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1 Introduction
Consider the set-valued functional integral equation of Volterra–Stieltjes type

x(t) ∈ p(t) +
∫ t

0
F1

(
s,

∫ s

0
f2

(
θ , x

(
ϕ(θ )

))
dθ g2(s, θ )

)
dsg1(t, s), t, s ∈ [0, T], (1.1)

and the initial-value problem

dx(t)
dt

∈ IαF1
(
t, Dγ x(t)

)
, t ∈ (0, T],γ ∈ (0, 1], (1.2)

x(0) = xo. (1.3)

Here we study the existence of continuous solutions of the set-valued functional integral
equation of Volterra–Stieltjes type (1.1). The continuous dependence of the solution on
the set of selections of the set-valued function F1 will be proven. As an application, we
study the existence of solutions of the initial-value problem of arbitrary (fractional) order
differential inclusion (1.2)–(1.3).

2 Preliminaries
This section is devoted to providing the notation, definitions, and preliminary facts from
the set-valued analysis, which will be needed in our further study.
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First, we establish some notation.
We will denote by I = [0, T] a fixed interval, where T > 0 is arbitrarily fixed and by C(I) =

C[0, T] the Banach space consisting of all continuous functions acting from the interval I
into R with the standard norm

‖x‖C = sup
t∈I

∣∣x(t)
∣∣.

Define the Banach space X = C(I) × C(I) with the norm

∥∥(x, y)
∥∥

X = ‖x‖C + ‖y‖C .

Definition 2.1 Let F be a set-valued map defined on a Banach space E, f is called a selec-
tion of F if f (x) ∈ F(x), for every x ∈ E and we denote by

SF =
{

f : f (x) ∈ F(x), x ∈ E
}

the set of all selections of F (for the properties of the selection of F see [1–3]).

Definition 2.2 ([4]) A set-valued map F from I × E to family of all nonempty closed sub-
sets of E is called Lipschitzian if there exists k > 0 such that, for all t ∈ I and all x1, x2 ∈ E,
we have

h
(
F(t, x1), F(s, x2)

) ≤ k
(|t – s| + |x1 – x2|

)
, (2.1)

where h(A, B) is the Hausdorff distance between the two subsets A, B ∈ I × E.
(For properties of the Hausdorff distance see [5].)
The following theorem [5, Sect. 9, Chap. 1, Th. 1] assumes the existence of a Lipschitzian

selection.

Theorem 2.3 ([6]) Let M be a metric space and F be Lipschitzian set-valued function from
M into the nonempty compact convex subsets of Rn. Assume, moreover, that, for some λ > 0,
F(x) ⊂ λB for all x ∈ M where B is the unit ball on Rn. Then there exist a constant c and a
single-valued function f : M → Rn, f (x) ∈ F(x) for x ∈ M; this function is Lipschitzian with
constant k.

In what follows, we discuss a few auxiliary facts concerning functions of bounded varia-
tion (cf. [7]). To this end assumes that x is a real function defined on a fixed interval [a, b].
By the symbol

∨b
a x we will denote the variation of the function x on the interval [a, b].

In the case when
∨b

a x is finite we say that x is of bounded variation on [a, b]. In the case
of a function u(t, s) =: [a, b] × [c, d] → R we can consider the variation

∨q
t=p u(t, s) of the

function t → u(t, s) (i.e., the variation of the function u(t, s) with respect to the variable
t) on the interval [p, q] ⊂ [a, b]. Similarly, we define the quantity

∨q
s=p u(t, s). We will not

discuss the properties of the variation of functions of bounded variation, we refer to [7]
for the mentioned properties. Furthermore, assume that x and φ are two real functions
defined on the interval [a, b]. Then, under some extra conditions (cf. [7]), we can define
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the Stieltjes integral (more precisely, the Riemann–Stieltjes integral) of the function x with
respect to the function φ on the interval [a, b] which is denoted by the symbol

∫ b

a
x(t) dφ(t).

In such a case, we say that x is Stieltjes integrable on the interval [a, b] with respect to φ.
In the relevant literature, we may encounter a lot of conditions guaranteeing the Stielt-

jes integrability [7–9]. One of the most frequently exploited condition requires that x is
continuous and φ is of bounded variation on [a, b].

Next, we recall a few properties of the Stieltjes integral which will be used in our con-
siderations (cf. [7]).

Lemma 2.4 Assume that x is Stieltjes integrable on the interval [a, b] with respect to a
function φ of bounded variation. Then

∣∣∣∣
∫ b

a
x(t) dφ(t)

∣∣∣∣ ≤
∫ b

a

∣∣x(t)
∣∣d

( t∨
a

φ

)
.

Lemma 2.5 Let x1 and x2 be Stieltjes integrable functions on the interval [a, b] with re-
spect to a nondecreasing function φ such that x1(t) ≤ x2(t) for t ∈ [a, b]. Then the following
inequality is satisfied:

∫ b

a
x1(t) dφ(t) ≤

∫ b

a
x2(t) dφ(t).

In the sequel, we will also consider the Stieltjes integrals of the form

∫ b

a
x(s) dsg(t, s),

where g : [a, b]× [a, b] → R and the symbol ds indicates the integration with respect to the
variable s. The details concerning the integral of such a type will be given later.

3 Existence of at least one continuous solution
Consider now the set-valued integral equation (1.1) under the following assumptions.

(i) p : I → I is continuous function, where p∗ = supt∈I |p(t)|.
(ii) F1 : I × R → P(R) is a Lipschitzian set-valued map with a nonempty compact

convex subset of 2R+ .
(iii) ϕ : I → I is continuous function.
(iv) f2 : I × R → R is continuous and there exist two constants a and b such that

∣∣f2(t, x)
∣∣ ≤ a + b|x|, ∀t ∈ [0, T] and x ∈ R.

(v) The function gi is continuous on the triangle 	i, for i = 1, 2, where

	1 =
{

(t, s) : 0 ≤ s ≤ t ≤ T
}

,

	2 =
{

(s, θ ) : 0 ≤ θ ≤ s ≤ T
}

.
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(vi) The function s → gi(t, s) is of bounded variation on [0, t] for each t ∈ I (i = 1, 2).
(vii) For any ε > 0 there exists δ > 0 such that, for all t1; t2 ∈ I such that t1 < t2 and

t2 – t1 ≤ δ, the following inequality holds:

t1∨
0

[
gi(t2, s) – gi(t1, s)

] ≤ ε

for i = 1, 2.
(viii) gi(t, 0) = 0 for any t ∈ I (i = 1, 2).

It is clear that, from Theorem 2.3 and assumption (ii), the set of Lipschitz selection of F1

is non-empty. So, the solution of the single-valued integral equation

x(t) = p(t) +
∫ t

0
f1

(
s,

∫ s

0
f2

(
θ , x

(
ϕ(θ )

))
dθ g2(s, θ )

)
dsg1(t, s), t, s ∈ [0, T], (3.1)

where f1 ∈ SF1 , is a solution of inclusion (1.1).
It must be noted that f1 satisfies the Lipschitz selection

∣∣f1(t, x) – f1(s, y)
∣∣ ≤ k

(|t – s| + |x – y|).

Obviously, we will assume that gi satisfies assumptions (v)–(viii). For our purposes, we
only need the following lemmas.

Lemma 3.1 ([10]) The function z → ∨z
s=0 gi(t, s) is continuous on [0, t] for any t ∈ I (i =

1, 2).

Lemma 3.2 ([10]) Let the assumptions (v)–(vii) be satisfied. Then, for arbitrary fixed num-
ber 0 < t2 ∈ I and for any ε > 0, there exists δ > 0 such that if t1 ∈ I ; t1 < t2 and t2 – t1 ≤ δ

then
∨t2

s=t1
gi(t2, s) ≤ ε (i = 1, 2).

Lemma 3.3 ([10]) Under the assumptions (v)–(vii), the function t → ∨t
s=0 gi(t, s) is contin-

uous on I (i = 1, 2).

Further, let us observe that based on Lemma 3.3 we infer that there exists a finite positive
constant Ki, such that

Ki = sup

{ t∨
s=0

gi(t, s) : t ∈ [0, T]

}
,

where T > 0 is arbitrarily fixed and i = 1, 2.
We now introduce some functions that will be useful in our further studies:

Ni(ε) = sup

{ t1∨
s=0

(
gi(t2, s) – gi(t1, s)

)
: t1, t2 ∈ [0, T], t1 < t2; t2 – t1 ≤ ε, i = 1, 2

}
.

In our considerations, we will examine the double Stieltjes integral of the form

∫ d

c

(∫ d

c
f (t, x) dyg2(x, y)

)
dsg1(t, s) =

∫ d

c

∫ d

c
f (t, x) dyg2(x, y) dsg1(t, s),
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where gi : [a, b] × [c, d] → R(i = 1, 2) and the symbol dy indicates the integration with re-
spect to the variable y (similarly, we define the symbol ds).

Now, let

y(t) =
∫ t

0
f2

(
s, x

(
ϕ(s)

))
dsg2(t, s), t ∈ [0, T], (3.2)

then the nonlinear functional integral equation (3.1) can be written in the form

x(t) = p(t) +
∫ t

0
f1

(
s, y(s)

)
dsg1(t, s), t ∈ [0, T]. (3.3)

Hence, the functional integral equation (3.1) is equivalent to the coupled system (3.2) and
(3.3).

Now, we study the existence of a continuous solution of the functional integral equation
(3.1), which is a solution of the functional integral inclusion (1.1), by getting the continuous
solution of the coupled system (3.2) and (3.3).

Definition 3.4 By a solution of the coupled system (3.2), (3.3) we mean the functions
x, y ∈ C[0, T] satisfying (3.2), (3.3).

Remark 3.5 From the Lipschitz condition of f1, we have

∣∣f1(t, x)
∣∣ –

∣∣f1(t, 0)
∣∣ ≤ ∣∣f1(t, x) – f1(t, 0)

∣∣ ≤ k|x|,

i.e.,

∣∣f1(t, x)
∣∣ ≤ k|x| + sup

t∈[0,T]

∣∣f1(t, 0)
∣∣ ≤ k|x| + f ∗

1 ,

where

f ∗
1 = sup

t∈[0,T]

∣∣f1(t, 0)
∣∣.

Now for the existence of at least one solution u = (x, y), x, y ∈ C[0; T] of the coupled
system (3.3), (3.2) we have the following theorem.

Theorem 3.6 Under assumptions (i)–(viii), there exists at least one solution u = (x, y),
x, y ∈ C[0, T] of the coupled system (3.3), (3.2).

Proof Define the set Qr by

Qr =
{

u = (x, y) ∈ R2,‖x‖ ≤ r1,‖y‖ ≤ r2,
∥∥(x, y)

∥∥ ≤ r1 + r2 = r
}

,

where r = p∗+f ∗
1 K1

1–kK1
+ aK2

1–bK2
with kK1 < 1, bK2 < 1.

It is clear that the set Qr is nonempty, bounded, closed and convex. Let A be any operator
defined by

Au(t) = A(x, y)(t) =
(
A1y(t), A2x(t)

)
,
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A1y(t) = p(t) +
∫ t

0
f1

(
s, y(s)

)
dsg1(t, s), t ∈ [0, T],

and

A2x(t) =
∫ t

0
f2(s, x

(
ϕ(s)

)
dsg2(t, s), t ∈ [0, T],

where for u = (x, y) ∈ Qr , and from Remark 3.5 we have

∣∣A1y(t)
∣∣ =

∣∣∣∣p(t) +
∫ t

0
f1

(
s; y(s)

)
dsg1(t, s)

∣∣∣∣

≤ ∣∣p(t)
∣∣ +

∫ t

0

∣∣f1
(
s; y(s)

)∣∣∣∣dsg1(t, s)
∣∣

≤ p∗ +
∫ t

0

(
k|y| + f ∗

1
)

ds

( s∨
p=0

g1(t, p)

)
.

Then

‖A1y‖ ≤ p∗ +
(
kr1 + f ∗

1
)( t∨

s=0

g1(t, s)

)

≤ p∗ +
(
kr1 + f ∗

1
)

sup
t∈I

( t∨
s=0

g1(t, s)

)

≤ p∗ +
(
kr1 + f ∗

1
)
K1 = r1, r1 =

p∗ + f ∗
1 K1

1 – kK1
.

Also

∣∣A2x(t)
∣∣ =

∣∣∣∣
∫ t

0
f2

(
s, x

(
ϕ(s)

))
dsg2(t, s)

∣∣∣∣

≤
∫ t

0

∣∣f2
(
s, x

(
ϕ(s)

))∣∣∣∣dsg2(t, s)
∣∣

≤
∫ t

0

[
a + b

∣∣x(
ϕ(s)

)∣∣]ds

( s∨
p=0

g2(t, p)

)
.

Then

‖A2x‖ ≤ (a + br2)

( t∨
s=0

g2(t, s)

)

≤ (a + br2) sup
t∈I

( t∨
s=0

g2(t, s)

)

≤ (a + br2)K2 = r2, r2 =
aK2

1 – bK2
.
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From the above estimate we derive the following inequality:

‖Au‖X = ‖A1y‖C + ‖A2x‖C

≤ r1 + r2

=
p∗ + f ∗

1 K1

1 – kK1
+

aK2

1 – bK2
= r.

Hence, AQr ⊂ Qr and the class {Au}, u ∈ Qr is uniformly bounded.
Now, for u = (x, y) ∈ Qr , for all ε > 0, δ > 0 and for each t1, t2 ∈ [0, T], t1 < t2, such that

|t2 – t1| < δ, we have

∣∣A1y(t2) – A1y(t1)
∣∣ =

∣∣∣∣p(t2) +
∫ t2

0
f1

(
s; y(s)

)
dsg1(t2, s)

– p(t1) –
∫ t1

0
f1

(
s; y(s)

)
dsg1(t1, s)

∣∣∣∣

≤ ∣∣p(t2) – p(t1)
∣∣ +

∣∣∣∣
∫ t2

0
f1

(
s, y(s)

)
dsg1(t2, s)

–
∫ t1

0
f1

(
s, y(s)

)
dsg1(t2, s)

∣∣∣∣

+
∣∣∣∣
∫ t1

0
f1

(
s, y(s)

)
dsg1(t2, s) –

∫ t1

0
f1

(
s, y(s)

)
dsg1(t1, s)

∣∣∣∣

≤ ∣∣p(t2) – p(t1)
∣∣ +

∫ t2

t1

∣∣f1
(
s, y(s)

)∣∣∣∣dsg1(t2, s)
∣∣

+
∫ t1

0

∣∣f1
(
s, y(s)

)∣∣∣∣[dsg1(t2, s) – dsg1(t1, s)
]∣∣

≤ ∣∣p(t2) – p(t1)
∣∣ +

∫ t2

t1

[
k
∣∣y(s)

∣∣ + f1(s, 0)
]

ds

( s∨
p=0

g1(t2, p)

)

+
∫ t1

0

[
k
∣∣y(s)

∣∣ + f1(s, 0)
]

ds

( s∨
p=0

[
g1(t2, p) – g1(t1, p)

])

≤ ∣∣p(t2) – p(t1)
∣∣ +

[
kr1 + f ∗

1
] ∫ t2

t1

ds

( s∨
p=0

g1(t2, p)

)

+
∫ t1

0
ds

( s∨
p=0

[
g1(t2, p) – g1(t1, p)

])

≤ ∣∣p(t2) – p(t1)
∣∣ +

[
kr1 + f ∗

1
] t2∨

s=t1

g1(t2, s)

+
t1∨

s=0

[
g1(t2, s) – g1(t1, s)

]

≤ ∣∣p(t2) – p(t1)
∣∣ +

[
kr1 + f ∗

1
][ t2∨

s=t1

g1(t2, s) + N1(ε)

]
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and

∣∣A2x(t2) – A2x(t1)
∣∣

≤
∣∣∣∣
∫ t2

0
f2

(
s, x

(
ϕ(s)

))
dsg2(t2, s) –

∫ t1

0
f2

(
s, x

(
ϕ(s)

))
dsg2(t1, s)

∣∣∣∣

≤
∣∣∣∣
∫ t2

0
f2

(
s, x

(
ϕ(s)

))
dsg2(t2, s) –

∫ t1

0
f2

(
s, x

(
ϕ(s)

))
dsg2(t2, s)

∣∣∣∣

+
∣∣∣∣
∫ t1

0
f2

(
s, x

(
ϕ(s)

))
dsg2(t2, s) –

∫ t1

0
f2

(
s, x

(
ϕ(s)

))
dsg2(t1, s)

∣∣∣∣

≤
∫ t2

t1

∣∣f2
(
s, x

(
ϕ(s)

))∣∣∣∣dsg2(t2, s)
∣∣

+
∫ t1

0

∣∣f2
(
s, x

(
ϕ(s)

))∣∣∣∣[dsg2(t2, s) – dsg2(t1, s)
]∣∣

≤
∫ t2

t1

[
a + b

∣∣x(
ϕ(s)

)∣∣]ds

( s∨
p=0

g2(t2, p)

)

+
∫ t1

0

[
a + b

∣∣x(
ϕ(s)

)∣∣]ds

( s∨
p=0

[
g2(t2, p) – g2(t1, p)

])

≤ (a + br2)

[∫ t2

t1

ds

( s∨
p=0

g2(t2, p)

)
+

∫ t1

0
ds

( s∨
p=0

[
g2(t2, p) – g2(t1, p)

])]

≤ (a + br2)

[ t2∨
s=0

g2(t2, s) –
t1∨

s=0

g(t2, s)

]
+

t1∨
s=0

[
g2(t2, s) – g2(t1, s)

]

≤ (a + br2)

[ t2∨
s=t1

g2(t2, s) + N2(ε)

]
.

Further, for the operator A and u ∈ Qr we have

Au(t2) – Au(t1) = A(x, y)(t2) – A(x, y)(t1)

=
(
A1y(t2), A2x(t2)

)
–

(
A1y(t1), A2x(t1)

)

=
(
A1y(t2) – A1y(t1), A2x(t2) – A2x(t1)

)
.

Then

∥∥Au(t2) – Au(t1)
∥∥

X =
∥∥(

A1y(t2) – A1y(t2), A2x(t2) – A2x(t1)
)∥∥

X

=
∥∥A1y(t2) – A1y(t2)

∥∥
C +

∥∥A2x(t2) – A2x(t1)
∥∥

C

=
∥∥p(t2) – p(t1)

∥∥ +
[
kr1 + f ∗

1
][ t2∨

s=t1

g(t2, s) + N1(ε)

]

+ (a + br2)

[ t2∨
s=t1

g(t2, s) + N2(ε)

]
. (∗)



El-Sayed and Al-Issa Advances in Difference Equations         (2020) 2020:59 Page 9 of 16

This means that the class of functions Au is equi-continuous on Qr . Then by the Arzela–
Ascoli theorem [11] the operator A is compact.

It remains to prove the continuity of A : Qr → Qr . Let un = (xn, yn) is a sequence in Qr

with xn → x, and yn → x and since f1(t, y(t)) and f2(t, x(t)) is continuous in C[0, T]×R then
f1(t, yn(t)) and f2(t, xn(t)) converge to f1(t, y(t)) and f2(t, x(t)), thus f2(t, xn(ϕ(t))) converges to
f2(t, x(ϕ(t))) (see assumption (ii)). Using assumption (iii) and applying Lebesgue dominated
convergence theorem, we get

lim
n→∞

∫ t

0
f2

(
s, xn

(
ϕ(s)

))
dsg2(t, s) =

∫ t

0
f2

(
s, x

(
ϕ(s)

))
dsg2(t, s)

and

lim
n→∞

∫ t

0
f1

(
s, yn(s)

)
dsg1(t, s) =

∫ t

0
f1

(
s, y(s)

)
dsg1(t, s);

then

lim
n→∞ A1yn(t) = p(t) + lim

n→∞

∫ t

0
f1

(
s, yn(s)

)
dsg1(t, s)

= p(t) +
∫ t

0
f1

(
s, y(s)

)
dsg1(t, s) = A1y(t), t ∈ [0, T],

lim
n→∞ A2xn(t) =

∫ t

0
lim

n→∞ f2
(
s, xn

(
ϕ(s)

))
dsg2(t, s)

=
∫ t

0
f2

(
s, x

(
ϕ(s)

))
dsg2(t, s) = A2x(t), t ∈ [0, T],

lim
n→∞ Aun(t) = lim

n→∞
(
A1yn(t), A2xn(t)

)

=
(

lim
n→∞ A1yn(t), lim

n→∞ A2xn(t)
)

=
(
A1y(t), A2x(t)

)
= Au(t).

Since all conditions of the Schauder fixed-point theorem [12] hold, A has a fixed point
u ∈ Qr , and then the system (3.3), (3.2) has at least one continuous solution u = (x, y) ∈ Qr ,
x; y ∈ C[0, T].

Consequently, the functional integral equation (3.1) has at least one solution x ∈
C[0, T]. �

4 Existence of a unique solution
In this section, we study the uniqueness of the solutions x ∈ C[0, T] of the functional in-
tegral inclusion (1.1).

Theorem 4.1 Consider the assumptions of Theorem 3.6 satisfied with replacing condition
(iv) by assuming that the f2 satisfies the Lipschitz condition with respect to the second vari-
able; that is, there exists a constant c such that

∣∣f2(t, x) – f2(t, y)
∣∣ ≤ b|x – y|.

If kbK1K2 < 1, then the functional integral inclusion (1.1) has a unique solution x ∈ C[0, T],
where k is Lipschitz constant of functions f1 and Ki (i = 1, 2) as defined in Lemma 3.3.
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Proof Let x1 and x2 be two solutions of Eq. (3.1), then

∣∣x1(t) – x2(t)
∣∣ ≤

∫ t

0

∣∣∣∣f1

(
s,

∫ s

0
f2

(
θ , x1

(
ϕ(θ )

))
dθ g2(s, θ )

)

– f1

(
s,

∫ s

0
f2

(
θ , x2

(
ϕ(θ )

))
dθ g2(s, θ )

)∣∣∣∣dsg1(t, s).

Using the Lipschitz condition for f1, we obtain

∣∣x1(t) – x2(t)
∣∣

≤ k
∣∣∣∣
∫ t

0

[∫ s

0
f2

(
θ , x1

(
ϕ(θ )

)
dθ g2(s, θ )

)

–
∫ s

0
f2

(
θ , x2

(
ϕ(θ )

)
dθ g2(s, θ )

)]∣∣∣∣dsg1(t, s)

≤ k
∫ t

0

∫ s

0

∣∣f2
(
θ , x1

(
ϕ(θ )

))
– f2

(
θ , x2

(
ϕ(θ )

))∣∣∣∣dθ g2(s, θ )
∣∣∣∣dsg1(t, s)

∣∣.

Using Lipschitz condition for f2, we obtain

∣∣x1(t) – x2(t)
∣∣ ≤ kb

∫ t

0

∫ s

0

∣∣x1
(
ϕ(θ )

)
– x2

(
ϕ(θ )

)∣∣dθ

(
θ∨

p=0

g2(s, p)

)
ds

( s∨
q=0

g1(t, q)

)

≤ kb‖x1 – x2‖
∫ t

0

∫ s

0
dθ

(
θ∨

p=0

g2(s, p)

)
ds

( s∨
q=0

g1(t, q)

)

≤ kb‖x1 – x2‖
t∨

s=0

g1(t, s)
s∨

θ=0

g2(s, θ )

≤ kb‖x1 – x2‖ sup
t∈[0,T]

t∨
s=0

g(t, s) sup
s∈[0,T]

s∨
θ=0

g(s, θ )

≤ kb‖x1 – x2‖K1K2,
∥∥x1(t) – x2(t)

∥∥ ≤ kbK1K2‖x1 – x2‖.

Then

(1 – kbK1K2)‖x1 – x2‖ < 0.

This proves the uniqueness of the solution of the functional integral equation (3.1). �

4.1 Continuous dependence
Theorem 4.2 The solution of the inclusion (1.1) depends continuously on the SF1 of all
Lipschitzian selections of F1.

Proof Let f1(t, x(t)) and f ∗
1 (t, x(t)) be two different Lipschitzian selections of F1(t, x(t)) such

that

∣∣f1
(
t, x(t)

)
– f ∗

1
(
t, x(t)

)∣∣ < δ, δ > 0, t ∈ [0, T],
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then for the two corresponding solutions xf1 (t) and xf ∗
1

(t) of (1.1) we have

xf1 (t) – xf ∗
1

(t)

=
∫ t

0

[
f1

(
s,

∫ s

0
f2

(
θ , xf1

(
ϕ(θ )

))
dθ g2(s, θ )

)

– f ∗
1

(
s,

∫ s

0
f2

(
θ , xf ∗

1

(
ϕ(θ )

))
dθ g2(s, θ )

)]
dsg1(t, s),

∣∣xf1 (t) – xf ∗
1

(t)
∣∣

≤
∣∣∣∣
∫ t

0

[
f1

(
s,

∫ s

0
f2

(
θ , xf1

(
ϕ(θ )

))
dθ g2(s, θ )

)

– f ∗
1

(
s,

∫ s

0
f2

(
θ , xf ∗

1

(
ϕ(θ )

))
dθ g2(s, θ )

)]
dsg1(t, s)

∣∣∣∣
≤

∫ t

0

∣∣∣∣f1

(
s,

∫ s

0
f2

(
θ , xf1

(
ϕ(θ )

))
dθ g2(s, θ )

)

– f ∗
1

(
s,

∫ s

0
f2

(
θ , xf ∗

1

(
ϕ(θ )

))
dsg2(s, θ )

)∣∣∣∣
∣∣dsg1(t, s)

∣∣

≤
∫ t

0

∣∣∣∣f1

(
s,

∫ s

0
f2

(
θ , xf1

(
ϕ(θ )

))
dθ g2(s, θ )

)

– f1

(
s,

∫ s

0
f2

(
θ , xf ∗

1

(
ϕ(θ )

))
dθ g2(s, θ )

)∣∣∣∣
∣∣dsg1(t, s)

∣∣

+
∣∣∣∣
∫ t

0

∣∣∣∣f1

(
s,

∫ s

0
f2

(
s, xf ∗

1

(
ϕ(s)

))
dsg(t, s)

)

– f ∗
1

(
s,

∫ s

0
f2

(
θ , xf ∗

1

(
ϕ(θ )

))
dθ g2(s, θ )

)∣∣∣∣
∣∣dsg1(t, s)

∣∣

≤
∫ t

0

∣∣∣∣f1

(
s,

∫ s

0
f2

(
θ , xf1

(
ϕ(θ )

))
dθ g2(s, θ )

)

– f1

(
s,

∫ s

0
f2

(
θ , xf ∗

1

(
ϕ(θ )

))
dθ g2(s, θ )

)∣∣∣∣
∣∣dsg1(t, s)

∣∣ + δ

∫ t

0

∣∣dsg1(t, s)
∣∣

≤ k
∫ t

0

∫ s

0

∣∣f2
(
θ , xf1

(
ϕ(θ )

))
– f2

(
θ , xf ∗

1

(
ϕ(θ )

))∣∣∣∣dθ g2(s, θ ))
∣∣∣∣dsg1(t, s)

∣∣

+ δ

∫ t

0

∣∣dsg1(t, s)
∣∣

≤ kb
∫ t

0

∫ s

0

∣∣xf1
(
ϕ(θ )

)
– xf ∗

1

(
ϕ(θ )

)∣∣∣∣dθ g2(s, θ ))
∣∣∣∣dsg1(t, s)

∣∣ + δ

∫ t

0

∣∣dsg1(t, s)
∣∣

≤ kb‖xf1 – xf ∗
1
‖
∫ t

0

∫ s

0
dθ

(
θ∨

q=0

g2(s, q)

)
ds

( s∨
p=0

g1(t, p)

)
+ δ

∫ t

0
ds

( s∨
p=0

g1(t, p)

)

≤ kb‖xf1 – xf ∗
1
‖

s∨
θ=0

g2(s, θ )
t∨

s=0

g1(t, s) + δ

t∨
s=0

g1(t, s)

≤ kb‖xf1 – xf ∗
1
‖ sup

s∈[0,T]

s∨
θ=0

g2(s, θ ) sup
t∈[0,T]

t∨
s=0

g1(t, s) + δ sup
t∈[0,T]

t∨
s=0

g1(t, s)

≤ kb‖xf1 – xf ∗
1
‖K2K1 + δK1,
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‖xf1 – xf ∗
1
‖ ≤ δK1(1 – kbK1K2)–1 = ε.

Thus from last inequality, we get

‖xf1 – xf ∗
1
‖ ≤ ε.

This proves the continuous dependence of the solution on the set SF1 of all Lipschitzian
selections of F1. This completes the proof. �

5 Volterra integral inclusion of fractional order
In this section, we will consider the fractional integral inclusion, which has the form

x(t) ∈ p(t)+
∫ t

0

(t – s)α–1

Γ (α)
F1

(
s,

∫ s

0

(s – θ )β–1

Γ (β)
f2

(
θ , x

(
ϕ(θ )

))
dθ

)
ds, t, s ∈ [0, T], (5.1)

where t ∈ I = [0, T] and α ∈ (0, 1). Moreover, Γ (α) denotes the gamma function. Let us
mention that (5.1) represents the so-called nonlinear Volterra integral inclusion of frac-
tional orders. Recently, the inclusion of such a type was intensively investigated in some
papers [13–18].

Now, we show that the functional integral inclusion of fractional orders (5.1) can be
treated as a particular case of the set-valued functional integral equation of Volterra–
Stieltjes (1.1) studied in Sect. 3.

Indeed, we can consider the functions gi(w, z) = gi : 	i → R (i = 1, 2) defined by the for-
mulas

g1(t, s) =
tα – (t – s)α

Γ (α + 1)
, g2(s, θ ) =

sβ – (s – θ )β

Γ (β + 1)
.

Note that the functions g1 and g2 satisfy assumptions (v)–(viii) in Theorem 3.6; see [10, 19].
Now, we can formulate the following existence results concerning with the Volterra in-

tegral inclusion of fractional order (5.1).

Theorem 5.1 Under the assumptions (i)–(iv) of Theorem 3.6, the fractional integral inclu-
sion (5.1) has at least one continuous solution x ∈ C[0, T].

Theorem 5.2 Under the assumptions of Theorem 4.1, the fractional integral inclusion (5.1)
has exactly one unique solution x ∈ C[0, T].

6 Existence of the maximal and minimal solutions
In this section, we establish the existence of the maximal and minimal solutions of the non-
linear Volterra integral inclusion of fractional order (5.1). It is clear that, from Theorem 2.3
and assumption (ii) of Theorem 3.6, the set of Lipschitz selections of F1 is non-empty. So,
the solution of the nonlinear functional integral equation of fractional order

x(t) = p(t) + Iαf1
(
t, Iβ f2

(
t, x

(
ϕ(t)

)))
, t, s ∈ [0, T], (6.1)

where f1 ∈ SF1 , is a solution of inclusion (5.1).
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Definition 6.1 ([12]) Let m(t) be a solution of the non-linear functional integral equation
(6.1), then m(t) is said to be a maximal solution of (6.1), if for every solution x of inclusion
(6.1) existing on [0, T] the inequality x(t) < m(t), t ∈ [0, T] holds. A minimal solution s(t)
may be defined similarly by reversing the last inequality i.e. x(t) > s(t), ∀t ∈ [0, T].

Consider the following lemma.

Lemma 6.2 Let p(t), fi(t; x) (i = 1, 2) and ϕ(t) satisfy the assumptions in Theorem 5.1 and
let x(t), y(t) be two continuous functions on [0, T] satisfying

x(t) ≤ p(t) + Iαf1
(
t, Iβ f2

(
t, x

(
ϕ(t)

)))
, t ∈ [0, T],

y(t) ≥ p(t) + Iαf1
(
t, Iβ f2

(
t, y

(
ϕ(t)

)))
, t ∈ [0, T],

where one of them is strict.
Suppose f1 and f2 are monotonic nondecreasing functions in x, then

x(t) < y(t), t > 0. (6.2)

Proof Let the conclusion (6.2) be false, then there exists t1 such that

x(t1) = y(t1), t1 > 0,

and

x(t) < y(t), 0 < t < t1, t ∈ [0, T].

From the monotonicity of the functions f1 and f2 in x, we get

x(t1) ≤ p(t1) + Iαf1
(
t1, Iβ f2

(
t1, x

(
ϕ(t1)

)))

= p(t1) +
∫ t1

0

(t1 – s)α–1

Γ (α)
f1

(
s, Iβ f2

(
s, x

(
ϕ(s)

)))
ds

< p(t1) +
∫ t1

0

(t1 – s)α–1

Γ (α)
f1

(
s, Iβ f2

(
s, y

(
ϕ(s)

)))
ds,

x(t1) < y(t1).

This contradicts the fact that x(t1) = y(t1).
Then

x(t) < y(t). �

Now, for the existence of the continuous maximal and minimal solutions of the nonlin-
ear functional integral inclusion (6.1) we have the following theorem.

Theorem 6.3 Consider the assumptions (i)–(iv) of Theorem 5.1 satisfied, furthermore, if
f1 and f2 are monotonic nondecreasing functions in x for each t ∈ [0, T], then the nonlinear
functional integral inclusion (6.1) has maximal and minimal solutions.
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Proof Firstly, we shall prove the existence of the maximal solution of (6.1).
Let ε > 0 be given such that 0 < ε < T

2 , and consider the nonlinear functional integral
equation of fractional order

xε(t) = p(t) + Iαf1ε

(
t, Iβ f2ε

(
t, xε

(
ϕ(t)

)))
,

where

f1ε

(
t, Iβ f2ε

(
t, xε

(
ϕ(t)

)))
= f1

(
t, Iβ f2ε

(
t, xε

(
ϕ(t)

)))
+ ε,

f2ε

(
t, xε

(
ϕ(t)

))
= f2

(
t, xε

(
ϕ(t)

))
+ ε.

Clearly the functions f1ε(t, Iβ f2ε(t, xε(ϕ(t)))) and f2ε(t, xε(ϕ(t))) satisfy the assumptions of
Theorem 5.1 and therefore, Eq. (6.1) has a continuous solution xε according to Theo-
rem 5.1. Let ε1 and ε2 be such that 0 < ε2 < ε1 < ε. Then

xε2 (t) = p(t) + Iαf1ε2

(
t, Iβ f2ε2

(
t, xε2

(
ϕ(t)

)))
,

xε2 (t) = p(t) + Iαf1
(
t, Iβ f2

(
t, xε2

(
ϕ(t)

))
+ Iβε2

)
+ Iαε2, (6.3)

also

xε1 (t) = p(t) + Iαf1ε1

(
t, Iβ f2ε1

(
t, xε1

(
ϕ(t)

)))
,

xε1 (t) = p(t) + Iαf1
(
t, Iβ f2

(
t, xε1

(
ϕ(t)

))
+ Iβε1

)
+ Iαε1,

xε1 (t) > p(t) + Iαf1
(
t, Iβ f2

(
t, xε1

(
ϕ(t)

))
+ Iβε2

)
+ Iαε2. (6.4)

Applying Lemma 6.2, and (6.3) and (6.4), we have

xε2 (t) < xε1 (t) for t ∈ [0, T].

As shown before in the proof of Theorem 3.6, the family of functions xε(t) is uniformly
bounded and equi-continuous. Hence by the Arzela–Ascoli theorem, there exists a de-
creasing sequence εn such that εn → 0 as n → ∞, and limn→∞ xεn (t) exists uniformly in
[0, T] and we denote this limit by m(t). From the continuity of the functions fiεn for i = 1, 2
and in the second argument, we get

f2εn

(
t, xεn

(
ϕ(t)

)) → f2
(
t, x

(
ϕ(t)

))
, as n → ∞,

f1εn

(
t, Iβ f2εn

(
t, xεn

(
ϕ(t)

))) → f1
(
t, Iβ f2

(
t, x

(
ϕ(t)

)))
, as n → ∞,

and

m(t) = lim
n→∞ xεn = p(t) + Iαf1

(
t, Iβ f2

(
t, x

(
ϕ(t)

)))
,

which implies that m(t) is a solution of the quadratic integral equation (6.1). Finally, we
shall show that m(t) is the maximal solution of (6.1).
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To do this let x(t) be any solution of (6.1), then

x(t) = p(t) + Iαf1
(
t, Iβ f2

(
t, x

(
ϕ(t)

)))
, (6.5)

and also

xε(t) = p(t) + Iαf1ε

(
t, Iβ f2ε

(
t, xε

(
ϕ(t)

)))
,

xε(t) = p(t) + Iαf1
(
t, Iβ f

(
t, xε

(
ϕ(t)

))
+ Iβε

)
+ Iαε,

xε(t) > p(t) + Iαf1
(
t, Iβ f2

(
t, xε

(
ϕ(t)

)))
. (6.6)

Applying Lemma 6.2 and (6.5) and (6.6), we get

x(t) < xε(t), ∀t ∈ [0, T].

From the uniqueness of the maximal solution (see [12]), it is clear that xε(t) tends to m(t)
uniformly in [0, T] as ε → ∞.

Similarly, we can prove the existence of the minimal solution. We set

f1ε

(
t, Iβ f2ε

(
t, xε

(
ϕ(t)

)))
= f1

(
t, Iβ f2ε

(
t, xε

(
ϕ(t)

))
– Iβε

)
– ε,

f2ε

(
t, xε

(
ϕ(t)

))
= f2

(
t, xε

(
ϕ(t)

))
– ε,

and thus we prove the existence of a minimal solution. �

7 Differential inclusion
Consider now the initial-value problem of the differential inclusion (1.2) with the initial
data (1.3).

Theorem 7.1 Consider the assumptions of Theorem 5.1 satisfied, then the initial-value
problem (1.2)–(1.3) has at least one positive solution x ∈ C([0, 1]).

Proof Let y(t) = dx(t)
dt , then the inclusion (1.2) will be

y(t) ∈ IαF1
(
t, I1–τ y(t)

)
. (7.1)

Letting f2(t, x) = x, ϕ(t) = t, and β = 1 – τ , applying Theorem 5.2 to the functional inclu-
sion (7.1) we deduce that there exists a continuous solution y ∈ C[0, T] of the functional
inclusion (7.1) and this solution depends on the set SF1 .

This implies the existence of a solution x ∈ C[0, T],

x(t) = x◦ +
∫ t

0
y(s) ds

of the initial-value problem (1.2)–(1.3). �
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10. Banaś, J., Zajaç, T.: A new approach to the theory of functional integral equations of fractional order. J. Math. Anal.

Appl. 375(2), 375–387 (2011)
11. Curtain, R.F., Pritchard, A.J.: Functional Analysis in Modern Applied Mathematics. Mathematics in Science and

Engineering, vol. 21, pp. 409–410 (1979)
12. Lakshmikantham, V., Leela, S.: Differential and Integral Inequalities: Theory and Applications: Volume I: Ordinary

Differential Equations (1969)
13. Al-Issa, S.M., El-Sayed, A.M.A.: Positive integrable solutions for nonlinear integral and differential inclusions of

fractional-orders. Comment. Math. 49(2), 171–177 (2009)
14. El-Sayed, A.M.A., Al-Issa, S.M.: Global integrable solution for a nonlinear functional integral inclusion. SRX Math. 2010,

Article ID 891982 (2010)
15. El-Sayed, A.M.A., Al-Issa, S.M.: Monotonic continuous solution for a mixed type integral inclusion of fractional order.

J. Math. 33, 27–34 (2010)
16. El-Sayed, A.M.A., Al-Issa, S.M.: Monotonic integrable solution for a mixed type integral and differential inclusion of

fractional orders. Int. J. Differ. Equ. Appl. 18(1), 1–9 (2019)
17. El-Sayed, A.M.A., Al-Issa, S.M.: Monotonic solutions for a quadratic integral equation of fractional order. AIMS Math.

4(3), 821–830 (2019)
18. El-Sayed, A.M.A., Al-Issa, S.M.: Existence of continuous solutions for nonlinear functional differential and integral

inclusions. Malaya J. Mat. 7(3), 541–544 (2019)
19. El-Sayed, A.M.A., El-Sayed, W.G., Abd El-Mowla, A.A.H.: Weak solutions of fractional order differential equations via

Volterra–Stieltjes integral operator. J. Math. Appl. 40, 85–96 (2017)


	On the existence of solutions of a set-valued functional integral equation of Volterra-Stieltjes type and some applications
	Abstract
	MSC
	Keywords

	Introduction
	Preliminaries
	Existence of at least one continuous solution
	Existence of a unique solution
	Continuous dependence

	Volterra integral inclusion of fractional order
	Existence of the maximal and minimal solutions
	Differential inclusion
	Acknowledgements
	Funding
	Availability of data and materials
	Competing interests
	Authors' contributions
	Author details
	Publisher's Note
	References


