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Abstract
In this paper, the parameter identification of gene regulatory network with
time-varying delay is studied. Firstly, we introduce the differential equation model of
gene regulatory network with unknown parameters and time delay. Secondly, for the
unknown parameters in the time-varying model, a corresponding system with
adaptive parameters and adaptive controller is introduced, and the parameter
identification problem of the original model is transformed into the synchronization
problem of the two systems. Thirdly, we design an effective adaptive controller and
an adaptive law for parameters and construct a Lyapunov functional. Then we give a
strict theoretical proof that the adaptive parameters can converge to unknown
parameters by Barbalat’s lemma. Finally, a numerical example is given to verify the
validity of the theoretical results.

Keywords: Parameter identification; Genetic regulatory network; Adaptive
synchronization

1 Introduction
As a complex system, genetic regulatory networks (GRNs) could describe the complicated
regulatory mechanism in living cells, which consist of DNA, RNA (especially mRNA), pro-
teins, and some other micro-molecules [1, 2]. In the past decades, GRNs have attracted
many researchers from some different fields, such as applied mathematics, systems biol-
ogy, molecular biology, etc. Several kinds of models have been proposed and investigated,
for example, Boolean networks model [3], Bayesian networks model [4], weighted matri-
ces model [5], differential equation model [6], and so on.

Among those models, the differential equation models could describe the change in con-
centration of proteins and mRNA, which could reflect the nonlinear dynamical behaviors
of biological process, thus, the differential equation models have been discussed widely in
recent years. The differential equation models were modeled to describe gene expression
process in [7] at first. Then, many results about dynamic analysis about GRNs have been
published. For example, stability [8–10], stabilization [11–14], bifurcation [15–17], state
estimation [18–20], and so on.

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other
third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

https://doi.org/10.1186/s13662-020-2537-y
http://crossmark.crossref.org/dialog/?doi=10.1186/s13662-020-2537-y&domain=pdf
mailto:fei_9206@163.com


Liu and Wang Advances in Difference Equations        (2020) 2020:127 Page 2 of 15

In the above results, the models are known. In many real world GRNs, one can deter-
mine the structure of the differential equation model according to some indetermination.
However, the parameters of models may be unknown or different in various cells. Conse-
quently, parameter identification of unknown GRNs is an interesting and important work.
The common strategy of parameter identification is translating it into an optimization
problem, in which the unknown parameters could be regarded as decision variables, while
minimizing the error between pseudo state and real state could be regarded as optimiza-
tion objective. Then, the problem could be solved by intelligent optimization algorithms.
For example, Zhao and Yin have studied the parameter identification problem in geome-
chanics by particle swarm optimization and support vector machine methods [21]. Pa-
rameter identification of solar cell models according to artificial bee swarm optimization
algorithm has been investigated in [22]. More recently, parameter identification of pho-
tovoltaic models using an improved JAYA optimization algorithm has been discussed in
[23]. As for the GRNs, Tang and Wang have considered the problem of parameter identi-
fication of unknown delayed GRNs by a switching particle swarm optimization algorithm
[24].

There were also some results about parameter identification problem for differential
equations via adaptive synchronization method. In which, an auxiliary system would be
constructed as a response system. Then, the adaptive laws would be designed to synchro-
nize the auxiliary system to the unknown system. Meanwhile, the parameters in the aux-
iliary system were also updated with some adaptive laws. When the synchronization was
achieved, the adaptive parameters were supposed to approach the unknown parameters.
This significant method was proposed by Chen and Lv in [25]. Then, some related re-
sults have also been published, one can see [26–30]. For different models, the adaptive
laws would be designed in different forms, which brings difficulties and challenges to this
method.

Time delay often occurs due to transportation lag. And the existence of delays is a fre-
quently result in instability, bifurcation, and chaos for dynamical systems. Therefore, there
are many results about time delay systems [31–35]. Inspired by the above analysis, this
paper studies the parameter identification problem of GRNs with time delay. We design
some effective adaptive laws of linear feedback controllers and parameters in an auxiliary
system. According to rigorous theoretical analysis, the synchronization could be achieved
between the auxiliary system and the unknown system. Meanwhile, all the unknown pa-
rameters in the time-delayed GRNs could be estimated. The rest of the paper is organized
as follows: In Sect. 2, we introduce the models of GRNs at first, and then the parame-
ter identification problem is converted into a synchronization problem, some useful lem-
mas are also given in this section. The main results about synchronization and parameter
identification are presented in Sect. 3. Then, some examples are given to demonstrate the
effectiveness of our results in Sect. 4. Conclusions are finally drawn in Sect. 5.

2 Preliminaries
2.1 Basic model of GRN
In this paper, we consider the following GRN model with time-varying delay, which has
been proposed in [6]:

⎧
⎨

⎩

ṁ(t) = –Am(t) + Wf (p(t – τ1(t))) + L,

ṗ(t) = –Cp(t) + Dm(t – τ2(t)),
(1)
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Figure 1 Diagram of a genetic regulatory network

where m(t) = [m1(t), m2(t), . . . , mn(t)]T ∈R
n, p(t) = [p1(t), p2(t), . . . , pn(t)]T ∈R

n, and mi(t),
pi(t) are concentrations of ith mRNA and ith protein at the time t, respectively. Based on
the central dogma, a simplified dynamic system of gene regulation can be described as
Fig. 1. A = diag{a1, a2, . . . , an} > 0 and C = diag{c1, c2, . . . , cn} > 0 are the degradation rates
of the mRNAs and proteins, respectively. The nonlinear function f (·) denotes feedback
regulation from protein to transcription factor with f (·) = [f1(·), f2(·), . . . , fn(·)] ∈ R

n, and
fi(x) is a monotonic increasing function with a Hill form:

fi(x) =
(x/βi)Hi

1 + (x/βi)Hi
,

where Hi called the Hill coefficients, βi are positive constants, i = 1, 2, . . . , n. D =
diag{d1, d2, . . . , dn}, and di is the translation rate of ith protein. τ1(t) and τ2(t) are time-
varying delays, which denote the translation delay and the feedback regulation delay,
respectively. L = [l1, l2, . . . , ln]T ∈ R

n, where li =
∑

j∈Ii
αij, in which Ii is the set of all the

repressors of gene i. W = (wij) ∈R
n×n with

wij =

⎧
⎪⎪⎨

⎪⎪⎩

αij, if transcription factor j is an activator of gene i,

0, if there is no link from node j to i,

–αij, if transcription factor j is a repressor of gene i.

Assumption 1 We assume that the time-varying delays τ1(t) and τ2(t) are satisfied: τ̇i(t) ≤
μi < 1, i = 1, 2.

Assumption 2 It is obvious that the function fi(·) satisfies the Lipschitz condition, we
assume that there are constants hi ≥ 0, i = 1, 2, . . . , n, such that, for any x, y ∈ R, one has
|fi(y) – fi(x)| ≤ hi|y – x|, i = 1, 2, . . . , n.

Remark 1 The above two assumptions are very common. Clearly, Assumption 1 is cer-
tainly ensured if the transmission delay is constant, and many results have the same as-
sumption, see for example [36–39] and the references therein. In addition, Assumption 2
can guarantee the existence and uniqueness of the solution for system (1); thus, the proof
of the existence and uniqueness of the solution for system (1) is omitted here.

Remark 2 Time-varying delays have been considered in the above GRN model. Time de-
lays are unavoidable in real world. Indeed, systems with time delays exhibit much more
complicated dynamical behaviors than ordinary differential equations without time de-
lays. Figure 2 shows some different dynamical behaviors under different time delays for
GRN (1). In which, let τ1(t) = τ2(t) = τ (t), the other parameters are the same as the ones in
the simulation part.
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Figure 2 Dynamical behaviors of GRN (1) with different time delays

2.2 Description of parameter identification and transformation
Noting that in many real situations the parameter matrices A, C, W , and D maybe un-
known, we identify those unknown parameters by adaptive synchronization method in
this paper. Model (1) could be regarded as a driven system. We construct the following
response system:

⎧
⎨

⎩

˙̂m(t) = –Â(t)m̂(t) + Ŵ (t)f (p̂(t – τ1(t))) + L + u1(t),
˙̂p(t) = –Ĉ(t)p̂(t) + D̂(t)m̂(t – τ2(t)) + u2(t),

(2)
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where m̂(t) = [m̂1(t), m̂2(t), . . . , m̂n(t)]T ∈ R
n, p̂(t) = [p̂1(t), p̂2(t), . . . , p̂n(t)]T ∈ R

n, Â(t) =
(âij(t))n×n, Ŵ (t) = (ŵij(t))n×n, Ĉ(t) = (ĉij(t))n×n, and D̂(t) = (d̂ij(t))n×n are the estimations
of unknown parameters A, W , C, and D, respectively. u1(t) and u2(t) are the feedback
controllers to be designed later. Because there are unknown parameters A, W , C, and
D in the driven system, we cannot construct an identical system. In addition, the com-
plete synchronization between (1) and (2) cannot be achieved by the static linear feed-
back control method. Therefore, the adaptive control strategy is used in this manuscript;
meanwhile, the parameters Â(t), Ŵ (t), Ĉ(t), and D̂(t) are also assumed to be time-
varying.

3 Main results
3.1 The design of adaptive laws
Let x(t) = m̂(t) – m(t) = [x1(t), x2(t), . . . , xn(t)]T ∈ R

n, y(t) = p̂(t) – p(t) = [y1(t), y2(t), . . . ,
yn(t)]T ∈R

n. The adaptive controllers

u1(t) = E1(t)x(t) and u2(t) = E2(t)y(t),

where E1(t) = diag{εx
1(t), εx

2(t), . . . , εx
n(t)} and E1(t) = diag{εy

1(t), εy
2(t), . . . , εy

n(t)} are dynam-
ical feedback control gain matrices. Then, it is easy to get the error system as fol-
lows:

⎧
⎨

⎩

ẋ(t) = –Ax(t) + W f̃ (y(t – τ1(t))) + Ã(t)m̂(t) – W̃ (t)f (p̂(t – τ1(t))) + E1(t)x(t),

ẏ(t) = –Cy(t) + Dx(t – τ2(t)) + C̃(t)p̂(t) – D̃(t)m̂(t – τ2(t)) + E2(t)y(t),
(3)

where f̃ (y)(t – τ1(t)) = f (y(t – τ1(t)) + p(t – τ1(t))) – f (p(t – τ1(t))), Ã(t) = A – Â(t), W̃ (t) =
W – Ŵ (t), C̃(t) = C – Ĉ(t) and D̃(t) = D – D̂(t).

In this paper, we design the adaptive laws as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ε̇x
i (t) = –ηx

i x2
i (t),

ε̇
y
i (t) = –η

y
i y2

i (t),
˙̂ai(t) = σ x

i xi(t)m̂i(t),
˙̂ci(t) = σ x

i yi(t)p̂i(t),
˙̂wij(t) = –γ x

ij xi(t)f̃j(p̂j(t – τ1(t))),
˙̂dij(t) = –γ

y
ij yi(t)(m̂j(t – τ2(t))), i, j = 1, 2, . . . , n,

(4)

where ηx
i > 0, ηy

i > 0, σ x
i > 0, σ y

i > 0, γ x
ij > 0, γ y

ij > 0 are arbitrary constants for i, j = 1, 2, . . . , n.

3.2 The main theorem
Theorem 1 Under Assumptions 1, 2 and controllers u1(t) = E1(t)x(t) and u2(t) = E2(t)y(t)
with adaptive laws (4), the synchronization can be achieved between (1) and (2). Fur-
thermore, the unknown parameters can be estimated, that is, limt→+∞(ai – âi(t)) = 0,
limt→+∞(wij – ŵij(t)) = 0, limt→+∞(ci – ĉi(t)) = 0, limt→+∞(dij – d̂ij(t)) = 0, j = 1, 2, . . . , n.
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Proof Construct a Lyapunov function:

V (t) =
1
2

xT (t)x(t) +
1
2

yT (t)y(t) +
1
2

n∑

i=1

1
σ x

i
â2

i (t) +
1
2

n∑

i=1

1
σ

y
i

ĉ2
i (t)

+
1
2

n∑

i=1

n∑

j=1

1
γ x

ij
ŵ2

ij(t) +
1
2

n∑

i=1

n∑

j=1

1
γ

y
ij

d̂2
ij(t)

+
1
2

n∑

i=1

1
ηx

i

(
εx

i (t) + l
)2 +

1
2

n∑

i=1

1
η

y
i (t)

(
ε

y
i (t) + l

)2

+
1

2(1 – μ1)

∫ t

t–τ1(t)
xT (θ )x(θ ) dθ +

1
2(1 – μ2)

∫ t

t–τ2(t)
yT (θ )y(θ ) dθ ,

where l > max(λmax( 1
2 W W T –A+ 1

2(1–μ1) LI),λmax( 1
2 DDT –C + 1

2(1–μ2) I))+1 > 0 is a constant.
Although the parameters W , A, D, C are unknown, one can select l to be a sufficiently large
constant to guarantee the above inequality.

Along any trajectory of the error system, the derivative is

V̇ (t) = xT (t)ẋ(t) + yT (t)ẏ(t) –
n∑

i=1

âi(t)xi(t)mi(t) –
n∑

i=1

ĉi(t)yi(t)pi(t)

+
n∑

i=1

n∑

j=1

ŵij(t)xi(t)fj
(
p̂j

(
t – τ1(t)

))
+

n∑

i=1

n∑

j=1

d̂ij(t)yi(t)m̂j
(
t – τ2(t)

)

–
n∑

i=1

(
εx

i (t) + l
)
x2

i (t) –
n∑

i=1

(
ε

y
i (t) + l

)
y2

i (t) +
1

2(1 – μ1)
f̃ T(

x(t)
)
f̃
(
x(t)

)

–
1 – τ̇1(t)
2(1 – μ1)

f̃ T(
x
(
t – τ1(t)

))
f̃
(
x
(
t – τ1(t)

))
+

1
2(1 – μ2)

yT (t)y(t)

–
1 – τ̇2(t)
2(1 – μ2)

yT(
t – τ2(t)

)
y
(
t – τ2(t)

)

= –xT (t)Ax(t) + xT (t)W f̃
(
y
(
t – τ1(t)

))
+ xT (t)Ã(t)m̂(t)

– xT (t)W̃ (t)f
(
p̂
(
t – τ1(t)

))
+ xT (t)E1(t)x(t)

– yT (t)Cy(t) + yT (t)Dx
(
t – τ2(t)

)
+ yT (t)C̃(t)p̂(t) – yT (t)D̃(t)m̂

(
t – τ2(t)

)

+ yT (t)E2(t)y(t)

–
n∑

i=1

âi(t)xi(t)mi(t) –
n∑

i=1

ĉi(t)yi(t)pi(t) +
n∑

i=1

n∑

j=1

ŵij(t)xi(t)fj
(
p̂j

(
t – τ1(t)

))

+
n∑

i=1

n∑

j=1

d̂ij(t)yi(t)m̂j
(
t – τ2(t)

)
–

n∑

i=1

(
εx

i (t) + l
)
x2

i (t) –
n∑

i=1

(
ε

y
i (t) + l

)
y2

i (t)

+
1

2(1 – μ1)
f̃ T(

x(t)
)
f̃
(
x(t)

)
+

1
2(1 – μ2)

yT (t)y(t)

–
1 – τ̇2(t)
2(1 – μ2)

yT(
t – τ2(t)

)
y
(
t – τ2(t)

)
–

1 – τ̇1(t)
2(1 – μ1)

f̃ T(
x
(
t – τ1(t)

))
f̃
(
x
(
t – τ1(t)

))
.
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By Assumption 1, we know that τ̇i(t) ≤ μi < 1, i = 1, 2, and hence – 1–τ̇i(t)
1–μi

≤ –1, then

V̇ (t) ≤ –xT (t)Ax(t) + xT (t)W f̃
(
y
(
t – τ1(t)

))
+ xT (t)Ãm̂(t) – xT (t)W̃ f

(
p̂
(
t – τ1(t)

))

+ xT (t)E1(t)x(t)

– yT (t)Cy(t) + yT (t)Dx
(
t – τ2(t)

)
+ yT (t)C̃p̂(t) – yT (t)D̃m̂

(
t – τ2(t)

)

+ yT (t)E2(t)y(t)

–
n∑

i=1

âxi(t)mi(t) –
n∑

i=1

ĉyi(t)pi(t) +
n∑

i=1

n∑

j=1

ŵijxi(t)fj
(
p̂j

(
t – τ1(t)

))

+
n∑

i=1

n∑

j=1

d̂ijyi(t)m̂j
(
t – τ2(t)

)
–

n∑

i=1

(
εx

i + l
)
x2

i (t) –
n∑

i=1

(
ε

y
i + l

)
y2

i (t)

+
1

2(1 – μ1)
f̃ T(

x(t)
)
f̃
(
x(t)

)
–

1
2

f̃ T(
x
(
t – τ1(t)

))
f̃
(
x
(
t – τ1(t)

))

+
1

2(1 – μ2)
yT (t)y(t) –

1
2

yT(
t – τ2(t)

)
y
(
t – τ2(t)

)
.

According to (4), one has

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

xT (t)Ã(t)m̂(t) =
∑n

i=1 ãi(t)xi(t)mi(t),

yT (t)C̃(t)p̂(t) =
∑n

i=1 c̃i(t)yi(t)pi(t),

xT (t)W̃ (t)f̃ (p̂(t – τ1(t)))) =
∑n

i=1
∑n

j=1 w̃ij(t)xi(t)f̃j(pj(t – τ1(t))),

yT (t)D̃(t)m̂(t – τ2(t))) =
∑n

i=1
∑n

j=1d̃ij(t)yi(t)mj(t – τ2(t)),

xT (t)E1(t)x(t) =
∑n

i=1 εx
i x2

i (t),

yT (t)E2(t)y(t) =
∑n

i=1 ε
y
i y2

i (t).

Then one can obtain

V̇ (t) ≤ –xT (t)Ax(t) – yT (t)Cy(t) + xT (t)W f̃
(
y
(
t – τ1(t)

))
+ yT (t)Dx

(
t – τ2(t)

)

– l
n∑

i=1

(
x2

i (t) + y2
i (t)

)
+

1
2(1 – μ1)

f̃ T(
x(t)

)
f̃
(
x(t)

)

–
1
2

f̃ T (x
(
t – τ1(t)

)
f̃ (x

(
t – τ1(t)

)

+
1

2(1 – μ2)
yT (t)y(t) –

1
2

yT(
t – τ2(t)

)
y
(
t – τ2(t)

)

≤ –xT (t)Ax(t) – yT (t)Cy(t) +
1
2

xT (t)W W T x(t)

+
1
2

yT (t)DDT y(t) – l
n∑

i=1

(
x2

i (t) + y2
i (t)

)

+
1

2(1 – μ1)
f̃ T(

x(t)
)
f̃
(
x(t)

)
+

1
2(1 – μ2)

yT (t)y(t).
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Based on Assumption 2, we know

f̃ T(
x(t)

)
f̃
(
x(t)

) ≤
n∑

i=1

h2
i x2

i (t) ≤ h
n∑

i=1

x2
i (t),

where h = max{h2
i |i = 1, 2, . . . , n}.

According to the above inequations, we get

V̇ (t) ≤ xT (t)
(

1
2

W W T – A – lI +
1

2(1 – μ1)
LI

)

x(t)

+ yT (t)
(

1
2

DDT – C – lI +
1

2(1 – μ2)
I
)

y(t), (5)

where I is a unit matrix, λmax(M) is an eigenvalue of the maximum of M. Based on the
definition of l, we know that

V̇ (t) ≤ –xT (t)x(t) – yT (t)y(t) ≤ 0.

It is obvious that V̇ (t) = 0 if and only if x(t) = 0 and y(t) = 0. Under the conditions x(t) = 0
and y(t) = 0, one can get the largest invariant E = {Â(t) = A, Ĉ = C, Ŵ = W , D̂ = D, E1(t) =
Ê1, E2(t) = Ê2}, where the feedback control gains Ê1 and Ê2 depend on the initial value
of error system (3). Then, based on the well-known Lyapunov–LaSalle type theorem for
functional differential equations (Theorem 3.1, p. 119 [40]), the trajectories of error dy-
namical system (3) will converge into the largest invariantE as t → +∞, which implies that
the synchronization can be achieved between (1) and (2). Moreover, limt→+∞(ai – âi) =
limt→+∞(wij – ŵij) = limt→+∞(ci – ĉi) = limt→+∞(dij – d̂ij) = 0 (∀i, j = 1, 2, . . . , n). This com-
pletes the proof of this theorem. �

4 Numerical simulations
In this section, a numerical example is given to show the effectiveness of the proposed
results.

Example 1 Consider the following the GRN with several unknown parameters:

⎧
⎨

⎩

ṁ(t) = –Am(t) + Wf (p(t – τ1(t))) + L,

ṗ(t) = –Cp(t) + Dm(t – τ2(t)),
(6)

where

A =

⎛

⎜
⎝

0.46 0 0
0 0.36 0
0 0 0.48

⎞

⎟
⎠ , C =

⎛

⎜
⎝

0.2 0 0
0 0.5 0
0 0 0.6

⎞

⎟
⎠ ,

W =

⎛

⎜
⎝

0 0 –1.5
–1.5 0 0

0 –1.5 0

⎞

⎟
⎠ , D =

⎛

⎜
⎝

2 0 0
0 2 0
0 0 2

⎞

⎟
⎠ , L =

⎛

⎜
⎝

1.5
1.5
1.5

⎞

⎟
⎠ ,
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Figure 3 The limit cycle behavior of mRNAs

Figure 4 The limit cycle behavior of proteins

and τ1(t) = τ2(t) = 1, there are limit cycles among mRNAs and proteins under those pa-
rameters, respectively. One can see in Fig. 3 and Fig. 4. The time-response of mi(t) and pi(t)
can be seen in Fig. 5 and Fig. 6, respectively. Indeed, for different parameters, the GRN may
be stable, unstable, period, or even chaotic. However, synchronization between two stable
or unstable systems maybe meaningless. Consequently, we selected the above parameters
to get a period orbit. Note that this dynamical behavior is sensitive to the parameters. For
example, if we let w21 = –1.4, other parameters are the same as above, without any control,
one can see the time response between (6) and (7) in Fig. 7 and Fig. 8, respectively.

We construct the following response GRN four unknown parameters a33, c22, w21, d33:

⎧
⎨

⎩

˙̂m(t) = –Â(t)m̂(t) + Ŵ (t)f̂ (p(t – τ1(t))) + L + ε1(t)(m̂(t) – m(t)),
˙̂p(t) = –Ĉ(t)p̂(t) + D̂(t)m̂(t – τ2(t)) + ε2(t)(p̂(t) – p(t)),

(7)

with

Â(t) =

⎛

⎜
⎝

0.46 0 0
0 0.36 0
0 0 â33(t)

⎞

⎟
⎠ , Ĉ(t) =

⎛

⎜
⎝

0.2 0 0
0 ĉ22(t) 0
0 0 0.6

⎞

⎟
⎠ ,
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Figure 5 Time response of mRNAsmi(t), i = 1, 2, 3

Figure 6 Time response of proteins pi(t), i = 1, 2, 3

Ŵ (t) =

⎛

⎜
⎝

0 0 –1.5
ŵ21(t) 0 0

0 –1.5 0

⎞

⎟
⎠ , D̂(t) =

⎛

⎜
⎝

2 0 0
0 2 0
0 0 d̂33(t)

⎞

⎟
⎠ ,

E1(t) = diag
{
εx

1(t), εx
2(t), εx

3(t)
}

, E2(t) = diag
{
ε

y
1(t), εy

2(t), εy
3(t)

}
.

In the following simulations, we take m(s) = [0.1, 0.5, 1]T , p(s) = [0.7, 0.4, 0.1]T , m̂(s) =
[0.5, 0.8, 0.9]T , p̂(s) = [1.2, 1.3, 2]T when s ∈ [–1, 0], and a33(0) = c22(0) = w21(0) = d33(0) =
εx

i (0) = ε
y
i (0) = 0, i = 1, 2, 3, the updated gains are set as ηx

i = η
y
i = 0.1, σ x

i = σ
y
i = 5, γ x

ij = γ
y
ij =

5, i, j = 1, 2, 3. Then, one can get the following results. The synchronization between (6)
and (7) can be obtained, one can see in Figs. 9 and 10. In addition, the unknown parame-
ters can be estimated, which has been shown in Figs. 11 and 12, respectively. Finally, the
adaptive control gain εi(t), i = 1, 2, . . . , 6, can be see in Fig. 13.
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Figure 7 Time response of proteins pi(t) and p̂i(t), i = 1, 2, 3

Figure 8 Time response of proteins pi(t) m̂i(t), i = 1, 2, 3

Figure 9 Synchronization behavior between mRNAsmi(t) and m̂(t), i = 1, 2, 3
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Figure 10 Synchronization behavior between proteins pi(t) and p̂(t), i = 1, 2, 3

Figure 11 The temporal evolution of the estimated parameters â33 and ĉ33

Figure 12 The temporal evolution of the estimated parameters ŵ21 and d̂33
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Figure 13 The temporal evolution of the adaptive control gain εi(t), i = 1, 2, . . . , 6

5 Conclusion
In this paper, the adaptive synchronization method has been applied to identify the un-
known parameters of a time-delayed GRN. A dynamical linear feedback controller and
adaptive parameters updated laws have been designed to synchronize the auxiliary sys-
tem to the unknown GRN. Then, based on the Lyapunov stability theorem and Barbalat’s
lemma, the synchronization results could be guaranteed, the unknown parameters could
also be identified. An example is given to show the effectiveness of the theoretical results.
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