 4k1Ik2I cos

(
η1I – η2I –

i
4

log
k1k∗

1
k2k∗

2

))
(25)

with

ηjR = –kjIx, η1I = k2
1I t +

1
2

arccos(k2I), η2I = k2
2I t +

1
2

arccos(k1I),

or

ηjR = –kjIx + log
kj

k∗
j

(j = 1, 2),

η1I = k2
1I t +

1
2

arccos(k2I), η2I = k2
2I t +

1
2

arccos(k1I).

Figure 2 shows that the two-soliton solution is periodic with respect to time t and lo-
calized in the x direction. Figure 2(a) illustrates the density distributions |q|2 on the (x, t)-
plane and (b) expresses the interaction process of the two-soliton solution for ηj0R = 0. Fig-
ure 2(c) shows the density distributions |q|2 on (x, t)-plane and (d) describes the profiles of
the two-soliton solution for different times when the constants ηj0R = log

kj
k∗

j
. It seems that

the constant ηj0R influences the interaction process of the two-soliton and the two solitons
with the constants ηj0R = log

kj
k∗

j
are apart from each other.

Figure 2 Interaction of the two-soliton solution for the nonlocal two-place DNLS equation (23). Pictures (a)
and (b) show the interaction of the two-soliton for ηj0R = 0, η10I = 1

2 arccos k2I , η20I = 1
2 arccos k1I . Pictures (c)

and (d) illustrate the interaction of the two-soliton for ηj0R = log
kj
k∗j
, η10I = 1

2 arccos k2I , η20I = 1
2 arccos k1I . Here

k1R = –1, k1I = 0.6



Yao and Huang Advances in Difference Equations        (2020) 2020:126 Page 10 of 13

3.2 P̂T̂Ĉ-invariant multi-soliton solutions of a nonlocal four-place DNLS equation
Replacing t by it, x by –ix and q by 1

2 q in the nonlocal four-place DNLS equation (12), it
becomes

iqt + qxx –
1
8
[
q + q∗(x, –t)

]2[q(–x, t) + q∗(–x, t)
][

q∗(–x, t)q∗(x, –t) – qq(–x, –t)
]

+
i
2

q
[
q∗(–x, t) + q(–x, –t)

][
q∗(x, –t) + q

]
x

+
i
2
[(

q + q∗(x, –t)
)(

qq(–x, –t) – q∗(x, –t)q∗(–x, t)
)]

x = 0. (26)

In this section, we want to construct the soliton solutions of the nonlocal four-place DNLS
equation (26). First, setting q = q∗(x, –t) in Eq. (26), it reduces to

iqt + qxx + 2iq
[
q∗(–x, t)

]
qx = 0. (27)

Then setting q(–x, t) = q, Eq. (27) becomes the DNLS case (3). Thus, the two-soliton
solution of the nonlocal four-place DNLS equation (26) can be obtained when we take
k2 = –k1 in Eq. (22),

q =
(

|2k1|
∣∣k1 + k∗

1
∣∣
[

eiη1I cosh

[
η2R + i(α – β) +

1
4
(
log k∗

1 – log k1
)
]

+ eiη2I cosh

[
η1R + i(α + β) +

1
4
(
log k∗

1 – log k1
)
]])

/(
|2k1|2 cosh

(
η1R + η2R +

1
4

log
k2

1
k∗2

1

)

+
∣
∣k1 + k∗

1
∣
∣2

cosh(η1R – η2R) + 4k2
1I cos(η1I – η2I)

)
, (28)

with

η1R = –k1Ix + 2k1Rk1I t, η2R = k1Ix + 2k1Rk1I t,

η1I = k1Rx –
(
k2

1R – k2
1I

)
t + η10I , η2I = –k1Rx –

(
k2

1R – k2
1I

)
t + η20I ,

η10I = η20I =
1
2

arccos
(k2

1I – k2
1R)2 – 4(k1Ik1R)2

–4k2
1I(k2

1I + k2
1R) 3

2
,

and

α = arctant
k1I

k1R
, β = 0.

The interaction of the two-soliton solution (28) is illustrated in Fig. 3. The first column
show the density plots of the two-soliton solution with k1R = 1, k1I = 1, k1R = 3, k1I = 1
and k1R = 1, k1I = 3, respectively. Pictures (a2)–(a4), (b2)–(b4) and (c2)–(c4) reveal the
interaction process of the corresponding two-soliton for different choice of the real part
and imparity part. Figure 3 reveals that the real part k1R and imparity k1I influence the
interaction of the two-soliton solution.
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Figure 3 Interaction of the two-soliton solution for the nonlocal four-place DNLS equation (26). Pictures
(a1)–(a4) show the interaction of the two-soliton for k1R = 1,k1I = 1. Pictures (b1)–(b4) show the interaction of
the two-soliton for k1R = 3,k1I = 1. Pictures (c1)–(c4) show the interaction of the two-soliton for k1R = 1, k1I = 3

4 Conclusions
Multi-place systems are important in both mathematical and physical fields. In this paper,
we first construct the coupled CLL system and address its Lax pair which guarantees the
integrability of the coupled CLL system. Then some kinds of nonlocal TDNLS equations
and FDNLS equations are proposed by using the P̂T̂Ĉ-symmetry.

P̂T̂Ĉ-symmetry can be used not only to establish multi-place systems but also to solve
the multi-place systems. With the help of the P̂T̂Ĉ-symmetry, we not only obtain the one-
soliton solution and periodic two-soliton solution of a nonlocal TDNLS equation but also
work out the two-soliton solution of a nonlocal FDNLS equation for the first time. It is
interesting to find that the arbitrary constant in the real part of ηj can influence the inter-
action process of the two-soliton for the TDNLS equation and new dynamical behaviors
are analyzed in Fig. 2. For the FDNLS equation, it is interesting to find that the real part kjR

and the imparity kjI of the parameter kj influence the interaction process of the two-soliton
and the dynamics as demonstrated in Fig. 3.

From the results of this paper, we find that there are some new interesting phenomena
in the nonlocal multi-place systems. So it is significant to study the nonlocal multi-place
systems.
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