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1 Introduction
Fractional differential equations recently attracted much attention in view of their exten-
sive applications in engineering, physics, chemistry, biology, and other fields [1–3]. In par-
ticular, boundary value problems of fractional differential equations and inclusions subject
to a variety of boundary conditions have been studied by many authors, for instance, see
[4–11] and the references cited therein. Coupled systems of fractional-order differential
equations also constitute an interesting area of investigation as such systems appear in
the mathematical modeling of many phenomena like synchronization of chaotic systems
[12–14], anomalous diffusion [15], ecological effects [16], disease models [17–19], etc. For
some recent works on coupled systems of fractional-order differential equations, we refer
the reader to the articles [20–29].

Differential inclusions are found to be of great utility in studying dynamical systems and
stochastic processes. For some recent results on boundary value problems for fractional
differential inclusions, see [30–33].
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Recently, in [34], the authors studied a boundary value problem of coupled Caputo type
fractional differential inclusions of the form:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

cDαu(t) ∈ F(t, u(t), v(t)), t ∈ [0, T], 1 < α ≤ 2,
cDβv(t) ∈ G(t, u(t), v(t)), t ∈ [0, T], 1 < β ≤ 2,

u(0) = ν1v(T), u′(0) = ν2v′(T),

v(0) = μ1u(T), v′(0) = μ2u′(T),

where cDα , cDβ denote the Caputo fractional derivatives of orders α and β respectively,
F , G : [0, T] × R × R → P(R) are given multi-valued maps, P(R) is the family of all
nonempty subsets of R, and νi,μi, i = 1, 2, are real constants with νiμi �= 1, i = 1, 2. By
applying standard fixed point theorems for multi-valued maps, some new existence re-
sults for the given problem are derived when the multi-valued maps involved in the given
problem have convex as well as non-convex values.

In this work, motivated by [34], we consider the following systems of Caputo and
Riemann–Liouville type mixed order coupled fractional differential equations and inclu-
sions:

⎧
⎨

⎩

cDαx(t) = f (t, x(t), y(t)), t ∈ [0, T], 0 < α ≤ 1
RLDβy(t) = g(t, x(t), y(t)), t ∈ [0, T], 1 < β ≤ 2,

(1.1)

and
⎧
⎨

⎩

cDαx(t) ∈ F(t, x(t), y(t)), t ∈ [0, T], 0 < α ≤ 1
RLDβy(t) ∈ G(t, x(t), y(t)), t ∈ [0, T], 1 < β ≤ 2,

(1.2)

subject to the following coupled fractional boundary conditions:

⎧
⎨

⎩

x(0) = λcDpy(η), 0 < p < 1,

y(0) = 0, y(T) = γ Iqx(ξ ),
(1.3)

where cDα , cDp are the Caputo fractional derivatives of order α and p respectively, RLDβ is
the Riemann–Liouville fractional derivative of order β , Iq is the Riemann–Liouville frac-
tional integral of order q, f , g : [0, T] ×R×R →R, F , G : [0, T] ×R×R →P(R) are given
continuous functions, P(R) is the family of all nonempty subsets of R, η, ξ ∈ (0, T), and
λ,γ ∈R.

Here we emphasize that the proposed single and multi-valued problems include:
• fractional derivatives of different orders α ∈ (0, 1] and β ∈ (1, 2];
• the first and second equations in the given systems are respectively of Caputo and

Riemann–Liouville types;
• the boundary conditions are of nonlocal type and contain both fractional derivatives

and integrals.
The objective of the present work is to establish existence criteria for solutions of prob-

lems (1.1)–(1.3) and (1.2)–(1.3). For single-valued system (1.1)–(1.3), we rely on the Leray–
Schauder alternative and the Banach contraction mapping principle to obtain the exis-
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tence and uniqueness results, which are presented in Sect. 3. Section 4 contains the exis-
tence results for convex and non-convex valued multi-valued maps F and G involved in
multi-valued system (1.2)–(1.3), which are respectively derived with the aid of the non-
linear alternative for Kakutani maps and Covitz and Nadler’s fixed point theorem. The
background material related to our work is outlined in Sect. 2. Here we remark that the
tools of the fixed point theory employed in our analysis are standard, however their expo-
sition to the problems at hand is new.

2 Preliminaries
Let us begin this section with some basic definitions of multi-valued maps [35, 36].

Let (X ,‖ · ‖) be a normed space and that Pcl(X ) = {Y ∈ P(X ) : Y is closed}, Pcp,c(X ) =
{Y ∈P(X ) : Y is compact and convex}.

A multi-valued map G : X →P(X ) is
(a) convex (closed) valued if G(x) is convex (closed) for all x ∈X ;
(b) upper semi-continuous (u.s.c.) on X if, for each x0 ∈X , the set G(x0) is a nonempty

closed subset of X and if, for each open set N of X containing G(x0), there exists an
open neighborhood N0 of x0 such that G(N0) ⊆ N ;

(c) lower semi-continuous (l.s.c.) if the set {y ∈ X : G(y) ∩ B �= ∅} is open for any open
set B in E;

(d) completely continuous if G(B) is relatively compact for every
B ∈Pb(X ) = {Y ∈P(X ) : Y is bounded}.

A multi-valued map G : [a, b] → Pcl(R) is said to be measurable if, for every y ∈ R, the
function t �−→ d(y,G(t)) = inf{|y – z| : z ∈ G(t)} is measurable.

A multi-valued mapG : [a, b]×R
2 →P(R) is said to be Carathéodory if (i) t �−→ G(t, x, y)

is measurable for each x, y ∈ R and (ii) (x, y) �−→ G(t, x, y) is upper semicontinuous for al-
most all t ∈ [a, b].

Further a Carathéodory function G is called L1-Carathéodory if (i) for each ρ > 0, there
exists ϕρ ∈ L1([a, b],R+) such that ‖G(t, x, y)‖ = sup{|v| : v ∈ G(t, x, y)} ≤ ϕρ(t) for all x, y ∈R

with ‖x‖,‖y‖ ≤ ρ and for a.e. t ∈ [a, b].
Next, we outline some preliminary concepts of fractional calculus.

Definition 2.1 The fractional integral of order σ with the lower limit zero for a function
ζ is defined as

Iσ ζ (t) =
1

Γ (σ )

∫ t

0

ζ (s)
(t – s)1–σ

ds, t > 0,σ > 0,

provided the right-hand side is point-wise defined on [0,∞), where Γ (·) is the gamma
function, which is defined by Γ (σ ) =

∫ ∞
0 tσ–1e–t dt.

Definition 2.2 The Riemann–Liouville fractional derivative of order σ > 0, n – 1 < σ < n,
n ∈N, is defined as follows:

Dσ
0+ζ (t) =

1
Γ (n – σ )

(
d
dt

)n ∫ t

0
(t – s)n–σ–1ζ (s) ds,

where the function ζ has absolutely continuous derivative up to order (n – 1).
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Definition 2.3 The Caputo derivative of order σ for a function ζ : [0,∞) → R can be
written as

cDσ
0+ζ (t) = Dσ

0+

(

ζ (t) –
n–1∑

k=0

tk

k!
ζ (k)(0)

)

, t > 0, n – 1 < σ < n.

In the rest of the paper, we use cDσ instead of cDσ
0+ for the sake of convenience.

Remark 2.4 If ζ ∈ Cn[0,∞), then

cDσ ζ (t) =
1

Γ (n – σ )

∫ t

0

ζ (n)(s)
(t – s)σ+1–n ds = In–σ ζ (n)(t), t > 0, n – 1 < σ < n.

The following auxiliary lemma, which concerns the linear variant of system (1.1), plays
a key role in the sequel.

Lemma 2.5 Let φ, h ∈ C([0, T],R). Then the solution of the linear fractional differential
system

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

cDαx(t) = φ(t), t ∈ [0, T], 1 < α ≤ 2
RLDβy(t) = h(t), t ∈ [0, T], 1 < β ≤ 2,

x(0) = λDpy(η),

y(0) = 0, y(T) = γ Iqx(ξ ),

(2.1)

is equivalent to the system of integral equations

x(t) = Iαφ(t) +
λ

Λ

[

–Tβ–1Iβ–ph(η) +
Γ (β)

Γ (β – p)
ηβ–p–1(γ Iq+αφ(ξ ) – Iβh(T)

)
]

(2.2)

and

y(t) = Iβh(t) +
tβ–1

Λ

[

Iβh(T) – γ Iq+αφ(ξ ) – λγ
ξ q

Γ (1 + q)
Iβ–ph(η)

]

, (2.3)

where it is assumed that

Λ := Tβ–1 + λγ
Γ (β)ξ qηβ–p–1

Γ (1 + q)Γ (β – p)
�= 0. (2.4)

Proof Applying the Riemann–Liouville operators Iα and Iβ to the Caputo and Riemann–
Liouville fractional differential equations respectively in (2.1) and using the composition
laws of fractional order integral and differential operators [2], we obtain

x(t) = Iαφ(t) + c0 and y(t) = Iβh(t) + c1tβ–1 + c2tβ–2, (2.5)

where c0, c1, c2 are arbitrary constants.
By the boundary conditions of (2.1) in (2.5), we get c2 = 0 and a system of algebraic

equations in the unknown constants c0 and c1:

c0 – λ
Γ (β)

Γ (β – p)
ηβ–p–1c1 = λIβ–ph(η),
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γ
ξ q

Γ (1 + q)
c0 – Tβ–1c1 = Iβh(T) – γ Iq+αφ(ξ ).

Solving the above system, we get

c0 =
λ

Λ

[

–Tβ–1Iβ–ph(η) +
Γ (β)

Γ (β – p)
ηβ–p–1(γ Iq+αφ(ξ ) – Iβh(T)

)
]

and

c1 =
1
Λ

[

Iβh(T) – γ Iq+αφ(ξ ) – λγ
ξ q

Γ (1 + q)
Iβ–ph(η)

]

.

Substituting the values of c0, c1, c2 in (2.5), we get solutions (2.2) and (2.3). We can prove
the converse of the lemma by direct computation. The proof is completed. �

3 Main results
3.1 Single-valued system (1.1)–(1.3)
Let X = {x(t)|x(t) ∈ C([0, T],R)} be the Banach space endowed with the norm ‖x‖ =
sup{|x(t)|, t ∈ [0, T]}. Also let the product space (X × X,‖(x, y)‖) be the Banach space
equipped with norm ‖(x, y)‖ = ‖x‖ + ‖y‖.

We define an operator H : X × X → X × X by

H(x, y)(t) =

(
H1(x, y)(t)
H2(x, y)(t)

)

, (3.1)

where

H1(x, y)(t) = I α̂f (t) +
λ

Λ

[

–Tβ–1Iβ–p̂g(η) +
Γ (β)

Γ (β – p)
ηβ–p–1(γ Iq+α̂f (ξ ) – Iβ ĝ(T)

)
]

and

H2(x, y)(t) = Iβ ĝ(t) +
tβ–1

Λ

[

Iβ ĝ(T) – γ Iq+α̂f (ξ ) – λγ
ξ q

Γ (1 + q)
Iβ–p̂g(η)

]

,

and f̂ (t) = f (t, x(t), y(t)), ĝ(t) = g(t, x(t), y(t)). For convenience, we set the notations:

M1 =
Tα

Γ (1 + α)
+

1
|Λ| |λ||γ | Γ (β)

Γ (β – p)
ηβ–p–1ξ q+α

Γ (q + α + 1)
, (3.2)

M2 =
Tβ–1ηβ–p–1|λ|

|Λ|
[

TΓ (β)
Γ (β – p)Γ (β + 1)

+
η

Γ (1 + β)

]

, (3.3)

M3 =
Tβ–1|γ |ξ q+α

|Λ|Γ (q + α + 1)
, (3.4)

M4 =
Tβ

Γ (1 + β)

(

1 +
Tβ–1

|Λ|
)

+
Tβ–1

|Λ| |λ||γ | ξ qηβ–p

Γ (1 + q)Γ (β – p + 1)
. (3.5)

Our first existence result is based on the Leray–Schauder alternative [37, p. 4].

Theorem 3.1 Assume that:
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(A1) f , g : [0, T]×R×R →R are continuous functions and that there exist real constants
ki,γi ≥ 0 (i = 0, 1, 2) with k0 > 0, γ0 > 0 such that, ∀xi ∈R (i = 1, 2),

∣
∣f (t, x1, x2)

∣
∣ ≤ k0 + k1|x1| + k2|x2|,

∣
∣g(t, x1, x2)

∣
∣ ≤ γ0 + γ1|x1| + γ2|x2|.

If

(M1 + M3)k1 + (M2 + M4)γ1 < 1 and (M1 + M3)k2 + (M2 + M4)γ2 < 1, (3.6)

where Mi, i = 1, 2, 3, 4, are given by (3.2)–(3.5), then system (1.1)–(1.3) has at least one
solution on [0, T].

Proof Firstly we show that the operator H : X × X → X × X defined by (3.1) is completely
continuous. Notice that continuity of the operator H follows from that of the functions f
and g .

Let Ω ⊂ X × X be bounded. Then there exist positive constants L1 and L2 such that
|f (t, x(t), y(t))| ≤ L1, |g(t, x(t), y(t))| ≤ L2, ∀(x, y) ∈ Ω . Then, for any (x, y) ∈ Ω , we have

∣
∣H1(x, y)(t)

∣
∣ ≤ Tα

Γ (1 + α)
L1 +

|λ|
|Λ|

[

Tβ–1 ηβ–p

Γ (β – p + 1)
L2

+ |λ| Γ (β)
Γ (β – p)

ηβ–p–1
(

Tβ

Γ (1 + β)
L2 + |γ | ξ q+α

Γ (q + α + 1)
L1

)]

= M1L1 + M2L2,

which implies that

∥
∥H1(x, y)

∥
∥ ≤ M1L1 + M2L2.

In a similar way, we can find that

∥
∥H2(x, y)

∥
∥ ≤ M3L1 + M4L2.

From the above inequalities we conclude that the operator H is uniformly bounded, since
‖H(x, y)‖ ≤ (M1 + M3)L1 + (M2 + M4)L2.

Next, we show that H is equicontinuous. Let t1, t2 ∈ [0, T] with t1 < t2. Then we have

∣
∣H1

(
x(t2), y(t2)

)
– H1

(
x(t1), y(t1)

)∣
∣

≤ L1

∣
∣
∣
∣

1
Γ (α)

∫ t2

0
(t2 – s)α–1 ds –

1
Γ (α)

∫ t1

0
(t1 – s)α–1 ds

∣
∣
∣
∣

≤ L1

Γ (α)

{∫ t1

0

[
(t2 – s)α–1 – (t1 – s)α–1]ds +

∫ t2

t1

(t2 – s)α–1 ds
}

≤ L1

Γ (α + 1)
[
2(t2 – t1)α +

∣
∣tα

2 – tα
1
∣
∣
]
.
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Analogously, we can obtain

∣
∣H2

(
x(t2), y(t2)

)
– H2

(
x(t1), y(t1)

)∣
∣

≤ L2

[
Tβ

Γ (1 + β)
+ |λ||γ | ξ qηβ–p

Γ (1 + q)Γ (β – p + 1)

]
tβ–1
2 – tβ–1

1
|Λ|

+ L1
|γ |ξ q+α

Γ (q + α + 1)
tβ–1
2 – tβ–1

1
|Λ| +

L2

Γ (β + 1)
[
2(t2 – t1)β +

∣
∣tβ

2 – tβ
1
∣
∣
]
.

Thus the operator H(x, y) is equicontinuous. In view of the foregoing arguments, we de-
duce that the operator H(x, y) is completely continuous.

Finally, it will be verified that the set Z = {(x, y) ∈ X × X|(x, y) = θH(x, y), 0 ≤ θ ≤ 1} is
bounded. Let (x, y) ∈Z with (x, y) = θH(x, y). For any t ∈ [0, T], we have

x(t) = θH1(x, y)(t), y(t) = θH2(x, y)(t).

Then

∣
∣x(t)

∣
∣ ≤ M1

(
k0 + k1|x| + k2|y|

)
+ M2

(
γ0 + γ1|x| + γ2|y|

)

= M1k0 + M2γ0 + (M1k1 + M2γ1)|x| + (M1k2 + M2γ2)|y|,

and

∣
∣y(t)

∣
∣ ≤ M3

(
k0 + k1|x| + k2|y|

)
+ M4

(
γ0 + γ1|x| + γ2|y|

)

= M3k0 + M4γ0 + (M3k1 + M4γ1)|x| + (M3k2 + M4γ2)|y|.

In consequence, we have

‖x‖ ≤ M1k0 + M2γ0 + (M1k1 + M2γ1)‖x‖ + (M1k2 + M2γ2)‖y‖

and

‖y‖ ≤ M3k0 + M4γ0 + (M3k1 + M4γ1)‖x‖ + (M3k2 + M4γ2)‖y‖,

which imply that

‖x‖ + ‖y‖ ≤ (M1 + M3)k0 + (M2 + M4)γ0 +
[
(M1 + M3)k1 + (M2 + M4)γ1

]‖x‖
+

[
(M1 + M3)k2 + (M2 + M4)γ2

]‖y‖.

Thus we have

∥
∥(x, y)

∥
∥ ≤ (M1 + M3)k0 + (M2 + M4)γ0

M0
,

where M0 = min{1 – [(M1 + M3)k1 + (M2 + M4)γ1], 1 – [(M1 + M3)k2 + (M2 + M4)γ2]}, which
establishes that the set Z is bounded. Thus, by the Leray–Schauder alternative [37], the
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operator H has at least one fixed point. Hence system (1.1)–(1.3) has at least one solution.
The proof is complete. �

The uniqueness of solutions for problem (1.1)–(1.3) is proved in the next theorem via
Banach’s contraction mapping principle.

Theorem 3.2 Assume that:
(A2) f , g : [0, T] ×R×R →R are continuous functions and that there exist positive con-

stants �1 and �2 such that, for all t ∈ [0, T] and xi, yi ∈R, i = 1, 2, we have

∣
∣f (t, x1, x2) – f (t, y1, y2)

∣
∣ ≤ �1

(|x1 – y1| + |x2 – y2|
)
,

∣
∣g(t, x1, x2) – g(t, y1, y2)

∣
∣ ≤ �2

(|x1 – y1| + |x2 – y2|
)
.

Then system (1.1)–(1.3) has a unique solution on [0, T], provided that

(M1 + M3)�1 + (M2 + M4)�2 < 1,

where Mi, i = 1, 2, 3, 4, are given by (3.2)–(3.5).

Proof Put supt∈[0,T] f (t, 0, 0) = N1 < ∞, supt∈[0,T] g(t, 0, 0) = N2 < ∞ and choose a positive
number r such that

r >
(M1 + M3)N1 + (M2 + M4)N2

1 – (M1 + M3)�1 – (M2 + M4)�2
.

Then we show that HBr ⊂ Br , where Br = {(x, y) ∈ X × X : ‖(x, y)‖ ≤ r} and H is defined by
(3.1).

By assumption (A2), for (u, v) ∈ Br , t ∈ [0, T], we have

∣
∣f

(
t, x(t), y(t)

)∣
∣ ≤ ∣

∣f
(
t, x(t), y(t)

)
– f (t, 0, 0)

∣
∣ +

∣
∣f (t, 0, 0)

∣
∣

≤ �1
(∣
∣x(t)

∣
∣ +

∣
∣y(t)

∣
∣
)

+ N1

≤ �1
(‖x‖ + ‖y‖) + N1 ≤ �1r + N1

and

∣
∣g

(
t, x(t), y(t)

)∣
∣ ≤ �2

(‖x‖ + ‖y‖) + N2 ≤ �2r + N2.

In consequence, we obtain

∣
∣H1(x, y)(t)

∣
∣

≤ Tα

Γ (1 + α)
(�1r + N1) +

|λ|
|Λ|

[

Tβ–1 ηβ–p

Γ (β – p + 1)
(�2r + N2)

+ |λ| Γ (β)
Γ (β – p)

ηβ–p–1
(

Tβ

Γ (1 + β)
(�2r + N2) + |γ | ξ q+α

Γ (q + α + 1)
(�1r + N1)

)]

= (�1r + N1)M1 + (�2r + N2)M2

= (M1�1 + M2�2)r + M1N1 + M2N2,
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which implies that

∥
∥H1(x, y)

∥
∥ ≤ (M1�1 + M2�2)r + M1N1 + M2N2.

In the same way, we can find that

∥
∥H2(x, y)

∥
∥ ≤ (M3�1 + M4�2)r + M3N1 + M4N2.

From the above inequalities, it follows that

∥
∥H(x, y)

∥
∥ ≤ [

(M1 + M3)�1 + (M2 + M4)�2
]
r + (M1 + M3)N1 + (M2 + M4)N2 ≤ r.

Next, for (x2, y2), (x1, y1) ∈ X × X and for any t ∈ [0, T], we get

∣
∣H1(x2, y2)(t) – H1(x1, y1)(t)

∣
∣

≤ Tα

Γ (1 + α)
�1

(‖x2 – x1‖ + ‖y2 – y1‖
)

+
|λ|
|Λ|

[

Tβ–1 ηβ–p

Γ (β – p + 1)
�2

(‖x2 – x1‖ + ‖y2 – y1‖
)

+ |λ| Γ (β)
Γ (β – p)

ηβ–p–1
(

Tβ

Γ (1 + β)
�2

(‖x2 – x1‖ + ‖y2 – y1‖
)

+ |γ | ξ q+α

Γ (q + α + 1)
�1

(‖x2 – x1‖ + ‖y2 – y1‖
)
)]

≤ (M1�1 + M2�2)
(‖x2 – x1‖ + ‖y2 – y1‖

)
,

which leads to

∥
∥H1(x2, y2) – H1(x1, y1)

∥
∥ ≤ (M1�1 + M2�2)

(‖x2 – x1‖ + ‖y2 – y1‖
)
. (3.7)

Similarly, one can obtain

∥
∥H2(x2, y2)(t) – H2(x1, y1)

∥
∥ ≤ (M3�1 + M4�2)

(‖x2 – x1‖ + ‖y2 – y1‖
)
. (3.8)

From (3.7) and (3.8), we deduce that

∥
∥H(x2, y2) – H(x1, y1)

∥
∥ ≤ [

(M1 + M3)�1 + (M2 + M4)�2
](‖x2 – x1‖ + ‖y2 – y1‖

)
.

Since (M1 + M3)�1 + (M2 + M4)�2 < 1, therefore, H is a contraction. So, by Banach’s con-
traction mapping principle, the operator H has a unique fixed point, which corresponds
to a unique solution of problem (1.1)–(1.3). This completes the proof. �

Example 3.3 Consider the following system of fractional boundary value problem:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

cD1/2x(t) = 1
4(t+2)2

|x(t)|
1+|x(t)| + 1 + 1

t3+32 sin2 y(t), t ∈ [0, 1],
RLD3/2x(t) = 1

32π
sin(2πx(t)) + |y(t)|

16(1+|y(t)|) + 1
2 , t ∈ [0, 1],

u(0) =
√

3D1/2y( 1
3 ),

y(0) = 0, y(1) =
√

2I1/2x( 1
2 ).

(3.9)
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Here, α = 1/2, λ =
√

3, p = 1/2, η = 1/3, β = 3/2, γ =
√

2, q = 1/2, ξ = 1/2, and f (t, x, y) =
1

4(t+2)2
|x|

1+|x| + 1 + 1
t3+32 sin2 y and g(t, x, y) = 1

32π
sin(2πx) + |y|

16(1+|y|) + 1
2 . Note that |f (t, x1, y1) –

f (t, x2, y2)| ≤ 1
16 |x1 – x2| + 1

16 |y1 – y2|, |g(t, x1, y1) – g(t, x2, y2)| ≤ 1
16 |x1 – x2| + 1

16 |y1 – y2|.
Using the given data in (3.2)–(3.5), it is found that M1 ≈ 1.5256638, M2 ≈ 0.58161945,
M3 ≈ 0.258819045, M4 ≈ 1.26605098. Clearly �1 = 1/16, �2 = 1/16, and consequently
(M1 + M3)�1 + (M2 + M4)�2 ≈ 0.22700958 < 1.

Thus all the conditions of Theorem 3.2 are satisfied; consequently, its conclusion applies
to problem (3.9).

3.2 Multi-valued system (1.2)–(1.3)
Definition 3.4 A function (x, y) ∈ C1([0, T],R) × C2([0, T],R) satisfying the coupled
boundary conditions x(0) = λcDpy(η), y(0) = 0, y(T) = γ Iqx(ξ ) and for which there ex-
ist functions f , g ∈ L1([0, T],R) such that f (t) ∈ F(t, x(t), y(t)), g(t) ∈ G(t, x(t), y(t)) a.e. on
t ∈ [0, T] and

x(t) = Iαf (t) +
1
Λ

[

–λTβ–1Iβ–pg(η) + λ
Γ (β)

Γ (β – p)
ηβ–p–1(γ Iq+αf (ξ ) – Iβg(T)

)
]

, (3.10)

and

y(t) = Iβg(t) +
tβ–1

Λ

[

Iβg(T) – γ Iq+αf (ξ ) – λγ
ξ q

Γ (1 + q)
Iβ–pg(η)

]

(3.11)

is called a solution of coupled system (1.2)–(1.3).

For each (x, y) ∈ X × X, the sets of selections of F , G are defined by

SF ,(x,y) =
{

f ∈ L1([0, T],R
)

: f (t) ∈ F
(
t, x(t), y(t)

)
for a.e. t ∈ [0, T]

}

and

SG,(x,y) =
{

g ∈ L1([0, T],R
)

: g(t) ∈ G
(
t, x(t), y(t)

)
for a.e. t ∈ [0, T]

}
.

In view of Lemma 2.5, we define the operators K1,K2 : X × X →P(X × X) as follows:

K1(x, y)(t) =
{

h1 ∈ X × X : there exist f ∈ SF ,(x,y), g ∈ SG,(x,y) such that

h1(x, y)(t) = Q1(x, y)(t),∀t ∈ [0, T]
}

(3.12)

and

K2(x, y)(t) =
{

h2 ∈ X × X : there exists f ∈ SF ,(x,y), g ∈ SG,(x,y) such that

h2(x, y)(t) = Q2(x, y)(t),∀t ∈ [0, T]
}

, (3.13)

where

Q1(x, y)(t)

= Iαf (t) +
1
Λ

[

–λTβ–1Iβ–pg(η) + λ
Γ (β)

Γ (β – p)
ηβ–p–1(γ Iq+αf (ξ ) – Iβg(T)

)
]



Ntouyas and Al-Sulami Advances in Difference Equations         (2020) 2020:73 Page 11 of 21

and

Q2(x, y)(t) = Iβg(t) +
tβ–1

Λ

[

Iβg(T) – γ Iq+αf (ξ ) – λγ
ξ q

Γ (1 + q)
Iβ–pg(η)

]

.

Then we define an operator K : X × X →P(X × X) by

K(x, y)(t) =

(
K1(x, y)(t)
K2(x, y)(t)

)

,

where K1 and K2 are defined by (3.12) and (3.13).

3.2.1 The Carathéodory case
Our first result dealing with convex values F and G is proved via the Leray–Schauder
nonlinear alternative for multi-valued maps [37].

Theorem 3.5 Suppose that the following conditions are satisfied:
(B1) F , G : [0, T] ×R

2 →P(R) are L1-Carathéodory and have convex values;
(B2) There exist continuous nondecreasing functions ψ1,ψ2,φ1,φ2 : [0,∞) → (0,∞) and

functions p1, p2 ∈ C([0, T],R+) such that

∥
∥F(t, x, y)

∥
∥
P := sup

{|f | : f ∈ F(t, x, y)
} ≤ p1(t)

[
ψ1

(‖x‖) + φ1
(‖y‖)]

and

∥
∥G(t, x, y)

∥
∥
P := sup

{|g| : g ∈ G(t, x, y)
} ≤ p2(t)

[
ψ2

(‖x‖) + φ2
(‖y‖)]

for each (t, x, y) ∈ [0, T] ×R
2;

(B3) There exists a number N > 0 such that

N
(M1 + M3)‖p1‖(ψ1(N) + φ1(N)) + (M2 + M4)‖p2‖(ψ2(N) + φ2(N))

> 1,

where Mi (i = 1, 2, 3, 4) are given by (3.2)–(3.5).
Then coupled system (1.2)–(1.3) has at least one solution on [0, T].

Proof Consider the operators K1,K2 : X × X → P(X × X) defined by (3.12) and (3.13).
From (B1), it follows that the sets SF ,(x,y) and SG,(x,y) are nonempty for each (x, y) ∈ X × X.
Then, for f ∈ SF ,(x,y), g ∈ SG,(x,y) for (x, y) ∈ X × X, we have

h1(x, y)(t) = Iαf (t) +
1
Λ

[

–λTβ–1Iβ–pg(η) + λ
Γ (β)

Γ (β – p)
ηβ–p–1(γ Iq+αf (ξ ) – Iβg(T)

)
]

and

h2(x, y)(t) = Iβg(t) +
tβ–1

Λ

[

Iβg(T) – γ Iq+αf (ξ ) – λγ
ξ q

Γ (1 + q)
Iβ–pg(η)

]

,

where h1 ∈K1(x, y), h2 ∈K2(x, y), and so (h1, h2) ∈K(x, y).
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It will be established in several steps that the operator K satisfies the hypotheses of
Leray–Schauder nonlinear alternative. First we show that K(x, y) is convex valued. Let
(hi, h̄i) ∈ (K1,K2), i = 1, 2. Then there exist fi ∈ SF ,(x,y), gi ∈ SG,(x,y), i = 1, 2, such that, for
each t ∈ [0, T], we have

hi(t) = Iαf (t) +
1
Λ

[

–λTβ–1Iβ–pg(η) + λ
Γ (β)

Γ (β – p)
ηβ–p–1(γ Iq+αf (ξ ) – Iβg(T)

)
]

and

h̄i(t) = Iβg(t) +
tβ–1

Λ

[

Iβg(T) – γ Iq+αf (ξ ) – λγ
ξ q

Γ (1 + q)
Iβ–pg(η)

]

.

Let 0 ≤ ω ≤ 1. Then, for each t ∈ [0, T], we have

[
ωh1 + (1 – ω)h2

]
(t)

= Iα
[
ωf1(s) + (1 – ω)f2(s)

]
(t) +

1
Λ

[

–λTβ–1Iβ–p[ωg1(s) + (1 – ω)g2(s)
]
(η)

+ λ
Γ (β)

Γ (β – p)
ηβ–p–1(Iβ

[
ωg1(s) + (1 – ω)g2(s)

]
(T)

– γ Iq+α
[
ωf1(s) + (1 – ω)f2(s)

]
(ξ )

)
]

and

[
ωh̄1 + (1 – ω)h̄2

]
(t)

= Iβ
[
ωg1(s) + (1 – ω)g2(s)

]
(t) +

tβ–1

Λ

[

Iβ
[
ωg1(s) + (1 – ω)g2(s)

]
(T)

– γ Iq+α
[
ωf1(s) + (1 – ω)f2(s)

]
(ξ ) – λγ

ξ q

Γ (1 + q)
Iβ–p[ωg1(s) + (1 – ω)g2(s)

]
(η)

]

.

We deduce that SF ,(x,y), SG,(x,y) are convex valued, since F , G are convex valued. Obviously,
ωh1 + (1 – ω)h2 ∈K1, ωh̄1 + (1 – ω)h̄2 ∈K2, and hence ω(h1, h̄1) + (1 – ω)(h2, h̄2) ∈K.

Now we show that K maps bounded sets into bounded sets in X × X. For a positive
number r, let Br = {(x, y) ∈ X × X : ‖(x, y)‖ ≤ r} be a bounded set in X × X. Then there
exist f ∈ SF ,(x,y), g ∈ SG,(x,y) such that

h1(x, y)(t) = Iαf (t) +
1
Λ

[

–λTβ–1Iβ–pg(η) + λ
Γ (β)

Γ (β – p)
ηβ–p–1(γ Iq+αf (ξ ) – Iβg(T)

)
]

and

h2(x, y)(t) = Iβg(t) +
tβ–1

Λ

[

Iβg(T) – γ Iq+αf (ξ ) – λγ
ξ q

Γ (1 + q)
Iβ–pg(η)

]

.

Then we have

∣
∣h1(x, y)(t)

∣
∣

≤ Iα
∣
∣f (t)

∣
∣ +

1
|Λ|

[

|λ|Tβ–1Iβ–p∣∣g(η)
∣
∣ + |λ| Γ (β)

Γ (β – p)
ηβ–p–1(Iβ

∣
∣g(T)

∣
∣ + |γ |Iq+α

∣
∣f (ξ )

∣
∣
)
]
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≤ Tα

Γ (1 + α)
‖p1‖

(
ψ1(r) + φ1(r)

)
+

1
|Λ|

[

|λ|Tβ–1 ηβ–p

Γ (β – p + 1)
‖p2‖

(
ψ2(r) + φ2(r)

)

+ |λ| Γ (β)
Γ (β – p)

ηβ–p–1
(

Tβ

Γ (1 + β)
‖p2‖

(
ψ2(r) + φ2(r)

)

+ |γ | ξ q+α

Γ (q + α + 1)
‖p1‖

(
ψ1(r) + φ1(r)

)
)]

= M1‖p1‖
(
ψ1(r) + φ1(r)

)
+ M2‖p2‖

(
ψ2(r) + φ2(r)

)

and

∣
∣h2(x, y)(t)

∣
∣ ≤ M3‖p1‖

(
ψ1(r) + φ1(r)

)
+ M4‖p2‖

(
ψ2(r) + φ2(r)

)
.

Thus,

∥
∥h1(x, y)

∥
∥ ≤ M1‖p1‖

(
ψ1(r) + φ1(r)

)
+ M2‖p2‖

(
ψ2(r) + φ2(r)

)

and

∥
∥h2(x, y)

∥
∥ ≤ M3‖p1‖

(
ψ1(r) + φ1(r)

)
+ M4‖p2‖

(
ψ2(r) + φ2(r)

)
.

Hence we obtain

∥
∥(h1, h2)

∥
∥ =

∥
∥h1(x, y)

∥
∥ +

∥
∥h2(x, y)

∥
∥

≤ (M1 + M3)‖p1‖
(
ψ1(r) + φ1(r)

)
+ (M2 + M4)‖p2‖

(
ψ2(r) + φ2(r)

)
.

Next, we show that K is equicontinuous. Let t1, t2 ∈ [0, T] with t1 < t2. Then there exist
f ∈ SF ,(x,y), g ∈ SG,(x,y) such that

h1(x, y)(t) = Iαf (t) +
1
Λ

[

–λTβ–1Iβ–pg(η) + λ
Γ (β)

Γ (β – p)
ηβ–p–1(γ Iq+αf (ξ ) – Iβg(T)

)
]

and

h2(x, y)(t) = Iβg(t) +
tβ–1

Λ

[

Iβg(T) – γ Iq+αf (ξ ) – λγ
ξ q

Γ (1 + q)
Iβ–pg(η)

]

.

Then we have

∣
∣h1(x, y)(t2) – h1(x, y)(t1)

∣
∣

≤ ‖p1‖
(
ψ1(r) + φ1(r)

)
∣
∣
∣
∣

1
Γ (α)

∫ t2

0
(t2 – s)α–1 ds –

1
Γ (α)

∫ t1

0
(t1 – s)α–1 ds

∣
∣
∣
∣

≤ ‖p1‖(ψ1(r) + φ1(r))
Γ (α)

{∫ t1

0

[
(t2 – s)α–1 – (t1 – s)α–1]ds +

∫ t2

t1

(t2 – s)α–1 ds
}

≤ ‖p1‖(ψ1(r) + φ1(r))
Γ (α + 1)

[
2(t2 – t1)α +

∣
∣tα

2 – tα
1
∣
∣
]
.



Ntouyas and Al-Sulami Advances in Difference Equations         (2020) 2020:73 Page 14 of 21

Analogously, we can obtain
∣
∣h2(x, y)(t2) – h2(x, y)(t1)

∣
∣

≤ ‖p2‖
(
ψ2(r) + φ2(r)

)
[

Tβ

Γ (1 + β)
+ |λ||γ | ξ qηβ–p

Γ (1 + q)Γ (β – p + 1)

]
tβ–1
2 – tβ–1

1
|Λ|

+ ‖p1‖
(
ψ1(r) + φ1(r)

) |γ |ξ q+α

Γ (q + α + 1)
tβ–1
2 – tβ–1

1
|Λ|

+
‖p2‖(ψ2(r) + φ2(r))

Γ (β + 1)
[
2(t2 – t1)β +

∣
∣tβ

2 – tβ
1
∣
∣
]
.

Therefore, the operatorK(x, y) is equicontinuous, and thus, by the Ascoli–Arzelá theorem,
the operator K(x, y) is completely continuous. We know from [35, Proposition 1.2] that a
completely continuous operator is upper semicontinuous if it has a closed graph. Thus
we need to prove that K has a closed graph. Let (xn, yn) → (x∗, y∗), (hn, h̄n) ∈ K(xn, yn)
and (hn, h̄n) → (h∗, h̄∗), then we need to show (h∗, h̄∗) ∈ K(x∗, y∗). Observe that (hn, h̄n) ∈
K(xn, yn) implies that there exist fn ∈ SF ,(xn ,yn) and gn ∈ SG,(xn ,yn) such that

hn(xn, yn)(t)

= Iαfn(t) +
1
Λ

[

–λTβ–1Iβ–pgn(η) + λ
Γ (β)

Γ (β – p)
ηβ–p–1(γ Iq+αfn(ξ ) – Iβgn(T)

)
]

and

h̄n(xn, yn)(t) = Iβgn(t) +
tβ–1

Λ

[

Iβgn(T) – γ Iq+αfn(ξ ) – λγ
ξ q

Γ (1 + q)
Iβ–pgn(η)

]

.

Let us consider the continuous linear operators Φ1,Φ2 : L1([0, T], X×X) → C([0, T], X×
X) given by

Φ1(x, y)(t) = Iαf (t) +
1
Λ

[

–λTβ–1Iβ–pg(η) + λ
Γ (β)

Γ (β – p)
ηβ–p–1(γ Iq+αf (ξ ) – Iβg(T)

)
]

and

Φ2(x, y)(t) = Iβg(t) +
tβ–1

Λ

[

Iβg(T) – γ Iq+αf (ξ ) – λγ
ξ q

Γ (1 + q)
Iβ–pg(η)

]

.

From [38] we know that (Φ1,Φ2) ◦ (SF , SG) is a closed graph operator. Further, we have
(hn, h̄n) ∈ (Φ1,Φ2) ◦ (SF ,(xn ,yn), SG,(xn ,yn)) for all n. Since (xn, yn) → (x∗, y∗), (hn, h̄n) → (h∗, h̄∗)
it follows that f∗ ∈ SF ,(x,y) and g∗ ∈ SG,(x,y) such that

h∗(x∗, y∗)(t)

= Iαf∗(t) +
1
Λ

[

–λTβ–1Iβ–pg∗(η) + λ
Γ (β)

Γ (β – p)
ηβ–p–1(γ Iq+αf∗(ξ ) – Iβg∗(T)

)
]

and

h̄∗(x∗, y∗)(t) + Iβg∗(t) +
tβ–1

Λ

[

Iβg∗(T) – γ Iq+αf∗(ξ ) – λγ
ξ q

Γ (1 + q)
Iβ–pg∗(η)

]

,

that is, (hn, h̄n) ∈K(x∗, y∗).



Ntouyas and Al-Sulami Advances in Difference Equations         (2020) 2020:73 Page 15 of 21

Finally, we establish the a priori bounds on solutions. Let (x, y) ∈ νK(x, y). Then there
exist f ∈ SF ,(x,y) and g ∈ SG,(x,y) such that

x(t) = νIαf (t) + ν
1
Λ

[

–λTβ–1Iβ–pg(η) + λ
Γ (β)

Γ (β – p)
ηβ–p–1(γ Iq+αf (ξ ) – Iβg(T)

)
]

and

y(t) = νIβg(t) + ν
tβ–1

Λ

[

Iβg(T) – γ Iq+αf (ξ ) – λγ
ξ q

Γ (1 + q)
Iβ–pg(η)

]

.

For each t ∈ [0, T], we obtain

‖x‖ ≤ M1‖p1‖
(
ψ1

(‖x‖) + φ1
(‖y‖)) + M2‖p2‖

(
ψ2

(‖x‖) + φ2
(‖y‖))

and

‖y‖ ≤ M3‖p1‖
(
ψ1

(‖x‖) + φ1
(‖y‖)) + M4‖p2‖

(
ψ2

(‖x‖) + φ2
(‖y‖)),

following the same arguments as in the second step.
Thus

∥
∥(x, y)

∥
∥ = ‖x‖ + ‖y‖

≤ (M1 + M3)‖p1‖
(
ψ1

(‖x‖) + φ1
(‖y‖))

+ (M2 + M4)‖p2‖
(
ψ2

(‖x‖) + φ2
(‖y‖)),

which implies that

‖(x, y)‖
(M1 + M3)‖p1‖(ψ1(‖x‖) + φ1(‖y‖)) + (M2 + M4)‖p2‖(ψ2(‖x‖) + φ2(‖y‖))

≤ 1.

In view of (B3), there exists N such that ‖(x, y)‖ �= N . Let us set

U =
{

(x, y) ∈ X × X :
∥
∥(x, y)

∥
∥ < N

}
.

Note that the operator K : U → Pcp,cv(X) ×Pcp,cv(X) is completely continuous and upper
semicontinuous. There is no (x, y) ∈ ∂U such that (x, y) ∈ νK(x, y) for some ν ∈ (0, 1) by the
choice of U . Hence, by the nonlinear alternative of Leray–Schauder type [37], we deduce
that K has a fixed point (x, y) ∈ U , which is a solution of coupled system (1.2)–(1.3). This
completes the proof. �

3.2.2 The Lipschitz case
This subsection is concerned with the case when the multi-valued maps in system (1.2)
have non-convex values.

Let (X, d) be a metric space induced from the normed space (X;‖ · ‖), and let Hd :
P(X) × P(X) → R ∪ {∞} be defined by Hd(U , V ) = max{supu∈U d(u, V ), supv∈V d(U , v)},
where d(U , v) = infu∈U d(u, v) and d(u, V ) = infv∈V d(u, v). Then (Pb,cl(X), Hd) is a metric
space and (Pcl(X), Hd) is a generalized metric space (see [39]).
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Definition 3.6 A multi-valued operator G : X → Pcl(X) is called (i) γ -Lipschitz if and
only if there exists γ > 0 such that Hd(G(a),G(b)) ≤ γ d(a, b) for each a, b ∈ X; and (ii) a
contraction if and only if it is γ -Lipschitz with γ < 1.

In the forthcoming result, we make use of the fixed point theorem for multi-valued maps
due to Covitz and Nadler [40].

Theorem 3.7 If
(B3) F , G : [0, T] × R

2 → Pcp(R) are such that F(·, x, y) : [0, T] → Pcp(R) and G(·, x, y) :
[0, T] →Pcp(R) are measurable for each x, y ∈R;

(B4)

Hd(F(t, x, y), F(t, x̄, ȳ) ≤ m1(t)
(|x – x̄| + |y – ȳ|)

and

Hd(G(t, x, y), G(t, x̄, ȳ) ≤ m2(t)
(|x – x̄| + |y – ȳ|)

for almost all t ∈ [0, T] and x, y, x̄, ȳ ∈ R with m1, m2 ∈ C([0, T],R+) and d(0, F(t,
0, 0)) ≤ m1(t), d(0, G(t, 0, 0)) ≤ m2(t) for almost all t ∈ [0, T]

hold, then coupled system (1.2)–(1.3) has at least one solution on [0, T] provided that

(M1 + M3)‖m1‖ + (M2 + M4)‖m2‖ < 1. (3.14)

Proof The sets SF ,(x,y) and SG,(x,y) are nonempty for each (x, y) ∈ X × Y by assumption (B3),
so F and G have measurable selections (see Theorem III.6 in [41]). Now we show that the
operator K satisfies the assumptions of Covitz and Nadler’s fixed point theorem [40].

First we show thatK(x, y) ∈Pcl(X)×Pcl(X) for each (x, y) ∈ X ×X. Let (hn, h̄n) ∈K(xn, yn)
such that (hn, h̄n) → (h, h̄) in X × X. Then (h, h̄) ∈ X × X and there exist fn ∈ SF ,(xn ,yn) and
gn ∈ SG,(xn ,yn) such that

hn(xn, yn)(t)

= Iαfn(t) +
1
Λ

[

–λTβ–1Iβ–pgn(η) + λ
Γ (β)

Γ (β – p)
ηβ–p–1(Iβgn(T) – γ Iq+αfn(ξ )

)
]

and

h̄n(xn, yn)(t) = Iβgn(t) +
tβ–1

Λ

[

Iβgn(T) – γ Iq+αfn(ξ ) – λγ
ξ q

Γ (1 + q)
Iβ–pgn(η)

]

.

Since F and G have compact values, we pass onto subsequences (denoted as sequences)
to get that fn and gn converge to f and g in L1([0, T],R) respectively. Thus f ∈ SF ,(x,y) and
g ∈ SG,(x,y) for each t ∈ [0, T] and that

hn(xn, yn)(t) → h(x, y)(t)

= Iαf (t) +
1
Λ

[

–λTβ–1Iβ–pg(η) + λ
Γ (β)

Γ (β – p)
ηβ–p–1(γ Iq+αf (ξ ) – Iβg(T)

)
]

,
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and

h̄n(xn, yn)(t) → h̄(x, y)(t)

= Iβg(t) +
tβ–1

Λ

[

Iβg(T) – γ Iq+αf (ξ ) – λγ
ξ q

Γ (1 + q)
Iβ–pg(η)

]

.

Hence (h, h̄) ∈K, which implies that K is closed.
Next we show that there exists θ̂ < 1 (defined by (3.14)) such that

Hd
(
K(x, y),K(x̄, ȳ)

) ≤ θ̂
(‖x – x̄‖ + ‖y – ȳ‖) for each x, x̄, y, ȳ ∈ X.

Let (x, x̄), (y, ȳ) ∈ X × X and (h1, h̄1) ∈ K(x, y). Then there exist f1 ∈ SF ,(x,y) and g1 ∈ SG,(x,y)

such that, for each t ∈ [0, T], we have

h1(xn, yn)(t)

= Iαf1(t) +
1
Λ

[

–λTβ–1Iβ–pg1(η) + λ
Γ (β)

Γ (β – p)
ηβ–p–1(Iβg1(T) – γ Iq+αf1(ξ )

)
]

and

h̄1(xn, yn)(t) = Iβg1(t) +
tβ–1

Λ

[

Iβg1(T) – γ Iq+αf1(ξ ) – λγ
ξ q

Γ (1 + q)
Iβ–pg1(η)

]

.

By (B4), we have

Hd
(
F(t, x, y), F(t, x̄, ȳ)

) ≤ m1(t)
(∣
∣x(t) – x̄(t)

∣
∣ +

∣
∣y(t) – ȳ(t)

∣
∣
)

and

Hd
(
G(t, x, y), G(t, x̄, ȳ)

) ≤ m2(t)
(∣
∣x(t) – x̄(t)

∣
∣ +

∣
∣y(t) – ȳ(t)

∣
∣
)
.

So, there exist f ∈ F(t, x(t), y(t)) and g ∈ G(t, x(t), y(t)) such that

∣
∣f1(t) – w

∣
∣ ≤ m1(t)

(∣
∣x(t) – x̄(t)

∣
∣ +

∣
∣y(t) – ȳ(t)

∣
∣
)

and

∣
∣g1(t) – z

∣
∣ ≤ m2(t)

(∣
∣x(t) – x̄(t)

∣
∣ +

∣
∣y(t) – ȳ(t)

∣
∣
)
.

Define V1, V2 : [0, T] →P(R) by

V1(t) =
{

f ∈ L1([0, T],R
)

:
∣
∣f1(t) – w

∣
∣ ≤ m1(t)

(∣
∣x(t) – x̄(t)

∣
∣ +

∣
∣y(t) – ȳ(t)

∣
∣
)}

and

V2(t) =
{

g ∈ L1([0, T],R
)

:
∣
∣g1(t) – z

∣
∣ ≤ m2(t)

(∣
∣x(t) – x̄(t)

∣
∣ +

∣
∣y(t) – ȳ(t)

∣
∣
)}

.
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Since the multi-valued operators V1(t) ∩ F(t, x(t), y(t)) and V2(t) ∩ G(t, x(t), y(t)) are mea-
surable (Proposition III.4 in [41]), there exist functions f2(t), g2(t) which are a measur-
able selection for V1, V2 and f2(t) ∈ F(t, x(t), y(t)), g2(t) ∈ G(t, x(t), y(t)) such that, for a.e.
t ∈ [0, T], we have

∣
∣f1(t) – f2(t)

∣
∣ ≤ m1(t)

(∣
∣x(t) – x̄(t)

∣
∣ +

∣
∣y(t) – ȳ(t)

∣
∣
)

and

∣
∣g1(t) – g2(t)

∣
∣ ≤ mg(t)

(∣
∣x(t) – x̄(t)

∣
∣ +

∣
∣y(t) – ȳ(t)

∣
∣
)
.

Let

h2(xn, yn)(t)

= Iαf2(t) +
1
Λ

[

–λTβ–1Iβ–pg2(η) + λ
Γ (β)

Γ (β – p)
ηβ–p–1(Iβg2(T) – γ Iq+αf2(ξ )

)
]

and

h̄2(xn, yn)(t) = Iβg2(t) +
tβ–1

Λ

[

Iβg2(T) – γ Iq+αf2(ξ ) – λγ
ξ q

Γ (1 + q)
Iβ–pg2(η)

]

.

Thus,

∣
∣h1(x, y)(t) – h2(x, y)(t)

∣
∣

≤ Iα
∣
∣f1(s) – f2(s)

∣
∣(t) +

1
|Λ|

[

|λ|Tβ–1Iβ–p∣∣g1(s) – g2(s)
∣
∣(η)

+ |λ| Γ (β)
Γ (β – p)

ηβ–p–1(Iβ
∣
∣g1(s) – g2(s)

∣
∣(T) + |γ |Iq+α

∣
∣f1(s) – f2(s)

∣
∣(ξ )

)
]

≤ Iαm1(s)
(∣
∣x(s) – x̄(s)

∣
∣ +

∣
∣y(s) – ȳ(s)

∣
∣
)
(t)

+
1

|Λ|
[

|λ|Tβ–1Iβ–pm2(s)
(∣
∣x(s) – x̄(s)

∣
∣ +

∣
∣y(s) – ȳ(s)

∣
∣
)
(η)

+ |λ| Γ (β)
Γ (β – p)

ηβ–p–1(Iβm2(s)
(∣
∣x(s) – x̄(s)

∣
∣ +

∣
∣y(s) – ȳ(s)

∣
∣
)
(T)

+ |γ |Iq+αm1(s)
(∣
∣x(s) – x̄(s)

∣
∣ +

∣
∣y(s) – ȳ(s)

∣
∣
)
(ξ )

)
]

≤ M1‖m1‖
(‖x – x̄‖ + ‖y – ȳ‖) + M2‖m2‖

(‖x – x̄‖ + ‖y – ȳ‖).

Hence

∥
∥h1(x, y) – h2(x, y)

∥
∥ ≤ (

M1‖m1‖ + M2‖m2‖
)(‖x – x̄‖ + ‖y – ȳ‖).

In a similar manner, we can establish that

∥
∥h̄1(x, y) – h̄2(x, y)

∥
∥ ≤ (

M3‖m1‖ + M4‖m2‖
)(‖x – x̄‖ + ‖y – ȳ‖).
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Thus

∥
∥(h1, h̄1), (h2, h̄2)

∥
∥ ≤ [

(M1 + M3)‖m1‖ + (M2 + M4)‖m2‖
](‖x – x̄‖ + ‖y – ȳ‖).

Analogously, interchanging the roles of (x, y) and (x̄, ȳ), we can obtain

Hd
(
T(x, y), T(x̄, ȳ)

) ≤ [
(M1 + M3)‖m1‖ + (M2 + M4)‖m2‖

](‖x – x̄‖ + ‖y – ȳ‖).

Therefore K is a contraction in view of assumption (3.14). Hence it follows by Covitz and
Nadler’s fixed point theorem [40] that K has a fixed point (x, y), which is a solution of
problem (1.2)–(1.3). This completes the proof. �

4 Conclusion
In the present research we studied the existence of solutions for coupled fractional dif-
ferential equations and inclusions involving fractional derivatives of different orders and
supplemented with nonlocal boundary conditions containing fractional derivative and in-
tegral. In the single-valued case we establish existence and uniqueness of solutions by
applying the Leray–Schauder alternative and the Banach contraction mapping principle
respectively. In the multi-valued case we proved existence results for both convex and
non-convex multi-valued maps via the nonlinear alternative for Kakutani maps and Covitz
and Nadler’s fixed point theorem. Examples illustrating the obtained results are also con-
structed.
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