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1 Introduction

During the last few decades, boundary value problems of fractional differential equations
have been utilized in different problems of applied nature; for example, we can find it in
analytical formulations of systems and processes. Due to a more accurate behavior of frac-
tional differential equations, it got the interest of research community in various applied
fields of sciences such as chemistry, engineering, mechanics, physics, and so on. For the
readers’ convenience, we refer to the monographs [9, 11, 15, 23] and their references. Also,
an experimental study was presented in [21].

For boundary value problems of fractional differential equations, the existence of solu-
tions is an important and basic requirement. Furthermore, the uniqueness of solutions is
the next important feature for more specific behavior of solutions. In the literature, many
results are available about these two necessary properties of solutions; see, for example
(2,7, 8, 20, 22, 27]. Integral boundary conditions are very important in the solutions of
many practical systems [1, 51].

The impulsive phenomena and their models are investigated and analyzed in different
practical problems. The theory of impulsive mathematical models based on fractional dif-
ferential equations has very significant applications in many applied problems in natural
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sciences and engineering. Many evolutionary processes that possess abrupt changes at
certain moments can be described with the help of aforesaid models. The abrupt changes
in evolutionary processes can be of two types. The first one, characterized by short-
term perturbations with negligible duration in comparison with the duration of the whole
processes, is called instantaneous impulses. The second one is characterized by abrupt
changes that remain active for a finite interval of time is called noninstantaneous impulses.
Many evolutionary processes can be modeled using noninstantaneous impulses such as
the flow of drugs in blood streams (hemodynamic equilibrium of a person), decompen-
sation, and many others. In this context, impulsive fractional differential equations are
studied in different aspects; see, for example [13, 14, 17, 24, 26, 30, 32, 34, 41, 49].
Stability analysis, which has been solely studied for differential equations of arbitrary
order and abundantly discussed by the researchers, is the theory related to the stability of
differential equations. In stability theory, the Ulam stability was first established by Ulam
[35] in 1940 and then was extended by Hyers and Rassias [12, 25]. More recent results on
the so-called Hyers—Ulam stability have relaxed the stability conditions. Many mathemati-
cians extended the Hyers results in different directions [4, 18, 19, 28-31, 33, 36, 37, 39, 41—
45, 47-49]. The monographs [5, 6, 16, 38] treated fractional differential equations with

instantaneous impulses of the following form:

D'v(t) =u(r,v(r)), te€l0, T, T>0,1#1,k=1,2,...,m,
Av(t) =Ti((ty)), k=1,2,...,m,

where D" is the Caputo fractional derivative of order r € (n— 1, n), n is any natural number
with lower bound 0, u : [0, T] x R — R is continuous, 7% : R — R is instantaneous impulse,
and 7 satisfies 0 = 7o < 7y < - - - < T = T, W(tf) = lime, 0 V(7 + €) and v(z;) = lime_, o V(7 +
€) denotes the right and left limits of v(t) at T = 1, respectively.

Ahmad et al. [3] studied an implicit type of nonlinear impulsive fractional differential

equations given by

D'y(r) = f(r,9(1),D’y(1)), Te€l0,1], T #t,k=1,2,...,m,
Ay() = T(w)),  AY()=Ti(w), k=1,2,...,m,
y(0)=g(),  y1)=h(),

where “D" is Caputo fractional derivative of order 1 <r <2,f:[0,1] x R x R — R and

Ty, 7% : R — R are continuous functions, and

Ay(m) = y(7¢) = ¥(%i)»
Ay (@) =y (%) =¥ (%),
where (77),y' (), y(7; ), ¥ (1) are the respective left and right limits of y(z) at 7 = ;.

Recently, Wang et al. [39] studied the existence, uniqueness, and different kinds of stabil-

ity in the sense of Ulam for the following nonlinear implicit fractional integrodifferential
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equation of the form

“DPu(r) = a(t,u(t),“DPu(t)) + ﬁ for(r —s)"’lg(s, u(s),“DPu(s)) ds,
teJ, (1.1)

u(t) =0 = —1(T)| =15 D'u(t)|e=0 = —“D"u(T)|c=T,

where “D? and “D" is the Caputo fractional derivatives of orders 1 <p <2and 0 <r <2,
J =1[0,T] with T, 0, § > 0, and the functions o, g: J x R x R — R are continuous. Also,
they performed the same analysis for the proposed implicit coupled system:

“DPu(t) — a(r,y(1), “DPu(r) fo T —5)"Lg(s, ¥(s), “DPu(s)) ds = 0,
teJ,

“Diy(t) — x(, u(r), “Diy(t)) fo (T =) Yf (s, u(s),“DPy(s)) ds = 12)
teJ,

w(t)le=o = ~u(D)r=1,  “D'u(t)lr=0 = =D'u(t)lc=T)

Y(O)le=0 = =y(7)lz=1> “D?y(t)le=0 = =“DY(t) =T

where D7, ¢D", ¢D1, and D are the Caputo fractional derivatives of orders 1 < p, g <2
and0<r,w<2,0,6>0,7=[0,T], T >0, and the functions o, x, g,/ : J x Rx R— R
are continuous.

In the present study, we extend models (1.1) and (1.2) to impulsive systems with
Riemann-Liouville boundary conditions instead of antiperiodic boundary condition.
More precisely, we study the model

“‘Da(r) = Alt,0(1), D" w fo 5 (s),“D w(s)) ds,
wheret € 7,7 #1,,i=1,2,...,m,

Aw(t) = Ti(o(r)), Ao/ (1) = Tiw(r)), i=1,2,...,m

mw(0) + &1"0(0) = vy, mo(T) + &1 o(T) = vy,

(1.3)

where “D" is the Caputo fractional derivative with 1 <r < 2,7 =[0,T] with T > 0, and
0,8 > 0, the functions A, B : J x R? — R are continuous, and 7y, 73,&;, &, are positive
constants.

The first results of this paper establish the existence and uniqueness of solution for this
problem. Also, we investigate the following implicit coupled system:

“Do(t) = Az, ¥(t), D' @ fo r(a 5,9(s), “D"w(s)) ds,
wheret € 7,7 7!7,-,1: 1,2,...,m,

“DPy(t) = A(t,0(1),“DPy(T)) + [ (T_s B/(s,a)(s) “DPy(s)) ds,
wheret € J,7 #71;,j = 1,2,...,n,

Aw(t;) = Ti{w(Ty)), A () = Ti(w(w), i=1,2,...,m

Ay(m) =T0(m), AV (@) =T,0(5), j=12...n

mw(0) + &1"0(0) = vy, mo(T) + &I o(T) = vy,

13y(0) + &17y(0) = vs, 14y(T) + £alPy(T) = vy,

(1.4)
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where “D" and “D? are the Caputo fractional derivatives with 1 <r,p < 2,7 = [0,T]
with T > 0, 0,8 > 0, the functions A, A,B,B : J x R> - R are continuous, and
N1, N2, N3, Nar €1, €2, &3, &4 are positive constants. Coupled systems of fractional integrod-
ifferential equations have also been extensively studied due to their applications. Some
recent works dealing with coupled systems of Caputo fractional differential equations in-
volving different kinds of integral boundary conditions can be found in [50].

The second main results are devoted to the study of stability results for both systems.
There are two main classes of stability results considered here, Ulam-Hyers and Ulam—
Hyers—Rassias stability, and their generalized equivalents. To be more specific, our aim is
to build connections between stability results in both systems.

It is important to note that problem (1.3) and the coupled one (1.4) considered in this
paper extend the study of fractional integrodifferential systems, and from this point of
view, we believe that the obtained results will contribute to the existing literature on the
topic.

The rest of the paper is organized as follows: In Sect. 2, we first establish an equivalent
integral equation for the fractional integrodifferential equations with impulse, and we ob-
tain existence results by using the Banach contraction principle, Schauder’s fixed point
theorem, and Krasnoselskii’s fixed point theorem to the proposed problems (1.3) and (1.4),
respectively. In Sect. 3, we consider four types of Ulam—Hyers stability concepts. Finally,
in Sect. 4, we construct two examples to illustrate the obtained results. Fundamental def-
initions, essential lemmas, and the proofs of the main theorems are given in Appendices
1,2, and 3.

Notation: We denote by M the space of all piecewise continuous functions PC(J,R);
T=JVUHhURhU:--UJ, where Jp = [0,1], 1 = (11, 2], T2 = (12, 13],..., Ti =
(Tl i=1,2,...,myand J' = J — {11, 72, T3,..., T}

We define M = {w:J — R:w e C(J,R) and w(r;"), w(t;") exist such that Aw(z;) =
o(t) —ow(t7) fori=1,2,...,m}.

2 Existence and uniqueness
The aim of this section is giving conditions under which the fractional integrodifferential
equation (1.3) and coupled system (1.4) provide existence and uniqueness results.

2.1 Existence and uniqueness solution for system (1.3)
Our first result is stated as follows.

Theorem 2.1 Let 1 <r <2, and let « € M be a continuous function. Then a function
w € M is solution to the problem

Dow(t)=a(t), €T, 1#1,i=1,2,...,m,
Ao(t) = Ti(o(w),  Ad(t)=Tiw(), i=12...,m, (2.1)
mo(0) + &I w(0) = vy, m20(T) + &7 o(T) = vy,

where

T (.( _ S)a—l

a(t) = A(t, 0(1), “D'w(1)) + )

B(s, w(s), CD’a)(s)) ds,
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if and only if w satisfies

77 Jo (@ =5V als)ds = 1 2y fy (T =) wo(s) ds

V1 V] TV
nm Tm o~ T

- %[ﬁ f;(T —8) La(s)ds + ﬁ St —s)ta(s) ds

+ &) (g —5)2a(s)ds + (T - 1) T (@(n)) + Vi(o(n))],

rr-1)Jo
7€ Jo,
o@)=1 - R .
mfo(r—s) a(s)ds—m—Tme(T—s) w(s)ds
pU Ty Ty

m Tm o~ Tne
m 1 T -1 1 T -1
-z Zi:l[m fn (T =s)La(s)ds + o) fri,l(fi —s)"La(s)ds

s [ (=) Pa(s) ds + (T - 1) Tilo(r)) + Ti(o(z)],
teJ,i=12,...,m.

Proof Applying Lemma A.3 (see Appendix 1) to (2.1) with ag,a; € R, we have

w(t)=I"a(t) —ag—ait = 1 ft(r —s) Yals)ds —ag—art, T e€[0,71]
rr) Jo

Furthermore, we obtain
1 T
&' @) =I"a(t)-a; = m/o (t—s)2a(s)ds—a1, 1€l0,1]
For T € (11, 2], there are by, b; € R such that

() = ﬁ f:l(r =) La(s)ds — by — bi(t — 11),

(1) = ﬁ f:}(r —8)"2a(s)ds — b;.

Hence it follows that

(1) = ﬁ o (@ =) tals) ds — ag — ary,
w(t]) = =by,

o'(17) = ﬁ o (T -8 2a(s)ds — ay,
o (tF) = —by.

Using

Aw(t) = (7)) — o(z]) = T1(0(11)),

AW (11) = @' (1]) - &' (17) = T1(w(n)),
we obtain

—bo = 5 Jo (1 =) a(s) ds —ag - arti + Nh(w(m)),

by = 5 [y (11— sy 2als) ds — ay + Ti(w(ny)).

(2.2)

(2.3)

Page 5 of 50
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Thus
() = Ftr) (r =) tals)ds + —/ (11 = 8)Lee(s) ds
+ FT(r_—Tll) /0 1(rl — ) 2a(s)ds

+(t =) Ti(o(1)) + Ti(o(11)) — a0 - ar7,

Similarly, we have

m

1
0= 75 |

i=1

T € (11, 1.

! (7; — ) a(s) ds

Ti-1

(r =) La(s)ds + %

+ Fr(r__fil) :‘1 (ti— ) 2a(s)ds + (t - ri)ﬁ(w(ri)) i Ti(w(r,-))}
—ag—ait,

T E(Ti,fj+1],i= 1L,2,...,m

(2.4)

Finally, after applying n1w(0) + &11"w(0) = v; and nw(T) + &1"w(T) = v, to (2.4) and cal-

culating the values of 4y and a;, we obtain equation (2.2).

Conversely, if w(t) is a solution of (2.2), then it is obvious that ‘D’w(r) = () and
mo(0) + &7w(0) = v1, n0(T) + &170(T) = vy, Aw(T) = Tiw()), A/ (T) = Tilw(r), i =

1,2,....,m

O

Corollary 2.2 In light of Theorem 2.1, problem (1.3) has the solution

Lfor":_s)r1 (s) dS—,DLTF— 0 )ds+v1—;—;11 ;—‘rz
-l frl (T-s)as)ds + (11 -s)ta(s)ds
i m =) (s)ds+<T—nm<w(n>)+n(w(n))], v € Jo,
w(7) = ﬁfor(f_s)rl a(s) dS—mLTF— 0 a)(s)ds+ v ;—Z
S s [T - as) ds + 1y f” (5= 5 a(s)ds
+ o [T (g sy a(s) ds + (T - 1) Ti(o(w) + Ti(w(m),
teJ,i=1,2,...,m,
where
o-1
a(t) = A(r, 0(t), " D'w f (TF (;) (s, 0(s), “D’ w(s)) ds.
Let
o— 1
v(1) = A(r,0(), D' / r=9°7 ) 5,0(5),“D"(s)) ds

= A(z, (1), v(7)) + /O(TI_“T

S)G 1

B(s, w(s), v(s)) ds
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Also, we consider M = PC(J,R) endowed with the norm
ol pm = max{|o(r)|: T € T}.

We can easily see that M is a Banach space. Further, if w is a solution of problem (1.3),

then
) 1y T & T 1 Vi TVvp Ty
g Jy € = S [ e S T £
T 1 r-1 r—1
_T;[F(r) /ri (T-5s) a(s)ds+—r()/ (t; —s) " a(s) ds

+ 1“(r—_1)) /t:il(fl. -8 2a(s)ds + (T - T,-)fﬂ'(a)(r,')) + Ti(w(t,»))],

teJ,i=1,2,....,m

Now, to study (1.3) by fixed point theory, let 7 : M — M be the operator defined as

ﬁ Jo (@ =) tu(s)ds - WLT 7o Jo T —s)y-1w(s) ds
P Ty
no Tn " T
T r— T r—
— tlr [, (T-9) Ly(s)ds + ﬁ Jo (1 =8) " v(s) ds
2 [ @ = sy us)ds + (T - i) Th (@) + Ti(e(m))),
T € Do
(To@)=1 =~ " ) ) (2.5)
O Jo (@ =5)""u(s)ds - T T r(r fo (T =s)w(s)ds
)% 2% TV
o T T YT
- LYy fJ(T - ) u(s)ds + g [ (i —s) " (s)ds
D [T (= ) 2v(s) ds + (T - ) Ty(w(r) + Ti(w(w)],
teJ,i=12,...,m,
where

W(©) = A(t,0(0),1(x)) / s ’“ B(s, (), vs)) ds

Let us assume the following hypotheses:
« [A1] There exist constants M; > 0 and N; € (0,1) such that, forall T € J, u,u € M,
and w,w € R,

‘A(r,u,w) —A(I,E,W)| <M;i|u—u|+Ni|lw-w|.

Similarly, there exist constants M > 0 and N; € (0,1) such that, forall t € 7,
u,u € M,and w,weR,

‘B(r,u, w) — B(t,ﬁ,W)’ < My|u —u| + Ny|lw—w|;
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« [A;] For any u,u € M, there exist constants A, B > 0 such that

|7 (u(z) - Vi(w(x)) | < Alu(z) - ()

’

|73 (u(r) = Ti(a(w))| < Blu(r) -u(w)|, i=1,2,...,m;

» [A3] There exist bounded functions /1, #11,n; € M such that
|A(7, u(2), w(z)) | < L () + ma (D) u(2) | + m(2) | w(7)]

with [ = sup, . 7 li(v), m} = sup, . 7 m;(r) and n} = sup, . 7 m1(7) < 1.
Similarly, there exist bounded functions ly, 7, ny € M such that

|B(z,u(), w(1))| < b(t) + ma(0) [u(r)| + na() |w(2))|

with 5 = sup, . 7 l(7), m5 = sup, . 7 my(7), and
ny =sup, .7 na(t) <1 with 1 —nf - Vlzc;{—{zs) > 0;
o [A4] The functions 7;: R — R,i=1,2,...,m, are continuous for each u € R. There
exist constants Ky, Ly, > 0 such that | Y;(u(7;))| < Kv,lu(t)| + Lr,.
Similarly, for each u € R, the functions 7;:R — R;i=1,2,...,m, are continuous,
and for constants IC%, E’ﬂ > 0, we have the inequality |Ti(u(r))| < IC’ﬁ lu(t)| + C’Tl

The main results of this section are presented in the following theorems.

Theorem 2.3 If hypotheses [A1]-[A4] are satisfied, then problem (1.3) has at least one

solution.
Proof See Appendix 2. O

Theorem 2.4 If hypotheses [A1]-[A;] and the inequality

mT" mTr! M; Mz%a(a)
re+0) ' T ™ i
(r+1) (r) 1-N1-Nogrm 1-Ni—-No 75

T" T
+Ez—+m(A+B) <1 withl-N;—Ny;————>0 (2.6)
n2l(r+1) o I'(8)
are satisfied, then problem (1.3) has a unique solution.
Proof See Appendix 2. d

Our approach to prove the existence of the solution for problem (1.3) from Theorem 2.3
is based on Theorem A.5 (see Appendix 1). Also, the proof of the uniqueness for prob-
lem (1.3) treated in Theorem 2.4 is based on the arguments from Theorem A.6 (see Ap-
pendix 1).

In Sect. 4, we will provide an example demonstrating how (2.6) can be computed in a

specific case.
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2.2 Existence and uniqueness solution for system (1.4)
In this section, we consider the coupled system of nonlinear implicit fractional differential
equation with impulsive conditions from (1.4). First, we have the following:

Theorem 2.5 The system

‘Dw(t)=a(t), T€J,

Dly(r)=B(r), teJ,

Ao(t) = Ti(o(T:), A/ (1) = Ti(w(r), i=1,2,...,m
M) =T0m),  AY@R)=T,0(@m), j=12...n
mw(0) +&11"w(0) = vy, mo(T) + &17o(T) = vy,

1n3y(0) +&317y(0) = vs, Nay(T) + EalPy(T) = vy

has a solution (w,y) if and only if

fo als)ds+ 1k — —[m”r f (T=3s)"w(s)ds
r(r frl (T—s)’ 1ot(s) ds
+ 707 Jo (@ =9 tals) ds + 7525 o (11— ) Pals)ds
+(T - 1) Ti(w(n)) + Tl(w(fl)) + =2 ted
o(r) = meom
7o Jo (T =) al)ds + L - % m”r fo (T-s)"w(s)ds + 7t - 2]
—%Zgl[ﬁ fn_ (T-s)~ 1ot(s)ds+ o) f;’_l( 7, —8) La(s) ds
+ 7oy S (zi— sy Pals) ds
(T =) Ti(w(@m) + Hie@), el

and
r(p fo (t =)~ 1,3(s)ds+ B_z n4F(p fo (T —s)PLy(s) ds
L s pieyds
%(p) Jo @ =P B(s)ds + 7y fo' (1 = )7 Bs) dis
—)T(0) + () + 2 - 2], e,
y(T) — ) ’73 n4 ) ) )
r(p fo (T -syP ' Bs)ds + 12 — 1l n4F(p fo (T—syPy(s)ds + 32 — 1]
-5 ,1[,~—(p)f,j — s 1B(s)ds + 1 f (=9 B(s)ds
+ o [ (G2 B(s) ds
HT -9 T0m) + Ho@), ted,
where
T _ -1
a(t) = A(T,y(r),”Drw(r)) + /0 %B(S,y(s),cDrw(s)) ds
and
_S)U—l

B(z) = A (z,0(t),*DPy(z)) + /o (v

o) B (s, w(s), CDpy(s)) ds

Proof The proofis similar to that given in Theorem 2.1 and hence is not included here. [
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For; € Jsuchthatry <o < - <1, and J' = J — {11, T, ..., Tu}, we define the space
X ={w: J — Rlo € C(J'), right limit w(r;") and left limit w(z;") exist, and Aw(7;) =
o(t7) — o(tr}),1 < i < m}. Clearly, (X, | - ||) is a Banach space endowed with the norm
loll = maxee 7 |,

Similarly, for 7j € J such that 1y < 7y < - - < 7, and J' = J — {11, T2, ..., T}, we define the
space V = {y: J — Ry € C(J"), right limit y(7;") and left limit y(z;") exist, and Ay(z;) =
y(tj’) —y(rj+), 1 <j < n}, which is a Banach space endowed with the norm |[|y|| = max;c 7 |y

Consequently, the product space X' x ) is a Banach space with the norm ||(w,y)| =
lwll + Iyl or [[(@, |l = max{[|]], [lyll}.

Theorem 2.6 Let A, B, A',B" be continuous functions. Then (w,y) € X x Y is a solution
of problem (1.4) if and only if (w,y) is a solution of

Lt
F(r)fo (r-s) <>t(S)dS+771 [nzF 5 ) s)ds
hon)| T o v
T ,72] |:1“()/ (T-5s) a(s)ds+r() TH(TI s) la(s)ds
T-1

. /t,,il(ﬂ — 5 2a(s)ds + (T - 1) T (w(z) + n(w(q))],

teJ, (2.7)
and

v3 T &4

R w ot T
y(f)‘mp)fo (c—sp ﬂ(S)dHnS—T[ s [ -y

V3 V4, 1
+E_E] [F(p)/ — s ﬁs)ds+r(p)/ (tj— )" B(s)ds
+ 5 (p‘_”l) / (=) ?Bls)ds + (T - 1) T;(y(r)) + rj(y(f,.))], veJ

Proof 1f (w, y) is a solution of system (1.4), then it is a solution of (2.7). Conversely, if (, y)

is a solution of (2.7), then

“D'ow(r) = Alr,y(1), CD’a)(t))+f0 r(s B(s,y(s) “D'w(s)) ds
wherefej,r#riforl:12 ., m,

“DPy(t) = A'(r,w(7), “DPy(7)) + [, (e s B/ (s, (s),°DPy(s)) ds
where € J,7 #7jforj = 1,2,...,n,

Ao(m) =Tiw(w),  Av'(h)=Tio(r), i=12...,m

M@ =10@) AV (@) =T0(@m), j=L2...n

m(0) +&1"»(0) = vy, mo(T) + &1 o(T) = vy,

13y(0) + §317y(0) = v3,  may(T) + EIPy(T) = vy

Thus (w, y) is a solution of (1.4). O
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For convenience, we use the following notations:

v(t) = (r (1), ”D’w(r) / (TI_“ZS) (s,y(s),cD’w(s)) ds
('L' _ S)a—l

B (s, ¥(s), v(s)) ds,

T _o)o-1
(1) = A' (1, 0(1),°D’y(7)) +/0 %

=Amy@ro) + | 5

B (s, (s), CDpy(s)) ds

T _o-1
= A'(1,0(1),2(7)) +/ %B’(s,w(s),z(s)) ds.

0

System (1.4) can be transformed into a fixed point problem.
Define the operators 7,,7,: X x Y — X x Y by

s Jy (@ =5y uls)ds + 2 — L& [T — s)Lao(s) dis

m
mfn (T —s)"v(s)ds

Lr)fofl 71 —s)" " tv(s)ds + T(rtll) ot —8)v(s) ds

+(T-n)Ti((n) + Tx(w(n)) +o =2l teds

Tr(@,y)(x) =
i Jo (T =8V vls)ds + 2 = 5[ fo (T - sy~ ols)ds + 24 - 2]
-7 sz1 0 f (T —S)r Yu(s)ds + W fT:il (r; = s)'v(s)ds
+ FT(r f’l T (t, —8)2u(s)ds
+(T - ri)Ti(w(n)) +Yi(o(w)], 1€
and
i Jo (7= V18 ds + 32 - S Jo (T =s)7Yy(s) ds
+ 1y [ (T =) 12(s) ds
+ %(p) Jo @ =P z(s) ds + FT(;TII (g, — s)P22(s) ds
TonN®=1 (T “ROE) e TO) ) e T
r_(p)fo — )P z(s)ds+——— 4F(pf()(T S)pl()ds+——a
— 5 Xl Jy (T=9P72ls) ds + 7 [ (5= ) 2(s) ds
+ 1 [ (5 - 9p-22(9) ds
+(T-5)T0() + Lom), T,

with T(®,)(t) = (T (@, y)(7), Tp(w, y)(7)).
We further need the following hypotheses:

« [A;] there exist constants M; > 0 and Nj € (0, 1) such that, forall T € J, u,7% € X, and

w,w € R, we have

| Az, u,w) — A(z,%,w)| < My|u— 2| + Ny jw —w.

Page 11 of 50
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Similarly, there exist constants M > 0 and N; € (0,1) such that, forall t € 7,
u,u € X,and w,w € R, we have

|B(z,u,w) - B(r,u,w)| < Ma|u — | + Ny |w - w;

+ [A;] there exist constants M} > 0 and N} € (0,1) such that, forallt € J, u,u € Y, and
w,w € R, we have

|.A/(t,u,w) —A’(r,ﬁ,W)| <M]|u-u| + Nj|lw-wl|.

Similarly, there exist constants Mj > 0 and N, € (0, 1) such that, for all t € 7,
u,u € Y,and w,w € R, we have

|B'(t,u,w) = B'(t,%,W)| < Mj|u—1u| + Nj|w—w;

o [As] for any w,w € X x ), there exist constants ATI.,Aﬁ_ > 0 such that

|7 (w(r) - Yi(w(r))| < A |w(n) - w(w);

A

|T:(w(r) - T:(W(r))| < Ag |wim) - W(w)|, i=1,2,...,m.

Similarly, for any y,5 € X x Y, there exist constants Ay, Az >0 such that

17(w() - (W) | < Ax[w(z) - w()

|?/(W(Tj)) - ?/(W(Tj)” < A)‘Aj |w(t)) — w(r))

’

, j=12,...,m

» [A4] there exist aq, b1, c; € X such that
Az, u(@), w(D))| < ar(2) + by () u(z)] + e (2) | ()|

with a} = sup_. 7 a(1), b} = sup, . 7 b1(1),¢§ = sup, rc1(7) < 1.
Similarly, there exist ay, by, ¢; € X such that

|B(t, u(t), w(v)) | < aa(t) + bo(0)|u(T) | + ca() | ()]

with a3 = sup_ 7 ax(7), b5 = sup, . 7 ba(7), ¢5 = sup . 7 ca(7) < 1 with 1 —¢] - cﬁ%;

» [As] there exist I1, m1,n; € Y such that
A (x,u(0), (D)) | < () + 111 (0)|(2)]| + ()| wi()]

with If =sup, . ;7 Li(t), m}] = sup_. 7 m1 (), n} =sup,. s mi(7) < 1.
Similarly, there exist /5, m,, 15 € Y such that

|B' (7, u(t), w(r))| < L(t) + ma(7) |u(t)| + na(x)|w(z)]

with 5 = sup, . 7 l(7), m5 = sup, . 7 my(1), 13 = sup, . 7 na2(t) < 1 with

T° .
)>0,

£ *
1-n] — 515
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« [Ag] The functions Y;: R — R;i = 1,2, ..., m, are continuous for each % € R. There
exist constants Ky, Ly, > 0 such that | Y;(u(7;))| < Kv,lu(t)| + Lr,.
Similarly, the functions 7; : R — R;i = 1,2,...,m, are continuous for each u € R.
There exist constants constants IC’ﬁ_, Df’i > 0 such that |7A’}(u(7:,-))| < IC/ﬁ lu(t)| + Dﬂ;
. [A~7] The functions 7;: R — R;j = 1,2,...,n, are continuous for each u € R. There
exist constants Kr;, Ly; > 0 such that | 7j(u(g))| < Kr;|u(z)| + L.
Similarly, the functions 7;: R — R;j = 1,2,...,n, are continuous for each z € R.
There exist constants IC;;i, Dﬂ > 0 such that |?}‘(u(fj))| =< IC;;[ lu(t)| + ﬁ,ﬁ;
« [Ag] Denote

o () e o)
1= + o + o
rr+1) I'(r) 1—N1—N2%@) 1—N1—N2%(5)

&T" . T
—_— Ay + Ay 1 th1-N; -N >0
+ G+ + m( 7+ yl)i| < wi 1= Nyp—— oT0)

and

nT? nTP1 M, M/2(7[‘H
A2 = + / y _TO + U r _T9
Fp+1)  Lp) J\1-Nj -Np- 1o 1-N; - Np o

. , TO_
H(Af/ +AT])]<1 WIth]‘_N/l_NZT(S)>0

&, T?
+—+
T]4F(p + 1)

Now, we are in position to state the main results of this section.

Theorem 2.7 If hypotheses [A1]-[A4] are satisfied, then problem (1.4) has at least one

solution.
Proof See Appendix 2. d

Theorem 2.8 If A = max(A;, Ay) < 1, then under hypotheses [A1]-[47], system (1.4) has

a unique solution.

Proof See Appendix 2. d

3 Hyers-Ulam stability

In this section, we provide novel characterizations of the Hyers—Ulam stability for systems
(1.3) and (1.4). We rely on stability notions from [21]; for various concepts of Hyers—Ulam
stability, see, for example [37, 43, 46, 47].

3.1 Hyers-Ulam stability concepts for system (1.3)
For w € M, €, > 0,¢, > 0, and a nondecreasing function ¥, € C(J,R,), the following set

of inequalities are satisfied:

‘Do (1) — AT, (1), “D'w(z)) - f§ & 5 ~ B(s, w(s), D’ w(s)) ds| < e,
teJ,i=1,2,...,m, (3.1)
|Aw(t) - Ti(w()| <€, i=12,...,m
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Dar) - At 0(r), Do) -y 5B, 0(s), Do) ds| < ()
teJ,i=12,...,m, (3.2)

|Aw(Ti) _/Y‘l(a)(rl)” S ¢V’ i: 1!2r-~~,m1

and

D’ (1) — A(t, (1), D' (7)) - [y “;sg;" B(s, o(s), “D’ w(s)) ds|
<e&y.(r), teJ,i=12,...,m, (3.3)

|ACL)(T[)— T\l(w(‘[l)” S er¢rr i: 1;21'“;m-
Recall the definitions of stability concepts from [21].

Definition 3.1 Problem (1.3) is said to be Hyers—Ulam stable if there exists C 4 5 > 0 such
that, for each ¢, > 0 and any solution w € M of inequality (3.1), there exists a unique
solution w* € M of problem (1.3) such that

||a)(r) —a)*(t)”M <Cype forallteJ.

Definition 3.2 Problem (1.3) is said to be generalized Hyers—Ulam stable if there exists a
function ¢ € C(R,,R,) with ©(0) = 0 such that, for each ¢, > 0 and any solution w € M of
inequality (3.1), there exists a unique solution * € M of problem (1.3) such that

||a)(1') —a)*(t)”M <Cypv(e) forallteJ.

Definition 3.3 Problem (1.3) is said to be Hyers—Ulam—Rassias stable with respect to
(¢, ¥y) if there exists C 43 > 0 such that, for each €, > 0 and any solution w € M of in-
equality (3.3), there exists a unique solution w* € M of problem (1.3) such that

|o(t) - 0*() ”M <Cage (¢, +¥,(r)) forallteJ.

Definition 3.4 Problem (1.3) is said to be generalized Hyers—Ulam—Rassias stable with
respect to (¢, ¥,) if there exists C 4 g > 0 such that, for each ¢, > 0 and any solution w € M
of inequality (3.2), there exists a unique solution w* € M of problem (1.3) such that

|o(t) - 0*(2) ”M <CaB(¢r +¥:(r)) forallt e J.
Some remarks are in order.
Remark 3.5 Definition 3.1 implies Definition 3.2, and Definition 3.3 implies Definition 3.4.

Remark 3.6 A function w € M is a solution of inequality (3.1) if there exist a function
® € M and a sequence ®; (which depends on w) such that
(i) |12(t)l <€ and |P;| <¢,forallt € J,i=1,2,...,m;

(il) “D"o(r) = AT, (1), “D'o(0) + [y T2 B(s,w(s), “Dra(s) ds + B(z) for allr € T;

and
(iii) Aw(ty) = Ti(w(ry) + @; forallt € J,i=1,2,...,m.
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Remark 3.7 A function w € M is a solution of inequality (3.2) if there exist a function
@ € M and a sequence @; (which depends on w) such that
(1) |<D(7:)|<1ﬁ,(7:)and|¢|<¢rforallfej,i—1 2,...,m;
(ii) “Dro(t) = A(t,w(t),D ' w(t)) + fo (e S B(s,w(s) “D'w(s))ds + ®(t) for all
T € J;and
(iii) Aw(ty) = Yi(w(1y) + ®; forallt € J,i=1,2,...,m

Remark 3.8 A function w € M is a solution of inequality (3.3) if there exist a function
@ € M and a sequence @; (which depends on w) such that
(i) 12(7)| < ¢,(7) and |D;| < €,¢, forall T € j,i— 1,2,...,m;
(ii) “Dro(t) = A(t,w(t),D ' w(t)) + fo (e S B(s,w(s) CD’w(s))ds+ @ (7) for all
T € J;and
(iii) Aw(ty) = Yi(w(1y) + ®; forallt € J,i=1,2,...,m

Definition 3.9 A function w € M that satisfies (1.3) and its conditions on 7 is a solution
of problem (1.3).

Theorem 3.10 If € M is a solution of inequality (3.1), then w is a solution of the in-
equality

’a)(f)—q(t){ < ( 'L'V B WZ‘L”"+1 ~ ﬂ)er.
re+1) Trr+1) T

Proof Let w be a solution of inequality (3.1). Then by Remark 3.6 o is also a solution of

“‘Dra(t) = Az, 0(t), CD’w(r))
+ fo (e s B(s,a)(s) “D'w(s)) ds + D (1),
ted,t #ti,Lzl,Z ., m, (3.4)
Aw(t) = Ti(o(ty)), AW'(1) = Tio(w), i=1,2,...,m
mo(0) + &1"w(0) = vy, 120(T) + &1 o(T) = vy,

that is,

w(t) = —)/ (z =) M(s)ds

I -1 ds 2_5[2_2
+F(r)/(; (t—s5)"D(s) +771 o
—s)! _ rl
ﬂzF(V)/ =) (s)ds] T2 [r()/ (T =) v(s)ds
1

/rj (r;— )"t (s)ds + 1 L (7; = 8) " w(s)ds

T )., ro ).,

+ To-D /T:il(ri — ) 2u(s)ds + (T - t,-)'f’,-(w(t,-)) + T,'(w(t,')) + QC|. (3.5)

Page 15 of 50
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For simplicity, let g(7) denote the terms of w(7) that are free from @(7), that is,

q(t) = ﬁ Ar(t —s)1u(s)ds + -1

v
m

_fih» & T o ]
T|:n1 ’72+772F(r)/0 (T=5)"" w(s)ds

m T Ti
=z Z[ﬁ s g [ @motus as

T- T; T
+
re-1J,

(n—SY”vuﬂh+(T—f»?Kwhﬁ)+7Kwﬁﬂﬂ.
Thus (3.5) can be written as

|(z) - g(0)|

! ‘ r-1 Ty E . r-1 .
Sm/o (t—59) ‘@(s)’d —¥Z|:m/n_l(r,—s) ’@(s)|ds+|q§l|i|.

i=1

Using (i) from Remark 3.6, we get

o(x) - q(x)]| < T’ mr*! ™m
w(t) —q(t - —— e,
1 “\I'(r+1) Trr+1) T .
Theorem 3.11 If hypothesis [A1] holds and
mT" mTr1 M; M, %1;)
re+1) " T0) (. i
r+ r 1_N1_N2T(6) l—Nl—sz
Tr
¥ _ el +m(A+B)| <1, (3.6)
ml(r+1)
then problem (1.3) is Ulam—Hyers and generalized Ulam—Hyers stable.
Proof See Appendix 3. d

Assume that
+ [As] there exist a nondecreasing function ¥, € M and a constant gy, > 0 such that,

for each T € J, we have

IQWr(T) < Qwﬂ/fr(f).
From Theorem 3.11 and [A5] we obtain the following theorem.

Theorem 3.12 Under hypotheses [A1]—-[As] and condition (3.6), problem (1.3) is Ulam—
Hyers—Rassias and generalized Ulam—Hyers—Rassias stable.

Page 16 of 50
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3.2 Hyers-Ulam stability concepts for system (1.4)
Let€,,€, > 0,4, B, A, B’ be continuous functions, and ¥,,1, : 7 — R* be nondecreasing

functions. Consider the following inequalities:

and

D' w(t) — Az, y(1), D’ (7))

~ Jy LB, y(s), Do) ds| <€, TE T,
[“DPy(r) — A'(7, (), “DPy(7))

-l (T}S();)il B'(s,w(s), “DPy(s)) ds| <€,, TE€T,

|Aw(ri) - T}(a)(rl))l S €ry l = 11 2: oo, m,
1AY(T) - @) <€ j=1,2,...,n,

(3.7)

D' w(t) = A(t,y(7), ‘D" (7))

— Jy S Bs, (), DT ols)) ds| < ¥, TET,
[“DPy(z) — A'(7, w(t), “DPy(7))

— [y EREB (s, w(s), DY) ds| < ¥ TET,

|Aw(t) - Yi(w(t)| < ¢y, i=1,2,...,m,
1AY(T) - @) < ¢p, j=1,2,...,1,

(3.8)

D" (t) — AT, 5(1), “D’w(t))

— 5 B, y(5), D w(s) ds| < 0, TET,
[“DPy(t) - A'(t, (), “DPy(7))

B foT (r;j();’l B'(s,w(s),“DPy(s)) ds| < eppp, T €T, (3.9)
|Aw(t;) - Ti(o(T;)| < €y,

i=12,...,m,

|Ay(1'1)—7}(y(7:1))| 56p¢ps j: 1,2,...,n.

Recall the appropriate definitions of stability concepts from [21].

Definition 3.13 Problem (1.4) is said to be Hyers—Ulam stable if there exists C,, =
max(C,,C,) > 0 for some € = (¢,,€,) and for each solution (w,y) € X x Y of (3.7), there
exists a solution (@*,y*) € X x Y of (1.4) with

(. )(x) - (a)*,y*)(r)”XXy <Cpe forallteJ.

Definition 3.14 Problem (1.4) is said to be generalized Hyers—Ulam stable if there exists
a function ® € C(J,R) with &(0) = 0 such that for each solution (w,y) € X x Y of (3.7),
there exists a solution (@*,y*) € X x Y of (1.4) with

||(a),y)(r) - (w*,y*)(t)”XXy <@(e) forallteJ.

Page 17 of 50
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Definition 3.15 Problem (1.4) is said to be Hyers—Ulam—Rassias stable with respect to
Yrp = (Wr ) € CH(J,R) if there exists a constant Cy, y, = max(Cy,,Cy,) such that, for
some € = (€,,€,) > 0 and for each solution (w,y) € X x )V of (3.8), there exists a solution
(w*,y*) € X x Y of (1.4) with

[(@,2)(@) = (@*7) (@) | 4y < Cypype forallzeJ.

Definition 3.16 Problem (1.4) is said to be generalized Hyers—Ulam—Rassias stable with
respect to V¥, = (¥, ¥,) € C'(J,R) if there exists a constant Cyyy, = max(Cy,,Cy,) >0
such that, for each solution (w,y) € X x ) of (3.9), there exists a solution (w*,y*) € X x )
of (1.4) with

”(a),y)(r) - (a)*’y*)(‘[) ||X><y <Cy,y,¥rp forallteJ.
We have two remarks.

Remark 3.17 Definition 3.13 implies Definition 3.14, and Definition 3.15 implies Defini-
tion 3.16.

Remark 3.18 We say that (w,y) € X x ) is a solution of (3.7) if there exist the functions
nmaB Axp € X x Y, depending upon w,y, respectively, such that
(i) luas(@)| <€, lAnp(t) <€ forallt e J;
(if)
“‘Dw(r) = A(r,y(t),”D’a)(t))
T ('L' _ S)a—l
+ —
o I
teJ;,

B(s,5(s),“D’w(s)) ds + p.4,5(t),

and

“DPy(r) = A(t, (1), “DPy(1))

+ /OI %B(& w(s),“D"y(s)) ds + A (1),

e

(iil) Aw(r)=Ti(w(w)) + it € Jpi=12,...,m,and Ay(t) = Y;(y(1)) + Aj, T € T},
j=L12,...,n

Theorem 3.19 Let (w,y) € X x Y be a solution of inequality (3.7). Then we have

mr'+1

lo(t) —q(7)] < (#:1) T TrgeD T e 1€,

ntPtl wm

|y(7-') -q(7)| < (#ﬁl) =TI T)GP’ teJ.
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Proof Let (w,y) be a solution of inequality (3.7). Then by Remark 3.18 (w, y) is also a solu-
tion of

“Do(t) = Az, ¥(t), D’ (7)) fo r(a B(s,y(s),“D"w(s)) ds + n 4
wheret € J,t #1;fori=1,2,...,m,

“DPy(r) = A'(r,0(x), DY) + [ SEELB (5,006, “DPy(s)) ds + A
wheret € J,7 #71;,j = 1,2,..., n,

Ao(r)=Ti(o(w),  Ao'(n)=Tio(w), i=12...m,

M) =10, AY (@ =T0(@m) j=L2..n

mw(0) + &E1"0(0) = vy, mo(T) + &1 o(T) = vy,

13y(0) + &317y(0) = vs, 14y(T) + £4Py(T) = vy,

(3.10)

that is,
R man_t[n
w(r) ) F(r') /(; (r S S)ds+ ) / i S S)dS+ m T |:711 N2
UzF(r) / (T-s)" 1 w(s) dS] |:1"( ) / (T—s)" lOt(S) ds
'r tﬂ /(r —9 s %) /(’ — ) a(s)ds
. FT(F—_r;) (v = s 2a(s) ds + (T = 1) T3 (w(m) + To(w(®) + M] (3.11a)
and

I'(p) Jo nz T

&4 T T 1 ([T 3
Sy T - Z[r@)/ (T-aFplds

y(T) = L /T(T —S)pflﬂ(s)ds + F:zp) OT(‘[ _S)pil)\,(s)dS‘I- E — i[& — E

+ F;) Tiijl(rj—s)P—lk(s) ds + F(p) o
T-
F(p t/l) g 1(‘r, —s)P2B(s)ds + (T - l',)'f( (‘r,)) + T( (1-])) + A]:|, (3.11b)

(r, - 5P B(s) ds

where

T(r—-s)!

a(t) = A(t,y(1), “D'w(1)) + o T

B (s, ¥(s), CD’a)(s)) ds

and

B(z) = A (z,0(),“DPy(r)) + /0
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From (3.11a) we have

R Y AP R AP _1_1[2_2
L()(T)_I"() ; (r-3) a(s)ds+r(r) ; (=) uls)ds + ] o
r-1 1
UzF(r)/ =) (S)ds] [r()/ (T -9 as)ds
+ o /TH(I, 8) T uls)ds + T )/r, 1(t, s a(s)ds
T-1

(51— 9 als) ds + (T — ) Ti{o() + (o(m) + ui]. (3.12)

Ti-1

TTe-1

Thus (3.12) becomes

lo(r)—q()] < ﬁ fo f(r—s>”lu(s)|ds—%;[ﬁ / iril(ri—s>’1|u(s)|ds+|u,»|}

where

N v T[u o» (3 ' 1
Q(T)—m/(f—s) Ol(S)dS+E—T|:E—E+ 2F(r)/ (T-ys) a)(s)ds:|

B 1 > - _ _ -1
T Py [F( )/;L (T-s)"als)ds+ r'(r )/n 1(71 )" a(s)ds
T-1 A
I(r —Tl) rH(r' -8)"a(s)ds + (T - 1) Ti(w(r))) + Ti(w(n))}.

Using (i) from Remark 3.18, we obtain

’a)(r)—q(t)|§< " B Wl‘["ﬂ _‘L’_Wl) r
rer+1) Trr+1) T

Repeating a similar procedure for (3.11b) together with (i) from Remark 3.18, we have

ly(r) -4 (r)] < ( il net! —T—n)e
‘ “\rp+0) Trp+n T)7

where

V3 T

’ 1 ‘ -1
- _ ds+ B _ T _M
7(7) F(P)/o(r KAL) S+773 T|:773 un 714F(P) RS }

¥ n L ) -1 1 ! -l
_TZ[p(p) /T (T —s)? ﬁ(s)dHF(p) -/r,-_l(T] $)P1B(s)ds

F(p 1) /r] l(fj—S)p 2,3(S)ds+(T—‘L'])T( (7)) +T(y(r/)):|

Thus the proof is complete. O

Page 20 of 50
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Theorem 3.20 If hypotheses [A1]-[As] hold with

A=1-Q,0,50, (3.13)
then system (1.4) is stable, in the sense of Ulam—Hyers.
Proof See Appendix 3. d

In the next section, we provide an example demonstrating how (3.13) can be computed

in a specific case. We conclude this section with two remarks.

Remark 3.21 We set O (¢€) = C, ¢, ©(0) = 0 in (C.10). By Definition 3.14 the proposed
system (1.4) is generalized Ulam—Hyers stable.

To obtain the connections between the Ulam—Hyers—Rassias stability concepts, we in-
troduce the following hypothesis.

+ [Ao] Let £2,, 82, € C(J,R") be an increasing functions. Then there exist Ag,, Ag, >0
such that, for each 7 € 7,

I'2.(t) < Ag,£2,(r) and I'"'2,(1) < Ag,2,(7)
and

PQpr) < Ag,82,(r) and Ip_l.Qp(T) < Aq,2,(7).

Remark 3.22 Under hypotheses [A1]—[Aq], by (3.13) and Theorems 3.19 and 3.20 system
(1.4) is Ulam—Hyers—Rassias and generalized Ulam—-Hyers—Rassias stable.

4 lllustrative examples
We present two examples to demonstrate the existence and stability of our obtained re-
sults.

Example 4.1 Consider

“Diw(r) = |"’(T)|+COS\CD%(A)§I
90e™*+2(1+|w(1)|+|°D 2 w(1)]) ,
1 1 3 |(s)|+sin |D 2 w(s)]| 1
+ == [ (1 —9)2 Y
F(%) fO 1019”2(1+\w(5)|+|CD%cu(s)|) 3
3 3
w(0) +120(0) = 1, o(1) +2w(l) = 1,

Ao(3) =T (@(3)), Aw'(3) =T (0(3)),

(4.1)

wherer =3, 7 =[0,3], 71 = (3, 1.

Set
A(t,,9) = lw(T)| + cos |CD%w(31')| |
906'“—2(1 + |(,()('C)| + |CD70)('L')|)
N |
B(t,w,y) = |w(T)| + sin D2 w(7))|

101e72(1 + |(7)| + |°D3 w(1)])
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Obviously, .4 and B are jointly continuous functions. Now, for all w,@ € M, y,y € R, and
T € [0,1], we have

_ 1 _ _
|-/4("-',60;y) —-A(t;E;J’)| =< waw —Cl)| + |)’—y|)

and

|B(r,,9) ~ Br,@5)| < 15— (1o~ ] + |y ~3).

These satisfy condition [A4;] with M; =N; = 90& and My =N, =
Set

1\ leG)
T1<w<§))——40+|w(%)| forw e M

_1_
101e2*

and

5 1)\ _ lo3)
T <w<§)> = m for w € M.

Then we have

(o) o) <
(o) (s

respectively. Hence A = % and B = %. Thus condition [A,] is satisfied.

and

Also,
mT" mT1 M, M, a;a(a)
+ T(r + T{T
F(I’+1) F(Y’) 1_N1_N2T(8) l—Nl—NZGF((g)
Tr

+E27+m(A+IB%) ~0.83374 <1

ml (r+1)

withmzl,Tzl,Ezzrn:l,O=5:%,F=%,M1=N1:ﬁ’MZZszﬁ’Azs_ls’B:

%. Therefore by Theorem 2.4 problem (4.1) has a unique solution. Also, letting ¥ (7) =

|t|, T € [0, 1], we have

3
1 1 K 1 42 2t
Py = o [ -9 sds- o< 2L
rd) s NN
Hence [A5] is satisfied with £, = % Therefore by Theorem 3.12 the given problem is
Ulam—Hyers—Rassias stable and consequently generalized Ulam—Hyers—Rassias stable.
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Example 4.2 Consider

CD%CU(T) _ 1+|y(r)|+cos\”D%w(r)\
1043”5(1+\y(1:)\+\5D%w(r)l) .
1 (t=9)2  1+py)l+sin|°D2 w(s)| 1
+ ds, t€l01],t#3,
J T(3) 104655(1+1y(s) 4D 2 wo(s)) 3
CD%_)/(‘L') - 2+|w(r)|+cos|C'D731/(t)|
70e™*2(L+|a()|+[D 2 y(2)])

3 1
1 (z-5)2  |w(s)l+cos| D2 y(s)| ds, tel0,1],t+#3,
0 T3 7067214+ D2 y(s)) 0.1} #3
w0 +I20(0)=3, o) +o(l) =3,
1 1
y(0) +12y(0) =3,  y(1)+12y(1) =3,
Aw(3) =T (0(3)), Aw’(l):f”( (1),
)

MG =70G) A =T0G

7, =3 fori=1,2,3,...,60, and 7; = § forj=1,2,3,...,100.
For any w,w,y,y € R and 7 € [0, 1], we obtain

|A(r,0,9) - A(r,®,y)| < (lo -] + |y -7

~ 104€5

and

_ 1 _ _
[B(z,@,9) = Br,0,5)| = 15,5 (lo =@l + Iy - 71).

Similarly, for any w,®,y,y € R, and 7 € [0, 1], we obtain
A (t,0,y) - A(r,@,9)| < (|w ol +y-7)
and
’ 1
|B'(t,0,9) - B'(z, w,y)|<—(|w ol +|y-7l).

These satisfy condition [A;] with M; =M, =N; =N, =
Set

1
T,(a)(l)) = Lg)t forwe X
3 40 + |o(3)]

104 104¢5°

and

1
”f1<w<l)> = Lgﬂl forwe X.

Then for w,w € X, we have

(o(5)) (o) e o
3 3 40+ lo(})| 40+ [@(3)]

M) = M) = Nj =Nj =

70e2
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IA

&l-

o — @

and

N 1 ~(_(1 1 _
Tilol=))-T1i|o| = < —|w-o,
3 3 20
respectively. Hence Ay, = % and Ay, = %. Thus condition [A,] is satisfied. Similarly, if

(1Y) @)
T’<y<4)> Ts0e ) OEY

then for y,y € ), we have

((1 (V)| _| @) ()
T’(y<4>) _T’(y<4>)‘ - '50+ YDl 50+ 5(0)

<Li-3
=500 T

and if

(1Y) @)
T’<y<4)> Tlotepd) OEY

then for y,y € ), we have

(o 1 2 (—(T\\|_| @) (3
T’<y(4>> _T’(y<4)>‘ } '101+ DI 101+ (D)

1 _
< —|y =9l
— 101 =)l

1 1 . . ~
Thus Arj = 55 and A?j = 107 satisfy our requirement from [A3].

The condition

mT" mT1 M; Mz%
A= + + ©)
Fer+1) I J\1-Ni-Nogrg  1-Ni-Nogpg

TV
+ 527 +m(A4 + Ayy) | =0.83097 < 1

Ml (r+1) S
is valid with m = 1,T= L& = =1L,0 =8 =5,r = 5,M1 =Ny =My = Np = =, Ay, =
1 1
%’Anzz_()'

Also,
Az:[( 1 +"Tp_l)< M, + M; 7w )
rp+1) I'(p) J\1-N;-Np—z  1-Nj - N

&, TP

_ A +Ay)|[~0.78689 <1
+774F(P+1)+n( 7+ r,)] <
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withn:l,T:l,&f:m:l,a:é:%,p:%,M/I:N’le’Z:N/zzﬁlez,ijzylo,Aﬂ:
1

101
It is easy to check that

Hence A = max(Aj, A,) < 1is also true.

1-09,9,~1.00000>0

and condition (3.13) is verified. We conclude that problem (4.2) is Ulam—Hyers stable, gen-
eralized Ulam—Hyers stable, Ulam—Hyers—Rassias stable, and generalized Ulam—Hyers—
Rassias stable.

Appendix 1: Supplementary results
The following definitions are adopted from [15].

Definition A.1 The integral of a function u € L!(7,R) of order r € R* is defined by

Iu(t) = — /Or(r — Y ul(s)ds,

provided that the integral exists.

Definition A.2 The Caputo derivative of a function z € C*)((0, 00), R) of arbitrary order
r is defined by

“Du(r) = ﬁ /Or(r — )P 1P (5) ds,

where p = [r] + 1 in which [r] is the integer part of r.

Lemma A.3 For r > 0, the solution of the Caputo fractional differential equation
Dy u(t)=0is

w(t)=zo+ 2T+ 29T + - 42,1777,
wherez; € R, i=0,1,...,0—1,and p = [r] + 1.
Lemma A.4 Forr >0, the solution of “D"u(t) = B(t) is given by

=1 (p)
u’(0) o,

u(t)=I'B(t) + Z o

p=0

where p = [r] + 1.

Theorem A.5 ([10]) Let M be a Banach space, let T : M — M be a completely continu-
ous operator, and let the set 2 = {w € M : w = RT (w),0 < X < 1} be bounded. Then T has
at least one fixed point in M.

Theorem A.6 ([10]) Let T : S — S be a contraction on a nonempty closed subset of a
Banach space M. Then T has a unique fixed point.
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Theorem A.7 ([40]) Let H be a convex, closed, and nonempty subset of Banach space
X x Y, and let F,G be the operators such that

(i) Fo+GyeH whenever w,y € H.

(i) F is compact and continuous, and G is a contraction mapping.

Then there exists z € H such that z = Fz + Gz, where z = (w,y) € X x V.

Appendix 2

Proof of Theorem 2.3 Consider the operator 7 defined in (2.5). We have to show that
problem (1.3) has at least one solution.

We show the operator 7 is continuous. Consider the sequence {w,} such that w, - w €
M,t € J. Then

(Tw) (@) = (Tw)(@)|

2 &
T oI (1)

() _
<1 | e 0]

T
0 /0 (T-s)t |a),,(s) - a)(s)| ds

m T T
_ % Z;[% / | (T = 5)"vauls) - v(s)| ds + ﬁ Y =)' |vuls) = vls)| ds

T—‘L’i

K r-2 v %
=D (ti = 8) 2 |vuls) = v(s)| ds + (T — ) | Vi(wn(T)) = Ti(w()]

Ti-1

+

+ | Yi(wn(1) = Yi(w(t)

} (B.1)

where v,,v € M are given by

T _ o1
Va(7) = A(T, 04 (1), va(7)) + /0 %B(s,wn(s), va(s)) ds

and

T (‘E _S)a—l

vo) = Alr,ol) )+ | s

B(s, w(s), v(s)) ds,

respectively. Using hypothesis [A;], we have

|va(T) = (7))
T o-1
= ‘A(‘L’,a),,(f), V(1)) + /0 %B(s,wn(s), v,(s)) ds
T _ o1
—A(t,w(t),v(r))—/o %B(s,w(s),v(s)) ds

< |A(t,wn(r),vn(r)) - A(r,w(t),v(t))|
T _ o1
+/0 %W(s,wn(s),vn(s))—B(s,a)(s),v(s))|ds

< M [0,(7) - ()] + Ny |v(7) = (7))
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F(S) (M2|wy,(r) (t) |+N2|Vn(f)—v(f)|)

Then

M, Mza’"(s
|va(1) = v(7)| < < = o)
1-N; - Ny oo

>|a),,(t) w(t)|. (B.2)

Hypotheses [A1], [A;] and inequalities (B.1) and (B.2) lead to
[(Twn)(1) = (Tw)(7)]|
- [( 7" mtT ! mr’+! mt” )
“I\re+1) r@e+1) Trr+1) TICE)

x( M, + MZ””B) )_ Gl _im(AHB%)]
1-Ni-Nogkg  1-Ni-Nogk/ ml(r+1) T

X ’w,,(r) —a)(r)|.

For each t € 7, the sequence w,, — w as n — 00, and hence by the Lebesgue dominated

convergence theorem inequality (B.1) implies that
(Twn)(@) = (To)x)| >0 asn— oo

and
ITw,—Twlrm—>0 asn— oo.

Hence 7 is continuous on J .
Now we have to show that 7 is bounded in M. For any g > 0, there is Rg > 0 such that

E={weM:|olm=<p}
which leads to
[Twllm < Re.

For T € J;, we obtain

[(Tw)(7)|
sﬁ/;(r—s)’-liv(s>|ds+”—1—3[ 2r<r>/ (T = 5)"eo(s)| ds
%"%] T [Fm/ (=977 |9 ds+ iy f,.nl(”“s)”’v(s)|ds
= /Ti_il(fi —8)"2[u(s)| ds + (T - )| Ti(w(m))| + | Vi (w(x) |]~ (B.3)
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Further, using hypothesis [A3], we have

T _\o-1
’V(‘L')‘ < |A(l’,w(l’), V(T))‘ +/0 %‘B(s,a)(s),v(s)ﬂds

<hL(t) + mi (1) |w(t)| + m(v)|v()| + (L(v) + my (1) |w(T) | + ma(7) | W(7)])

T
oI (8)
o
<L +mi|olm+nillviiam+ TG

o)

(& + m |l ag + 151Vl ).

Therefore we get

5+ millollm 0 I +millolm
V@ < vim s s s 2 = (B.4)
l-nj-ny 55 © ( )l—nl—nz—ar(a)
Now by (B.4) and [A4] relation (B.3) becomes
V1
[T < F(r+ n
T EZT’ vl W mhT" mht” mht’!
- —= =+ + +
T (r+ 1) n I'(r+l) I'(r+1) r(r)
+m(K +Kr,) +m (L +£?ﬁ):|
=C.
Thus
[Twlrm <C.

Similarly for T € Jo, we can verify that
ITollm =C.

Now we have to show that the operator T is equicontinuous in E. Let 71, 7, € J; be such
that 0 < 71 < 72 < T, and let w € E. Then

[T () - To(t)]

< ﬁfo 2(12 —8) w(s)| ds + %f l(fl —s) | vls)| ds

— % Z I:I-v(r) / _S)V 1|V(S)|d$+ ( rt)) / (Tz _S)r 2|V(S)|dS

0<7ij<T9-T1
+ L /Ti (t; - S)r—l |V(S)| ds+ (T - -,;)"f*(w(r)” : |T(a)(r)) |]
F(r) i1 ¢ i i i i f
! " r-1 r-1 1 ! .
imf [(ra =) = (11 =) ]|(s)| ds + m/ (11 —5)" ! |v(s) | ds
V ( i— ;) r—
_1 [F(V)/ =) vis)| ds oo I) (Ti—S) *|w(s)| ds

0<r <Tp-T1
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F( )/ (t; =s)" 1| s)|d5+(T—r,)|T(a)(7:l )| + |Ti(w(n))|]. (B.5)

Obviously, the right-hand side of inequality (B.5) tends to zero as t; — ;. Therefore
|Tw(r2) - Ta)(rl)| —0 ast — T

Similarly, for T € Jo. Thus 7T is equicontinuous and therefore completely continuous. Fur-

ther, we consider a set £2 C M defined as
2= {weM:w:NT(a)),O<N<1}.

We need to prove that the set £2 is bounded. Suppose w € £2 is such that
() = NT(a)(T)), where 0 < R < 1.

Then for each 7 € J;, we have

T
/(r—sr1 (s)ds + ﬁ_—[ﬂsz(r)./o (T - s)w(s)ds

r)|

V1 1%) NT 71 1 r—1
7_%} Tz[ r)f ) ”‘S)d“mm(”‘” Ws) ds

T—‘Ci T
+
r'(r-1)

5%/0T(r—s)”l|v(s)’ds+% T|:n21" f (T-s5)" 1|a)s)’als

V1 Vo “ 1 T 1
+E—g:| Z[m/n (T-3) |V(s)|ds

(v —8)"2(s) ds + (T — 1) Ti(o0(z)) + Ti(w(r,-))] ‘

Ft ). 1(1,—s)’ 1|v(s |ds

Tt %, A
gy _Tl) 1(@ —5) 7 |v(s)| ds + (T - 1) | Vi(w(T)) | + !Ti(w(n))q

T’ U £|: £T" vi v ml mt” mr’
F(r+1) _T 172F(r+1)+r;1_172+F(r+1)+F(r+1)+F(r)

m(’C'Tl + ICri)|a)(r)| + m(/;frl + ﬁTi):|~

Taking the norm on both sides, we get ||w||sm < Q. Also, for T € Jy, we can show that
lollapm < Q. Thus, £2 is bounded. By Schaefer’s fixed point theorem we conclude that 7
has at least one fixed point. Hence, the considered problem (1.3) has at least one solution

in M. The proof is complete. O

Proof of Theorem 2.4 For w,w € M and 1 € J;, we have

(T@)(x) - (Tw)(7)|
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< | =9 - 2 [ - ot as
_ 1 _ V 1 - ! A2 N b _
T [ r)/ s) ’ |ds+ )/ti_l(r, s) ’v(s) V(s)|ds
I FT(;_’;) 592 [¥9) ~ (9 ds + (T - ) [F(@(x) ~ T ()
+ 1 (@(0) - ot | (B.6)

where v,V € M are given by

T o-1
Wﬂ=A@¢dﬂm&»+A Urg) B(s,(s), v(s)) ds
and
50) = Al 3@, 7@) + | =2 B @6, 7)) d
V\T) = (T,(UT,VT)‘}' A F((S) (S,C()S,VS) S

Using [A;], we have

V(@) - (7))

(r—5)°t

= ‘A(T,w(f),v(r)) +/0 o) B(s,w(s),v(s)) ds

T— S)U l

—A 7,' o(t), V(‘L') /0 o)

B(s,@(s), v(s)) ds
<|A(t (1), v(x)) - A(t, o(1),%(x))|
/ (r - S)"1|B v(s)) - B(s, @(s), 9(s))| ds

< M1|a)(r —a)(r)| + Nl}v(r) —v(r)|

(M2|w(r) w(r)|+N2|v(r) V(‘L’)|)

F(3)
Thus
M M, 15
wuymuﬂs( o Ie) )w ~a(7)|. (B.7)
I-N:-N; oI (5) 1-N; -No o755 ar(s

Using hypotheses [A;], [A2] and inequalities (B.7) and (B.6), we obtain
[(Tw)(z) - (Tw)(7)|
_ mrT” 1 mr’ ! mt”
rr+1) I'(r+1) TI"(r+1) TI(r)

M Mza Tr—l
X( L, ) )_ &t —im(A+B)]
1 N1 - NZ#@) 1- N N20F(6 nzf(r+ 1) T
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X |w(r) —5(r)|.
Now taking the norm on both sides, we have

1T -Talrm
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M, —Fs

- [( mT" mT"l)( M;
+ o
- '(r+1) r'(r) 1—N1—N2%(8)

&T"

T A+B - || m-
b s ) o=l

+ 01"(5 )
1-N; - Nzar(a

Hence, the operator T is a contraction. Thus 7 has a unique fixed point, so the problem

(1.3) has a unique solution.

O

Proof of Theorem 2.7 Construct the closed ball B = {(w,y) € X x YV : ||(w, )] < R}. Split
the operator 7 into two parts as T = F + G with F = (F,, F,) and G = (G, G,,), where

Folw)@) = ﬁ / (=5

T 1
_Tz[m

-7 i r=2
F(r ) ‘/;_l(t,» —5)"*v(s) ds:|,

€4

Y i as-
fp(w,y)(t)—r(p)/o (t —s)y"z(s)ds Tl ®) Jo

T < 1 T o
_T;[F_(p)/,] (T-s)

N T- Tj fri (‘[] _s)p_ZZ(S) deI’

re-nl,,

(T=5)" v(s)ds + L

z(s)ds + o)

_ -1
)/ (T-s)"w(s)ds

§ (7, — ) w(s) ds

Ti-1

I(r)

T
/ (T - 5P y(s) ds

/tj (zj —5)PLz(s) ds

G =2+ L [2 - 2] - % > (T - ) Ti(o(w) + Ti(o(r)],

and

S

G,0)(0) -2+ [E - ﬁ] - IS [T - )T (0) + 1(05) -

Clearly, 7, = F. + G, and T, = Fj, + Gp.

The first step is to show that T (w, y)(t) = F(w,9)(t) + G(@,y)(r) € B for all (w,y) € B.

For any (w,y) € 8B, consider

[(Trw)(0)|
BRI ut
SF(r)/O (-39 \v(s)|ds+’71
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Tl & T e won
_T[Uzr(r)fo (T-9) |‘”(S)!d5+m nJ
d ) . ) -1 r-1
T;:[m/; (T =) v(s)| ds + al )/ (i = 8)|(s)| ds

T-7 (¢ . .
F(V—Tl) / H(r,. —5)2|u(s)| ds + (T - )| Ti(w()) | + |Tl~(a)(r,~))|]. (B.8)

Using [A4] for T € J;, we have

)a—l

|V(‘L')| < |A(t,y(r),v(t))| +/ (r-s |B(s,y(s), V(s))|ds

o I8

<ai(®) + bhi(@)|y(@)] + ar (D) |v(0)] + (ﬂz(f) + by (1) [y(7)| + e2(2) [W(7)])

r(a)

o

oT () (a3 + b3llyllx + 5 llvilx)-

<aj+bilyllx +cilvila +

Therefore we get

aj +billyll x T7  a;+bslylx
o] = vl = oA s (B.9)
l-a-a7rm © @) 1-c ~G5TE)
Using (B.9) and [Ag], relation (B.8) becomes
ht” v &ETTY Ty Ty mThRT!
|Tw(T)|_ —————+———
rr+1) m TC(@r+1) Ty Tny T(r+1)
mht™t  mht!
Tr(r+1) r(r)
- (IC/T, + K |w(r)] - ('C/T, +Lr,)
=C.
Thus
ITrollx <C.

Similarly, for T € Jy, we can verify that
[Trollx <C.
In the similar manner, we have

|(Toy)(7)]

1 f r-1 V1
_m/ (t-39) }v(s)|ds+—

/ (T—S)’_1|a)(s)|ds+ — - —2}

T
- T[nzF(r nmo N
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m 1 T 1 Ti
Z[m / (T —s)"|w(s)| ds + m[fl(ri—s)’_l|v(s)|ds

i=1

T-7 (° . .
¥ F(r—Tl) L_l(n—s) Zyv(s)‘ds+(T—t,»)"f,'(a)(ri))|+|Ti(w(n))|]. (B.10)

Using [A~4] for T € J;, we have

T— S)a—l

o) = A0 0) |+ [ B 16) ds

.EU
<ai(t) + bi(0)|y(0)] + 1 () |v()| + 5TG) (a2(7) + ba(T)|y(1)] + c2(0)|v(7)])
<aj +billyllx +cilviix + T(S)(a; + D5 lylx + S lviix).
Therefore we get
aj + byl T7  a; + byl
)| < vl < ATy N (B.11)
l-ci=corg 070 1-cf -1
Using (B.11) and [Ag], relation (B.10) becomes
T’ v &TTY Ty Ty, TATE mht™l  mhr!

| Toy(z)| <

TG+l) m To+l) Tn Tm To+l) TCG+1) T

= (K% + Kx)|o(@)] = (L4, + L)

=C.
Thus
7yl < C.
Similarly, for T € Jy, we can verify that
I7yllx <C.
Hence
|75 €.
Now, for any (w,y) € 8, consider
|(Tp0)(7)]
< %@/;h —s)p’1|z(s)|ds+ %

A D TR P &_&}
T[ml"(p)fo(T ) |y(s)ids+n3 Na
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%21:[ I'p) Jy (T_S)p )| ds+ —— (p ;I(Tj—s)”_1|z(s)|ds
T-1 ) .
Y TeoD ”(T, 872 |2(s)] s + —rf>|n(y<rj>)|+|r,~(y<f,.>)|}.

Using [A~5] for T € J;, we have

|2(0)| < | A (T, 0(2), (7)) | +/(; (TFT|B’(S,LU(S) y(s))| ds

(B.12)

< (1) + ()| ()| + m(o)|y(x)| + %6(8) (b () + ma(0) [(0)| + ma(2) |y(2))

o

T
<l +miloly +mlyly + T((S)(l; +mjllwlly +nllylly).

Therefore we get

I+ millolly 7 L +moly
2] < llzlly = s =
l_nl‘nzgr(a) o ()1‘”1_”201"(5)
Using (B.13) and [A-], relation (B.12) becomes
h*? L £TTP Y tvy Ty, nTRYTP

[Toe(@)| < F(p+1) s T(p+1) Tus  Tna Tp+1)
nh*tPl phtorl
CTr(p+1) I(p)
= (K}, + Ky)|(@)] - (L5 + L)

=C".
Thus
ITpelly <C*.
Similarly, for T € Jy, we can verify that
ITpelly <C".
In a similar manner, we have

(Tp9)(@)]

(p)./ (t —s)y~ { s){ds+%

_r _gp-1 Vs V4

T|: / (T - sy’ Hy(s)| ds + 774:|
1 [ / (T =) Hals)| ds + — ! (= 8)PHz(s)| ds
T I'(p) (17) 71 !

(B.13)
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F(p 1)/ (5 = )72 |2(9)| ds + (T = )| T3 (n()) | + |]Q(y(f,-))|:|. (B.14)

Using [A5] for T € J;, we have

|Z(7,')| < \A/(t,a)(t),y(t))| +/(; (TFT|B’(S,LU(S) y(s))|ds

< (1) + i (0)| ()| + m(o)|y(0)| + ﬁ (l(7) + ma(0) [(0)| + ma(2) |y(2))

o

T((S)(li‘ + |y + ”§||J’||y)~

<lf+milloly +n;lylly +

Therefore we get

L +mileolly 7 L+miloly

T o) 1-n -

P =R (B.15)
L—ny = my 1 5T 6

|2(7)] < llzlly <

Using (B.15) and [A], relation (B.14) becomes

v3  ETTPL vy T nth TP 1

[Toy(o)] = r(p+1) s T+l Tns T Tp+1)
nh*tPtl phtrpl
Trp+1) ')
= (K, + Kp)|o@] - (L5, + L)
-C~.
Thus
IToylly < C*.

Similarly, for 7 € Jo, we can verify that
I7pylly < C*.
Hence
[Tnly =<,
and thus
IT@0) |y = |To@9) + Ty@)] oy <C+C =R,

which implies that 7(8) C B
Second, we show that G is a contraction. For any (w,y), (®,y) € 8, we have

600 6,@)| = 5 2L = o) =) |+ 1ote0) o)
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Wl(Af;«l + An)”&)—@”x.

Similarly,

n

19,0)-G,0)| = % Y [T = 5)|Hi6(m) - TiG)] + 10:) - 755)) ]

j=1
<n(Ay + Ax)ly-Jlly-

From the assumptions m(Aﬁ +Ay)<1land n(ij + ij) < 1 it follows that G is a contrac-

tion.

Our final step is to show that F = (F, + F,) is compact. The continuity of F follows from
the continuity of A, 5, A, B'. For (w,y) € B, we have

|]: a)(t

/ (=9 1|v(s |ds——

Ty Fr)/ (T - s)r1|w(s)|ds

=Tk

- — _ r—1 T o 1
Z[r()/(T g Ms"’l“r() (ri =)' |v(s)| ds

Ti-1

T-u f " (=52 ds]. (B.16)

" rr-1)
By [A,], for T € J;, we have
o-1
’ |<|.A(r (1), V(T f (v - E) { (s,a)(s) v(s |ds

<ai(t) + bi(v)|o(7)] + c1(7) |[v(x)| + (a2(1) + by (0)|0(7)| + 2(7) [¥(7)])

GF(S)

T
UF(B)(

<aj+billollx +cilvix + ay + bl x + s Ivllx).

Therefore we get

ay + billollx T7 a3 +bllolx

+
T -
l-d-dm  oTO1-ci-dog

-h (B.17)

V(@) < Ivilx <

Using (B.17) in (B.16), after simplification, we get
|f,w(r)| < 1.

In a similar manner, we have

|]:ry(f)|

/ (t -9~ 1|vs)|ds——

r 1
Tn I"(r)/ (T - |a)(s)|ds

r

_Z[F(r)/ (€57l i [ -9 ol as

Ti-1

T—Ti

+ m (1; —s) 2 |v(s)| ds:|. (B.18)

Ti-1
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By [A,], for T € J;, we have

(r-§)7"

v(0)] < [A(r, 0(0), v(1))| +/0 re)

|B(s, (s), V(s)) ‘ ds

<ai(t) + b1(v)|o(7)| + c1(7) |v(T)| + (a2(1) + by (7)| (1) + e2(7) |¥(7)])

.L,O'
oI (8)

T
<aj+billollx +clvlix + T(S)

(a5 + b llwllx + 5 IVllx).

Therefore we get

at + bt||w T° al+bi|w
V(@) < Ivllx < —— 1II* ”Tf HGEE 2”* ”Tff = h. (B.19)
l-—c-asrs © ®)1-¢ ~O5Te)

Using (B.19) in (B.18), after simplification, we get
| Fro(7)] < 1.

Hence
|Fo(@,9)] , < 1.

Now for any (w,y) € B, we have

1 [ _ 3
’}'pa)(r)| < F_(p)/(; (t —s) 1|z(s)| ds — %774;@)

/ - oyt

"1 T ]
_%;[F_(p)/r, (T —s)"|z(s)| ds + F(p),/ (tj — sy |z(s)| ds

f/'—l

T-1 i
+ F _Tll) /;j_l(rj —s)pP2 ’z(s)| ds:|. (B.20)

By [A5], for T € J;, we have

T _ o1
’z(t)! < }A/(r,w(t),z(t))’ +/ () |B/(s,w(s),z(s))|ds

o I'(5)

< h(v) + my () |x(7)| + m(v)|z(0)| + %6(5)(12(1) +m (1) |w(T)| + na(7)|2(7)|)
<L +millolly +nilzly + TZS)(Z; +m3llolly +n3llzlly).
Therefore we get
|2(0)] < llzlly < i :mj{”f)”ﬁ T 4 +*m3||f||§, =h. (B.21)
l-n{-nysrg o0 ©)1-ni-n 15

Using (B.21) in (B.20), after simplification, we get

IFpolly < 2.



Zada et al. Advances in Difference Equations (2020) 2020:64 Page 38 of 50

In a similar manner, we have

-1 T 54 T -1
’]:py |_ o) / (T —s) ‘Z(S)‘dS_TJMF(p) ; (T -5s) ‘y(s)’ds
R

T 1 T )
T 1=Zl|:r_(p)/f/ (T~ )" |z(s)| ds +

+ I:Jgp_—rjl ) /T] i(rj—s)p_z}z(s)}ds}. (B.22)

By [A5], for T € J;, we have

|2(7)| < | A (T, (1), 2(7))| +/0 ( ;(S; |B' (s, w(s), 2(s))| ds

<h(v) + my () |x(7)| + mi(v)|2()| + (L(z) + ma(1)|w(v)| + n2(7)|2(7)])

7°
oI'(8)

T
=i+ millolly +nillzlly + aF_(S)(l; +m3llolly +n3llzlly).

Therefore we get

I+ mf||w T? I+ ml||w
)] < llelly < Py 2o _Brmlely (B.23)
L-nm -G © ( )1_”1_”’20r(a)

Using (B.23) in (B.22), after simplification, we get
IFp51ly < 2.
Hence
1Z @]y <o
Thus
|F @Dy < |5 0,9) + Fol,0) |, < 91 + 2= Ra,
which implies that F is uniformly bounded on B.
Take a bounded subset C of B and (w,y) € C. Then for 71,7, € J; with0 <17y <15, <1,

we have

|frw(T2) - frw(T1)|

= ﬁ Orz(fz—S)r_l| }ds+ 1( )/TI(T1—S)"1|V(S)’d5
T (i1 — ) [T _
-z — syt uls)| ds + ELZT [ 2o ds
0<1: <Ty-T] [ F(}") f (}” - 1) 7
1 Tio1

r-1
F(r) : (t; — ) |v(s)|ds:|
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=T0) /o o9 = =9 )] s+ % /0 (-9 )| ds
1 T r— (i— _ i) Til1 .
_%(mg_ql:m /; (T-5) 1|v(3)|ds+%/n (2 — 52 |v(s)| ds
1 s r—1
i (ti =) [w(s)] dsi|. e

Obviously, the right-hand side of inequality (B.24) tends to zero as t; — .
Therefore

| Fro(t) - Fro(t)| > 0 ast — 1.
Similarly,
|]:ry(7:2) - f,y(rl)| —0 asT— Ty
Now for any 71,75 € J; with 0 < 11 < 15 < 1, we have
| P w(rz)—fw(n)\

< i [ e ds s s [ -9 et s

1 _ (-5 (7 -
T X [r—(p)/ (T—S)Pllz(s)|ds+%ff, (5 = sV"|a(s)| ds

bt
- %(p) :l(ff = 5p ()| ds]

: r%p) orz[(fz—”’“—(ﬁ—s)"‘l]|z(s>|ds+ F;) / (o1 — s els)| ds
i %OE_L@)/ (159 e] s+ o) ?))f " (- et ds
_ FL@) // " _S)P1|z(s)|ds:|. (B.25)

Obviously, the right-hand side of inequality (B.25) tends to zero as t; — 7.
Therefore

| Fpo(ta) = Fpoo(t1)| > 0 as 1y — 1.
Similarly,

’«ij/(l'z) _]:py(‘fl)‘ —0 ast — Ty
Thus

| F(x,9)(12) = F(x,9)(t1)| > 0 as 1y — 1.
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Hence F is equicontinuous, and by the Arzela—Ascoli theorem we obtain that F is com-

pact. Finally, by Theorem A.7 system (1.4) has at least one solution, which completes the

proof. O

Proof of Theorem 2.8 Suppose w,® € X. For t € J;, we have

| Tro(z) - Ta(z))|

! r-1 r—1
< [ w6l ds= L2 [ ot -t s

_%Z[ )/ (T-s)" 1|V(s) V(s) |ds+ F() L(Ii_s)r"1|v(3)—17(s)|ds

Ti-1

T- i i _ _ R N
o _11) / i_l(ri —5)" " |u(s) = W(s)| ds + (T - )| Vi(w(w) - Vi(@(w)|

T {o(m) - n(a(nm], (B.26)

. T (‘L’ _ ;g-)a—l
o I

B (s, ¥(s), v(s)) ds

and

)a—l

w(t) = A(7,5(1), ¥(1)) +/0 %B(s,y(s),f(s)) ds

Using [A;], we have

[v(z) - ¥(v)|
T _)o-1
= ‘A(r,y(t), (7)) + /0 ( 1"8) B(s,y(s), v(s)) ds
3 3 T (‘L’ )a 1 _ B
- A(7,y(x), (1)) - 6 B(s,5(s), v(s)) ds

< |A(z,y(1),v(1)) = A(7,5(x), ¥(1)) |

N (.[ S)J 1
A )

<M |y(r) =5(v)| + N |v(r) - 9(7)|

|B(s, (s), V(s)) (sj(s),l_/(s))|ds

(e

;(5) (Ma|y(v) =5(0)] + No|v(r) = ¥(7)])-
Thus
v M, Mza;ﬂ(é
[v(r) -¥(7)| < (1 NN tIIN N )]y(t ¥(7)|. (B.27)
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Using hypotheses [A1], and [A3] and inequalities (B.27) and (B.26), we get

(Tr0)(z) - (T;@)(2))|

- 7" mt T 1 mt’*! mt”
“|\I'(r+1) I'(r+1) Trr+1) TIr ()
M Mo 75 _
X ( 1 — n I(5) >i||y(r)_y(t)’
I-N; Ny 1-N; - Ny

UF(B
Tr—l
- [% * %M(AY} + An)] (1) —@(7)|.

Now taking the norm on both sides, we have

170 — Trollx
[ e i o
= + e T y—Ylx
r'r+1) I'(r) 1-N; - N2a;(5) 1-N; - Nzap(5
&ET _
—_— As + Ay, - . B.28
P et ) o -l (B.28)
In the same way, we can directly verify that
1Ty = Tyl x
[ ey oo
= + e T y—Jlx
rer+1) @) J\1-Ni-Nogg  1-Ni-Naogio
T _
—_— As + Ax, - . B.29
+[n2F(r+1)+m( 7+ Ay) |llo-ollx (B.29)

Therefore from (B.28) and (B.29) we get

| TH@,9) = Tr@,9)] < Ai](@,9) = @) »-
Now, suppose w,w € V. For 7 € J;, we have

| Too() - Tyo(7)|

_ 191 _ - _ 1
_F(p)/ (T =) |zs) z(s)|ds 4F(p)/ (T —s)P~ |y(s) ys)|ds

- ;[%@)/, (T = 51" |2(s) - Z(s)| s + FL(p) (1 - 771 [els) - 29| ds

Tf_l

+ F(p_—rll) /rjl (5 = 52 |2(s) = 2(s)| ds + (T - 1))| T (0(5) - T, (3(5) |

+H10@) - 10()

:|, (B.30)
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where

T o-1
z(t) = A’(t,w(t),z(r)) + /0 (e ;:;) B’(s,w(s),z(s)) ds

and

)0—1

z(t) = A/(I,E(t),i(r)) + for %B’(s,@(s),i(s)) ds
Using [A,], we have

|2(7) - Z(7)|

= ‘ r (1), z(t / (- S)U 1 s a)(s) z(s)) ds

)0'—1

- A (z,8(1),2(1)) / (Tm) B (s,3(5), 2(s)) ds

<|A(r,0(1),2(1)) - A (v, @(x),2(1))|

r(t_s)a—l : /
. /0 s B (606, 26) - B (5,09, 2(6) | ds

< Mj|o(t) - @(1)] + Nj|z(r) - 2(7))|

+ U;((S) (M/Z{Cl)(f) _E(T)| + N/2|z(1—) _z(.’_.)|)

Thus

7 10
M M, o7

IZ(f)—E(T)IS(l_N, N TN N, )Iw(f)—a(f)l.

20I(8) 20T (5)

Using hypotheses [A,], [A3] and inequalities (B.31) and (B.30), we have

|(Ty0)(7) - (T,@)(2)|

- 24 nt TP ntP*l nt?
SI\To+D) T+ Trp+n) TrQ)
M M, -ts
x ( L, G )}|w(r)_5(r)|
1-Ni-Npofos 1-Nj-Ny.°

UF(5
P!
[% —n(Ay. +Ar)}|y(r) ¥(7)|.

Now taking the norm on both sides, we have

1Ty - Tyolly

nT?P nTr-! M; M’z% _
< + To + Ta ”w - w”)/
Fp+1l) TI(p) 1-N;-N; 1-N}-N;,

265T(3) 20T (8

(B.31)
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[ &, TP

m + ”(Aq‘ﬁ/ + AT,)] ly=ylly- (B.32)

In the same way, we can obtain

175y = Tpylly
5 [( WTP el >< M, LM At )] b5
+ o , T -
“\Te+ ) " T )\ 1N Ny TN N ) [T
&, TP _

Thus from (B.32) and (B.33) we get
| (@) - T@ 9], < As](@,9) - @)
Hence it follows that
| T(@,9) = T@,9)] .y < max(As, M) (@ = @l 2y + Iy = Fllexy)-

This implies that 7 is a contraction and hence has a unique fixed point. This completes
the proof. d

Appendix 3

Proof of Theorem 3.11 Let w € M be a solution of inequality (3.1), and let w* be a solution
of the considered problem (1.3). Then

“D'w*(1) = A, 0*(1), “D"w*(1))
+f %B(S,w*(S),CD’w*(S))d& ted,t#ti=12,...,m,
Aw* () = Ti(w" (@),  Aw”(t)=Tie"(w), i=12...,m,

m*(0) + &I"w*(0) = vy, N20*(T) + &1 w*(T) = vy.

Using the inequality

’a)(r) —a)*(r)‘ < |a)(t) —q(r)’ + |q(r) + ' (1)|, (C.1)

by Theorem 3.10 we have

|w(7:) —a)*(t)|

r r+1

T mt Tm 1 . . *
< [F(r+1) CTr(r+1) ?j|€r+ m/() (t-5s) |V(S)—v (S)|ds
13 T . )
- TnZF(r)/() (T-5s) ’a)(S)—a) (S)‘ds

m T
— % ;[ﬁ /r,- (T—s)’_lyv(s) —v*(s)’ ds
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/ (rl—s)'1|vs) V*(s)|ds+

Ti-1

)2 *
F() /m(rl $)" 2| v(s) — v¥(s)| ds

+(T - )| Ti(w(m)) - Ti(w*(w)) <+m(w(n))—n(w*(u))|} (C2)

where v,v* € M are given by

T (‘E _S)a—l

v(t) = .A(r,a)(r),v(t)) + /0 B(s,w(s), v(s)) ds

and
T _o)o-1
V(1) = A(7, 0*(7), v (1)) +f0 %B(s, w*(s),v*(s)) ds

Using [A;], we have

|V(‘L') - v*(r)|
T (‘L’ _ S)o—l
= ‘A(t,a)(t),v(r)) + ; o) B(s,w(s),v(s)) ds
(‘L’ S)G 1

- A(r,0*(1),v

*(s),v*(s)) ds
< |A(r,a) t),v(r)) —A(r,w (1), V*(r))|
T _ o1
+/0 %W(s,a)(s),v(s)) - B(s,0*(s),v*(s))| ds

< Mi|o(r) - 0*(7)] + N1 [u(r) - v¥(7)]|

o

T
oI'(8)

(M2|a)(r) - a)*(r)‘ + Nzlv(r) - V*(I)D.

Thus

P

M, N M o
1-N;-Nojios - 1-N;j - Ny oo

[v(t) —v(r)| < < )|w(r)—w*(t)|. (C.3)

Using hypothesis [A;] and (C.3), by inequality (C.2) we get

|w(r) —w*(r)|

T’ mt"1 ™m
=< - T |€r

rr+1) Trr+1) T
T mrT! mr’+! mt”
i [(F(r+ 1) - r'(r+1) - TF(r+ 1) B TF(r))

M Mza Tr—l
X( L, o) )_ &t —im(A+B):|
1 N1 - NZ#@) 1- N N20F(8 7}2F(7’+ 1) T

X |w(7:) —w*(t)|.



Zada et al. Advances in Difference Equations (2020) 2020:64

By taking the norm and simplifying we get

o -]
- T mT" mT" mTr1
- -ml|e+ || ————+
| C(r+1) I'(r+1) " F(r+1) r(r)
M My s T
x( 1 - F(a) )+ ﬁz : +m(A+]B%)]
1-Ni-Nogrg 1-Ni-Nogr /) ml(r+1)
3 CEE VS
from which we obtain
|- o,
T T
- [m Town — Ml
_— TO' .
" mTr-1 2516) £T"
1_[ Fy:l”l I(r) )(1 Ni- Nz }:T) 1-N1-Np F(E))+W212(r+l)+m(A+B)]
Thus
o= 0]y <G
where
[FTV __mT" —Wl]
(r+1) (r+1)
= T T7-1 2 Tri& &T ,
mT” mT’— o 2 T7
1_[ T(r+1) T0) )(1 Ni— Nz O 1NNy 2 )+ T2l +m(A+B)]

)

that is, problem (1.3) is Ulam—Hyers stable. Now putting ©(¢) = C,¢,9(0) = 0 yields that
problem (1.3) is generalized Ulam—Hyers stable. d

Proofof Theorem 3.20 Let (w,y) € X x ) be a solution of inequality (3.9), and let (w*,y*) €

X x Y be a solution of the system

cDrw*(T)
wheret € J,1 #1;fori=1,2,.

Aw*(r;) = Ti(w* (),
Ay* () = 1,0 (%y),
mo*(0) +&11"0*(0) = vy,
13y*(0) + £317y*(0) = v3,

= A(z,y* (), “D'w*(7)) + fo

5 B(s,y (8), D" w*(s)) ds

.,m,
“Dry*(v) = A'(r,0" (1), “DPy*(1)) + fo
wheret € J,t #tforj=1,2,...,n,
Aw'™* (1) = Ti(o* (%),
Ay*(5) = T (%),
mw*(T) + &I w*(T) = vy,
14y*(T) + §417y*(T) = va.

(o= 5 B/(s @*(s), “DPy*(s)) ds

(C4)
i=1,2,...,m

j=1,2...,m,

Then in view of Lemma A.3, the solution of (C.4) is

w*(1) =
m

RS R L
F(r)/o (-39 V(s)ds+

TV VWV ~1 %
Al ) S d
T |:771 n2 ﬁzF(V)/ (T-9) ) S]
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_Lm r-1 - -1
TZ[F()/;’ (T-y9) v(sds+1_,()/rll(t, s) " v(s) d.

+ I};r__Ti) /ﬁ_l(r — Y 2u(s)ds + (T—Ti)f'i(a)*(r,-)) + Ti(w*(n))i|

and

SR P _1[2_& I ]
y*(t) I“(p)/(T sV z(s)ds T s 774+7)4F(P)./0 (T -5~ y"(s)ds

_r -1 Lo[9
Z[F(p)/ (T -s) Z(S)ds+F(p)/rjl(7:} P tz(s)ds

T-
F(p tl) 5 1(TJ — )P 22(s)ds + (T - 1) T;(y* () + 1; (" (1, ))i|,

where

T (r—s)1

A ) B(s,y(s), V(s)) ds

v(t) = A(t,y(t), v(7)) +
and

T (r—s)°1

A0 = A(we@z0)+ | =5

B (s, w(s), z(s)) ds

Consider

|o(7) — 0*(7)|

< |w(r) - q(1)| + |q(r) — *(7)|

r

T mr’+! m 1 T . )
= [F(r+ 1) Trr+1) T:|E’+ mfo (r —5) " vls) = v¥*(s)| ds

E T r— s
_TTIZIE(r / (T =) ls) - ™(s)|ds

7,'

T [ r),/(T 9" vl9) - v ()] ds

_ -1 *
F()/ (1, —s) |vs) V(s)|ds+

Ti-1

_ri B L _e)2 o
rr—1) /Ti_l(rl $)" 2| v(s) — v¥(s)| ds

+(T - )| Ti(o(r)) - Ti(w* ()| + | Ti(w(m)) - Ti(w*(fi))q» (C.5)

where v,v* € X are given by

T(t-s)Pt

v(t) = A(z,y(1), v(1)) + ) B(s,5(s), v(s)) ds

0

and

T (r—s)°1

vi(r) = A(T’y*(f)’V*(T)) + ; WB(S,)/*(S), V*(S)) ds

Page 46 of 50



Zada et al. Advances in Difference Equations (2020) 2020:64 Page 47 of 50

Using [A1], we have
[v(r) = v*(7)|
T _<)o-1
= ‘A(t,y(t),v(r)) +/0 %B(s,y(s), v(s)) ds

T (T _S)o—l

o I'()
< |A(z,y(), v(1)) = AT,y (1), v (7))

- AT,y (1), v (7)) - B(s,y*(s),v(s)) ds

T (.[ _ S)a—l . )
+/(; W|B(s,y(s), V(s)) —B(s,y (s),v (s))|ds

<M Iy(t) =" (D) + Ny |w(r) = v*(7)|

1) M = @+ Nafr@) = @),
Thus
My Moy
[v(r) - v(r)| < (1 N I\12#0(5)+1 N No )\(r (0)]- (C.6)

Using hypothesis [A3] and (C.6), inequality (C.5) implies

|lo(7) - 0* ()|

T’ mt"1 Tm
< — - — |€&,r
|\ I'(r+1) Tr(r+1) T
N T mrT! mr’+! mt”
r'r+1) I'(r+1) Trr+1) Tr{r)
M 25
4 G )! (1) -y (r)@
1-N; _Nza—r(a) 1-N; N2ar(5
TSZTr 1
_— Ay +A * .
[nzf(r+1) m(As, + r)]lw(r - *(7)]

By taking the norm and simplifying, we get
oo, < T" mT" mle s mT" . mT"!
—w — - . -
X=|r(r+1) I'(r+1) r'(r+1) I'(r)

(o T -y, ]
TNy Nl T ToNy - Ny )P

aF(5

Tr
_[E%%Tﬁ+mmﬂ+AﬂpW—wwx. (C.7)

For simplicity, we consider

I mI
Sr _ r(r+1) T(r+1)

= o - ,
1+ n21'2‘(r+1) + m(Ar,- +Ar,)

-m
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TU

mT" + mTr1 )( My M2ar(a) )
0 FrsD) & IO Ti-Ni-No gy 1-Ni-Na 0
.=

3)
&Tr
1+ m]%ml) + m(Aﬁ, +Ar)

Then (C.7) implies
ool =S+ @yl
and, similarly,
”3’_3’* ”y =Spep t Qp”w—w* ”y
From (C.8) and (C.9) we write

|-y = Qrlly-5"] = Seer

ly=5"lly = Qlle-er]y = S

1 _Qr ||a)—60*||X><y < Srér
-9, 1 ly =y llxxy |~ | Spep

Solving the last inequality, we have

||CO—CU*||Xxy < % % Srer
ly =y llaxy | % % Spép

where

A=1-0,0,>0.

Further simplification gives

S 0S5
—7

H“’_‘”*H;\fxy =

A A
S,e Q,S,¢
Iy=5" ey = 222 + 225,

from which we have

- XxY - XxY —
|0 =@ 4y + 7 =51 sy <

rer S rS rOrcr
S,e . pep+Q pep+QSe'

A A A

Let max{e,, €,} = €. Then from (C.10) we get

[ (@,2) = (@",57) | 4.5y = Crpes

where

+—+ +
A A A A

[s, S, Q.5 Q,S,]
Crp= :

This completes the proof.

A

(C.8)

(C.10)
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