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Abstract
In this paper, the KdV-mKdV equation is obtained via the reductive perturbation
method which can be applied to model the traffic flow. To overcome the
shortcomings of the traditional KdV-mKdV equation, the original equation is
converted into a space-time fractional equation, which is decreased to a common
differential equation by using fractional complex transformation. All possible exact
solutions are given through the entire discrimination gadget for polynomial method.
In particular, the corresponding options are resembled for the specific parameters to
show that each answer in the classification can be realized. And the numerical
simulations in the paper additionally confirm this conclusion.
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1 Introduction
With the socio-economic development, traffic activities are growing more rapidly. In some
specific research, scholars proposed many models to describe, demonstrate and study var-
ious complex traffic phenomena [1, 2]. Researchers usually regard traffic congestion as a
physical phenomenon [3–10]. However, traffic congestion often occurs in the process of
traffic operation, which brings great inconvenience to people’s travel, among which the
car-following model is of great significance and can be used to explain many complex
physical phenomena in the traffic flow. Bando [5] proposed an OV model to depict the
dynamic behavior of vehicles on a single crowded lane. However, compared with the ac-
tual data, it is found that the OV model will exhibit excessive acceleration and unrealistic
deceleration. So Peng [7] et al. established the OVD model:

d2xn(t)
dt2 = α

[
V

(
�xn(t)

)
–

xn(t)
dt

]
+ λ�vn(t) + γ

[
V

(
�n+1(t)

)
– V

(
�xn(t)

)]
, (1)

where xn(t) represents the position of the nth car at time t, dxn(t)
dt = vn(t) represents the

velocity of the nth car at time t. �xn(t) = xn+1(t) – xn(t) denotes the space headway be-
tween the preceding vehicle n + 1 and the following vehicle n,and �vn(t) = vn+1(t) – vn(t)
represents the velocity difference between the preceding vehicle n + 1 and the following
vehicle n. α > 0 indicates the driver’s sensitivity coefficient. λ indicates the corresponding
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parameter of velocity difference �vn(t). V (�xn(t)) denotes an optimal velocity function.
γ expresses the reaction parameter of the optimal velocity difference. From all the above
we can see that formula (1) does not include the delay of driver’s response, which means
the driver’s stimulation to the preceding vehicle is instantaneous.

Zhu, Dai [8] and Zheng et al. [11] have numerically studied OV site traffic models inside
the unstable zone, in which they preset the periodic boundary and analyzed the long-time
behavior. Results showed that printed solutions indicative of mKdV dynamics as kink-like
waves appeared. Moreover, Li et al. [12] performed numerical simulations over long time
intervals that described a two-lane system with periodic boundaries. This mannequin was
modified into a perturbed mKdV equation next to the critical point. The numerical out-
comes corresponding to this region revealed steady periodic traveling wave solutions with
consistent amplitude, namely height and period. Hence, these numerical findings provide
secure periodic options to the OV visitors gadget do propagate within this unstable re-
gion. Based on the above formula (1), Zhou [13] pointed out that there are three typical
regions: the area beneath the impartial stability curve is not stable; the region above the
coexistence curve is stable; and the region between the two is the metastable zone. The
two areas can just be explained through the KdV equation [13] (metastable region) and
mKdV equation [14] (unstable region). Combining KdV equation and mKdV equation, we
get the KdV-mKdV equation

ut + μuux + δu2ux + uxxx = 0, (2)

where μ and δ are constants.
In this paper, in order to make our traveling wave solution more universal, we transform

formula (2) into the following space-time fractional equation:

Dα
t u + μuDα

x u + δu2Dα
x u + D3α

x u = 0. (3)

Fractional calculus has a vital role in different areas of science, which has attracted in-
creasing attention due to its nonlocal properties and effective performance on simulating
anomalous diffusion, which occurs in transport dynamics in complex systems [15]. Gener-
ally, fractional calculus is recognized as one of the best ways to model anomalous diffusion,
as observed in plasmas [16].

In order to obtain the exact solutions, many useful methods have been proposed such as
the nonlinear steepest descent method [17], collocation method [18], direct method [19],
the tanh-sech method [20], sine-cosine method [21, 22], symmetrical method [23, 24],
Hirota bilinear method [25, 26], and so on. Nowadays, a powerful method named the
complete discrimination system for polynomial method has been proposed to obtain the
classification of single traveling wave solutions to a series of nonlinear differential equa-
tions [27–32]. To our knowledge, the case of Riccati equation is also very important, and
we would study this in the future [33].
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2 Basic theory
2.1 The conformal fractional derivative
According to Ref. [34, 35], the conformal fractional derivative is defined by

Dα
x f (x) =

⎧⎨
⎩

1
Γ (1–α)

d
dx

∫ x
0 (x – t)–α(f (t) – f (0)) dt, 0 < α < 1,

(f n(x)α–n), n ≤ α ≤ n + 1, n ≥ 1,

where Γ (x) is the gamma function which is defined as

Γ (x) =
∫ x

0
e–ttx–1 dx.

There are some properties of the conformal fractional derivative

Dα
x xγ =

Γ (1 + γ )
Γ (1 + γ – α)

xγ –α .

While numerical and analytical solutions are obtained, the exact traveling wave solu-
tions to formula (3) are not all-inclusive. As far as we know, the solutions by the complete
discrimination system for polynomial technique have not been studied in any other pa-
pers.

2.2 Research method
By taking the following transformation:

u(x, t) = Υ (θ ), θ =
κ

Γ (1 + α)
xα –

c
Γ (1 + α)

tα – x0, (4)

where κ and c represent nonzero constants. And then the nonlinear fractional partial dif-
ferential equation can be converted into

ψ
(
t, x,κ ,ω, u, u′, u′′ · · · ) = 0. (5)

According to formula (5), we set

(
u′)2 = F(u), (6)

where F(u) might be rational function, polynomial function, and any other kind of irra-
tional function. By integrating formula (6), the integral form of the original equation is
given by

±(θ – θ0) =
∫ du√

Fn(u)
, (7)

where θ0 is an integral constant. The main steps of this method are explained above, and
many important results have been obtained via this method [24, 25, 28–31]. Also, the con-
sidered expansion is a special case of the expansion in the transformed rational function
method to solve standard differential equations [36].
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3 All exact solutions to space-time fractional KdV-mKdV equation
According to Ref. [37], substituting the result of (4) into formula (3) yields

–cu′ + μκuu′ + δκu2u′ + κ3u′′′ = 0. (8)

By integrating formula (8) with respect to θ , we obtain

–cu +
1
2
μκu2 +

1
3
δκu3 + κ3u′′ = c0. (9)

Multiplying formula (9) on both sides by u′ and integrating them with respect to θ again,
we get

–
1
2

cu2 +
1
6
μκu3 +

1
12

δκu4 +
1
2
κ3(u′)2 = c0u + c1, (10)

where c0 and c1 are arbitrary integral constants. Furthermore, we can attain

(
Υ ′)2 = –

δ

κ2 Υ 4 –
μ

3κ2 Υ 3 +
c
κ3 Υ 2 +

2c0

κ3 Υ +
2c1

κ3 . (11)

Setting a4 = – δ

κ2 , a3 = – μ

3κ2 , a2 = c
κ3 , a1 = 2c0

κ3 , a0 = 2c1
κ3 , we can have

(
Υ ′)2 = a4Υ

4 + a3Υ
3 + a2Υ

2 + a1Υ + a0. (12)

Making

b1 =
μ

6δ
, Φ = (a4)

1
4

(
φ +

b1

2

)
, θ1 = (a4)

1
4 θ , (13)

hence formula (12) will be changed into

Φ2
θ1 = Φ4 + pΦ2 + qΦ + r, (14)

where

p =
a2 – 3

2 b1
2a4√a4

, (15)

q =
a1 + a4b1

3 – a2b1
4√a4

, (16)

r = a0 –
1
2

a1b1 +
1
4

a2b1
2 –

3
16

a4b1
4. (17)

Then we can obtain

±(θ1 – θ0) =
∫ dΦ√

Φ4 + pΦ2 + qΦ + r
. (18)

According to formula (14), the complete discrimination system is presented as

D1 = 4, D2 = –p, D3 = –2p3 + 8pr – 9q2, E2 = 9p2 – 32pr,

D4 = –p3q2 + 4p4r + 36pq2 – 32p2r2 –
27
4

q4 + 64r3.
(19)
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In order to solve formula (18), the solutions will be demonstrated in nine cases.
Case 1. D2 = 0, D3 = 0, and D4 = 0. Φ2

θ1
has a root of multiplicities four

Φ2
θ1 = Φ4. (20)

Therefore, by using formula (18), we can get

(θ1 – θ0) = –Φ–1, (21)

Φ = –(θ1 – θ0)–1. (22)

Thus the solutions of formula (12) are expressed as follows:

Υ (θ ) = ∓a– 1
4

4
(
a

1
4
4 θ – θ0

)–1 –
b1

2
. (23)

For example, when c = 1, κ = 1, μ = –6, δ = –6, c0 = 0, c1 = 0, the solution of formula (3) is

u(x, t) = –
(

xα

Γ (1 + α)
–

tα

Γ (1 + α)
– θ0

)–1

–
1
2

. (24)

Case 2. D2 < 0, D3 = 0, D4 = 0. Φ2
θ1

has a pair of conjugate complex roots of multiplicities
two:

Φ2
θ1 =

(
(Φ – l)2 + m2)2, (25)

where m > 0. By using formula (18), we attain

(θ1 – θ0) =
1
m

arctan
Φ – l

m
, (26)

then the solution of formula (18) can be derived as

Φ = m tan m(θ1 – θ0) + l. (27)

When r = p2

4 , q = 0, p > 0, then m = p
2 , the solutions of formula (12) are presented as fol-

lows:

Υ (θ ) = ±a– 1
4

4 m tan
(
m

(
a

1
4
4 θ – θ0

))
–

b1

2
. (28)

For instance, when c = 7
2 , κ = 1, μ = –6, δ = –6, c0 = 5

4 , c1 = – 25
32 , what we attain is as follows:

u(x, t) = tan

(
xα

Γ (1 + α)
–

7tα

2Γ (1 + α)
– θ0

)
–

1
2

. (29)

Case 3. D2 > 0, D3 = 0, D4 = 0, E2 = 0. Φ2
θ1

has a real root of multiplicities three and a real
root of multiplicity one

Φ2
θ1 = (Φ – m)(Φ – l)3. (30)
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Using formula (18) can yield

±(θ1 – θ0) =
2

m – l

√
Φ – m
Φ – l

. (31)

When Φ > m, Φ > l or Φ < m, Φ < l, the solution of formula (18) is

Φ =
4(l – m)

(θ1 – θ0)2(m – l)2 – 4
+ l. (32)

Formula (32) has the rational function solution. The solution of formula (12) gotten by us
is

Υ (θ ) = ± 4a– 1
4

4 (l – m)

(a
1
4
4 θ – θ0)2(m – l)2 – 4

–
b1

2
+ l. (33)

For example, when c = –6, κ = 1, δ = –6, μ = –6, c0 = –4, c1 = – 3
2 , the solution of formula

(3) is expressed as follows:

u(x, t) =
4

4( xα

Γ (1+α) + 6tα
Γ (1+α) – θ0)2 – 1

+
1
2

. (34)

Case 4. D2 > 0, D3 = 0, D4 = 0, E2 > 0. Φ2
θ1

has two real roots of multiplicities two, namely

Φ2
θ1 = (Φ – m)2(Φ – l)2, (35)

we have

±(θ1 – θ0) =
1

l – m
ln

∣∣∣∣ Φ – l
Φ – m

∣∣∣∣. (36)

The solution of formula (12) is given by

Υ (θ ) =
(m – l)a– 1

4
4

2

[
coth

(l – m)(a
1
4
4 θ – θ0)

2
– 1

]
–

b1

2
+ m. (37)

When m < Φ < l, we get the solution as follows:

Φ =
m – l

2

[
tanh

(l – m)(θ1 – θ0)
2

– 1
]

+ m. (38)

Similarly,

Υ (θ ) =
[

tanh
(l – m)(a

1
4
4 θ – θ0)

2
– 1

]
(m – l)a– 1

4
4

2
–

b1

2
+ m, (39)

i.e., r = p2

4 , q = 0, p < 0, then m = –√–p, l = √–p. For instance, when κ = 1, c = – 1
2 , δ = –6,

μ = –6, c0 = – 3
4 , c1 = 9

32 , and Φ > 1 or Φ < –1, we can get

u(x, t) = – coth

(
xα

Γ (1 + α)
+

tα

2Γ (1 + α)
– θ0

)
–

3
2

. (40)
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Case 5. When D4 > 0 and D2 > 0, D3 > 0,

Φ2
θ1 =

4∏
i=1

(Φ – αi), (41)

where αi (i = 1, 2, 3, 4) are real numbers and αi in turn decrease. If Φ > α1 or Φ < α4, then
the transformation is as follows:

Φ =
α2(α1 – α4) sin2 ϑ – α1(α2 – α4)

(α1 – α4) sin2 ϑ – (α2 – α4)
, (42)

if α3 < Φ < α2, similarly

Φ =
α4(α2 – α3) sin2 ϑ – α3(α2 – α4)

(α2 – α3) sin2 ϑ – (α2 – α4)
. (43)

Combining formula (42) or formula (43) with formula (18), we can have

θ1 – θ0 =
2√

(α1 – α3)(α2 – α4)

∫ dϑ√
1 – m2 sin2 ϑ

, (44)

where m2 = (α1–α4)(α2–α3)
(α1–α3)(α2–α4) , based on Jacobian elliptic sine function [38] and formula (45),

we have

sinϑ = sn

(
(θ1 – θ0)

√
(α1 – α3)(α2 – α4)

2
, m

)
. (45)

Combining formula (45) with formula (42) and (43), the solutions of formula (18) with
corresponding conditions are as follows:

Φ =
sn2(

√
(α1–α3)(α2–α4)

2 α2(α1 – α4)(θ1 – θ0), m) – α1(α2 – α4)

sn2(
√

(α1–α3)(α2–α4)
2 (α1 – α4)(θ1 – θ0), m) – (α2 – α4)

, (46)

then we have

Υ (θ ) =
sn2(

√
(α1–α3)(α2–α4)

2 α4(α2 – α3)a– 1
4

4 (a
1
4
4 θ – θ0), m) – α3(α2 – α4)

sn2(
√

(α1–α3)(α2–α4)
2 (α2 – α3)(a

1
4
4 θ – θ0), m) – (α2 – α4)

–
b1

2
, (47)

where m2 = (α1–α4)(α2–α3)
(α1–α3)(α2–α4) . Formulas (46) and (47) are elliptic functions double periodic

solutions such as, when c = – 7
2 , κ = 1, μ = –6, δ = –6, c0 = – 9

4 , c1 = 45
32 , we have α1 = 2,

α2 = 1, α3 = –1, α4 = –2, if Φ > α1 or Φ < α4, the solution obtained by us is

u(x, t) =
4 sn2( 3

2 ( xα

Γ (1+α) + 7tα
2Γ (1+α) – θ0), 2

√
2

3 ) – 6

4 sn2( 3
2 ( xα

Γ (1+α) + 7tα
2Γ (1+α) – θ0), 2

√
2

3 ) – 3
–

1
2

. (48)

Case 6. When D2D3 < 0 and D4 = 0, Φ2
θ1

has a real root of multiplicities two and a pair of
conjugate complex roots:

Φ2
θ1 = (Φ – β)2[m2 + (Φ – l)2], (49)
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where m, l, and β are real numbers. According to formula (18), we have

±(θ1 – θ0) =
1√

m2 + (β – l)2
ln

∣∣∣∣νΦ + η –
√

(m2 + Φ – l)2

Φ – β

∣∣∣∣, (50)

where

ν =
β – 2l√

(β – l)2 + m2
, η =

√
(β – l)2 + m2 –

β(β – 2l)√
(β – l)2 + m2

, (51)

and then we can get the solution of formula (12):

Υ (θ ) =
(e±

√
(β–l)2+m2(a

1
4
4 θ–θ0) – ε) +

√
(β – l)2 + m2(2 – ε)

a
1
4
4 [(e±

√
(β–l)2+m2(a

1
4
4 θ–θ0) – ε)2 – 1]

–
b1

2
, (52)

Υ (θ ) has a solitary wave solution. When c = 7
2 , κ = 1, δ = –6, μ = –6, c0 = 21

4 , c1 = 153
32 , we

can obtain the solution of formula (3) as follows:

u(x, t) =
e±2

√
2( xα

Γ (1+α) – 7tα
2Γ (1+α) –θ0) + 13

√
2

4 – 3

[(e±2
√

2( xα

Γ (1+α) – 7tα
2Γ (1+α) –θ0) – 3

√
2

4 )2 – 1]
–

1
2

. (53)

Case 7. When D4 < 0 and D2D3 ≥ 0, Φ2
θ1

has two distinct real roots and a pair of conjugate
complex roots, then Φ2

θ1
is given by

Φ2
θ1 =

[
(Φ – l)2 + m2](Φ – γ )(Φ – β), (54)

where m, l, γ , and β are real numbers, m > 0 and β > γ . The following transformation is

Φ =
d1 cosϑ + d2

d3 cosϑ + d4
, (55)

where

d1 =
1
2

(β + γ )d3 –
1
2

(β – γ )d4,

d2 =
1
2

(β + γ )d4 –
1
2

(β – γ )d3,

d3 = β – l –
m
f2

,

d4 = β – l – mf2,

e2 =
m2 + (γ – l)(β – l)

m(β – γ )
,

f2 = e2 ±
√

e2
2 + 1.

(56)
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We choose the sign of f2 such that f2 > 0. Combining formula (55) with formula (18), we
have

θ1 – θ0 =
2f2m2√∓2mf2(β – γ )

∫ dΦ√
1 – m2

2 sin2 ϑ

, (57)

where m2
2 = 2

1+f 2
2

. According to formula (57) and Jacobian elliptic cosine function [38], we
have

cosϑ = cn

(√∓2mf2(β – γ )
2f2m2

(θ1 – θ0), m2

)
. (58)

Combining formula (58) with formula (55), we can obtain the solutions of formula (18) as
follows:

Φ =
d1 cn(

√
∓2mf2(β–γ )

2f2m2
(θ1 – θ0), m2) + d2

d3 cn(
√

∓2mf2(β–γ )
2f2m2

(θ1 – θ0), m2) + d4

, (59)

hence the solution of formula (12) is given by

Υ (θ ) =
a– 1

4
4 [d1 cn(

√
∓2mf2(β–γ )

2f2m2
(a

1
4
4 θ – θ0), m2) + d2]

d3 cn(
√

∓2mf2(β–γ )
2f2m2

(a
1
4
4 θ – θ0), m2) + d4

–
b1

2
(60)

such as, when c = 11
2 , κ = 1, δ = –6, μ = –6, c0 = – 9

4 , c1 = – 47
32 , we have d1 = 3, d2 = d3 = 0,

d4 = –3, e2 = 3
4 , f2 = 2, we can obtain the solution of formula (3):

u(x, t) = – cn

(√
10
2

(
xα

Γ (1 + α)
–

11tα

2Γ (1 + α)
– θ0

)
,
√

10
5

)
–

1
2

. (61)

Case 8. When D4 > 0 and D2D3 ≤ 0, Φ2
θ1

has two pairs of conjugate complex roots:

Φ2
θ1 =

(
(Φ – α1)2 + l2

1
)(

(Φ – α2)2 + l2
2
)
, (62)

where l1, l2, α1, and α2 are real numbers, l1 ≥ l2 > 0. The transformation is as follows:

Φ =
d1 tanϑ + d2

d3 tanϑ + d4
, (63)
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where

d1 = α1d3 + l1d4,

d2 = α1d4 – l1d3,

d3 = –l1 –
l2

f2
,

d4 = α1 – α2,

e2 =
(α1 – α2)2 + l2

1 + l2
2

2l1l2
,

f2 = e2 +
√

e2
2 – 1,

(64)

which yields

θ1 – θ0 =
d2

3 + d2
4

l2

√
(d2

3 + d2
4)(f 2

2 d2
3 + d2

4)

∫ dϑ√
1 – m2

2 sin2 ϑ

, (65)

where m2
2 = f 2

2 –1
f 2
2

. Based on the Jacobian elliptic function [38] and formula (63), we obtain

sinϑ = sn

( l2

√
(d2

3 + d2
4)(f 2

2 d2
3 + d2

4)

d2
3 + d2

4
(θ1 – θ0), m2

)
, (66)

cosϑ = cn

( l2

√
(d2

3 + d2
4)(f 2

2 d2
3 + d2

4)

d2
3 + d2

4
(θ1 – θ0), m2

)
. (67)

Combining formula (66) and formula (67) with formula (63), we have

Φ =
d1 sn(η(θ1 – θ0), m2) + d2 cn(η(θ1 – θ0), m2)
d3 sn(η(θ1 – θ0), m2) + d4 cn(η(θ1 – θ0), m2)

(68)

and

Υ (θ ) =
d1a– 1

4
4 sn(η(a

1
4
4 θ – θ0), m2) + d2 cn(η(a

1
4
4 θ – θ0), m2)

d3 sn(η(a
1
4
4 θ – θ0), m2) + d4 cn(η(a

1
4
4 θ – θ0), m2)

–
b1

2
, (69)

where

η =
l2

√
(d2

3 + d2
4)(f 2

2 d2
3 + d2

4)

d2
3 + d2

4
. (70)

Formula (69) is an elliptic functions double periodic solution. When c = 11, κ = 1, δ = –6,
μ = –6, c0 = 5

√
7–10
2 , c1 = 253–10

√
7

8 , we have α1 =
√

7
2 , α2 = –

√
7

2 , l1 = 3, l2 = 2, and d1 = 7
√

7
6 ,

d2 = 29
2 , d3 = – 11

3 , d4 =
√

7, e2 = 5
3 , f2 = 3, and η = 24

√
23

23 , then

u(x, t) =
7
√

7
6 sn( 24

√
23

23 ( xα

Γ (1+α) – 11tα
Γ (1+α) – θ0), 2

√
2

3 ) + 29
2 cn( 24

√
23

23 ( xα

Γ (1+α) – 11tα
Γ (1+α) – θ0), 2

√
2

3 )

– 11
3 sn( 24

√
23

23 ( xα

Γ (1+α) – 11tα
Γ (1+α) – θ0), 2

√
2

3 ) +
√

7 cn( 24
√

23
23 ( xα

Γ (1+α) – 11tα
Γ (1+α) – θ0), 2

√
2

3 )
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–
1
2

. (71)

Case 9. When D2 > 0, D3 > 0, and D4 = 0, Φ2
θ1

has two single real roots and a real root with
multiplicities two:

Φ2
θ1 = (Φ – α1)2(Φ – α2)(Φ – α3), (72)

where αi (i = 1, 2, 3, 4) are real numbers, and α2 > α3, α1 = – α2+α3
2 . Denoting h = (α1 –

α2)(α1 – α3), when Φ > α2, α2 > α1 > α3, we can get the solution of formula (18) as fol-
lows:

Φ =
2h

±(α2 – α3) sin[
√

–h(θ1 – θ0)] – (2α1 – α2 – α3)
, (73)

then we can have

Υ (θ ) =
2a– 1

4
4 h

±(α2 – α3) sin[
√

–h(a
1
4
4 θ – θ0)] – (2α1 – α2 – α3)

–
b1

2
, (74)

when α1 > α2 or α1 < α3,

Φ =
2h

(α2 – α3) cosh[
√

h(θ1 – θ0)] – (2α1 – α2 – α3)
, (75)

we can obtain

Υ (θ ) =
2a– 1

4
4 h

(α2 – α3) cosh[
√

h(a
1
4
4 θ – θ0)] – (2α1 – α2 – α3)

–
b1

2
. (76)

For instance, κ = 1, c = – 25
2 , δ = –6, μ = 6, c0 = 63

4 , c1 = – 327
32 , and then

u(x, t) =
–10

sinh[
√

5( xα

Γ (1+α) + 25tα
2Γ (1+α) – θ0)] – 4

+
1
2

, (77)

which is a solitary wave solution.

4 Numerical simulations
In this section, numerical simulations of space-time fractional KdV-mKdV equation are
given. In order to see the results more intuitively, based on the solutions that we got above,
different types of solutions are selected for numerical simulation, including rational func-
tion solutions to formulas (24) and (34), trigonometric functional periodic solutions to
formulas (29) and (40), Jacobian elliptic functions with double periodic solutions to for-
mulas (48), (61), and (71), solitary wave solutions to formulas (53) and (77). The properties
of the solution are expressed by drawing a three-dimensional figure and the correspond-
ing two-dimensional figure. One thing to note is that we only concentrate on the positive
if there is a plus or minus sign in the selected solution.

Case 1. For α = 0.7 (Fig. 1).
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Figure 1 (a) Three-dimensional figure of (24),when κ = 1, c = 1, and ξ0 = 1; (b) the corresponding
two-dimensional figure when t = 1

Figure 2 (a) Three-dimensional figure of (29), when κ = 1, c = 7
2 , and ξ0 = 1; (b) the corresponding

two-dimensional figure when t = 1

Figure 3 (a) Three-dimensional figure of (34), when κ = 1, c = –6, and ξ0 = 1; (b) the corresponding
two-dimensional figure when t = 0.1

Case 2. For α = 0.7 (Fig. 2).
Case 3. For α = 0.7 (Fig. 3).
Case 4. For α = 0.7 (Fig. 4).
Case 5. For α = 0.7 (Fig. 5).
Case 6. For α = 0.7 (Fig. 6).
Case 7. For α = 0.7 (Fig. 7).
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Figure 4 (a) Three-dimensional figure of (40), when κ = 1, c = – 1
2 , and ξ0 = 1; (b) the corresponding

two-dimensional figure when t = 0.5

Figure 5 (a) Three-dimensional figure of (48), when κ = 1, c = – 7
2 , and ξ0 = 1; (b) the corresponding

two-dimensional figure when t = 0.5

Figure 6 (a) Three-dimensional figure of (53), when κ = 1, c = 7
2 , and ξ0 = 1; (b) the corresponding

two-dimensional figure when t = 0.5

Case 8. For α = 0.7 (Fig. 8).
Case 9. For α = 0.7 (Fig. 9).

5 Conclusion
On the basis of traffic flow following theory and previous research work, this paper stud-
ies various nonlinear density wave problems of traffic flow in order to make our solutions
more universal, considers space-time fractional KdV-mKdV equation. It is difficult to ob-



Li et al. Advances in Difference Equations         (2020) 2020:68 Page 14 of 16

Figure 7 (a) Three-dimensional figure of (61), when κ = 1, c = 11
2 , and ξ0 = 1; (b) the corresponding

two-dimensional figure when t = 2

Figure 8 (a) Three-dimensional figure of (71), when κ = 1, c = 11, and ξ0 = 1; (b) the corresponding
two-dimensional figure when t = 0.2

Figure 9 (a) Three-dimensional figure of (77), when κ = 1, c = – 25
2 , and ξ0 = 1; (b) the corresponding

two-dimensional figure when t = 0.2

tain Jacobian elliptic functions with periodic solutions by other methods. In this paper,
the KdV-mKdV equation is transformed into space-time fractional equation, which is re-
duced to usual differential equations by using fractional complex transformation. All pos-
sible solutions are given by the complete discrimination system for polynomial method.
Similar solutions have not been found in other literature, which also shows the strong role.
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In addition, in order to guarantee the existence of each solution, this paper sets specific
parameters to get the solutions and the numerical simulation, also shows properties of the
solutions.
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