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Abstract
Novel explicit wave solutions are constructed for the Kudryashov–Sinelshchikov (KS)
equation through liquid–gas bubbles mix under the thermodynamic conditions.
A new fractional definition (Atangana–Baleanu derivative operator) is employed
through the modified Khater method to get new wave solutions in distinct types of
this model that is used to describe the phenomena of pressure waves through
liquid–gas bubbles mix under the thermodynamic conditions. The stability property
of the obtained solutions is tested to show the ability of our obtained solutions
through the physical experiments. The novelty and advantage of the proposed
method are illustrated by applying to this model. Some sketches are plotted to show
more about the dynamical behavior of this model.
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1 Introduction
Nowadays, many natural phenomena have been derived in nonlinear partial differen-
tial equations with an integer order. These models are included in various and distinct
branches of science such as chemistry, physics, biology, engineering, economy, etc. How-
ever, using the integer order of these models is not sufficient where the nonlocal property
does not appear in these formulas so that many models have been formulated in fractional
nonlinear partial differential equations specially to discover that kind of property. Study-
ing these models gives more novel properties of them specially by using the computational
and numerical schemes. For using most of these schemes, one needs fractional opera-
tors to convert the fractional formulas to nonlinear ordinary differential equations with
integer order such as Caputo, Caputo–Fabrizio definition, fractional Riemann–Liouville
derivatives, conformable fractional derivative, and so on [1–15]. These fractional opera-
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tors have been employed to investigate the exact and numerical solutions of many phe-
nomena. These solutions have been obtained in explicit formulas by using different ana-
lytical schemes such as [16–25].

Recently, the mK method has been formulated and applied to distinct physical mod-
els such as the (2 + 1)-dimensional KD equation, the complex Ginzburg–Landau model,
KdV equation, the fractional (N + 1) Sinh–Gordon, biological population, equal width,
modified equal width, Duffing equations, and so on [26–35].

This method depends on a new auxiliary equation, which is equal to the auxiliary equa-
tion of the main future of the modified mathematical technique [36]. The auxiliary equa-
tion of the mK method is given by

E ′(ϕ) =
1

ln(Q)
[
δQE(℘) + �Q–E(℘) + χ

]
, (1)

where δ, �, χ , Q are arbitrary constants; whereas the auxiliary equation of the extended
exponential-expansion function method is given by

Ψ ′2(℘) = β1Ψ
2(℘) + β2Ψ

3(℘) + β3Ψ
4(℘), (2)

where βi (i = 1, 2, 3) are arbitrary constants. So Eqs. (1) and (2) are equal when [QE(℘) =
Ψ (℘), � = 0, β1 = χ2, β2 = 2δχ , β3 = δ2]. Using this technique leads to the equality of
the mK auxiliary equation with many other analytical methods, but the mK method can
obtain more solutions than most of them. This equivalence shows superiority, power, and
productivity of the mK method.

In this context, the mK method is employed to construct new formulas of solutions for
the fractional nonlinear KS equation, which is given by [37–43]:

Dϑ
x St + λSSx + Sxxx – α(SSxx)x – μSxSxx – βSxx – σ (SSx)x = 0, (3)

where [S = S(x, t)] is the function that is used to describe the dynamical behavior of the
nonlinear wave processes in a liquid containing gas bubbles. Additionally, [λ, α, μ, β , σ ]
are arbitrary constants while [ϑ ∈ ]0, 1[]. This equation was defined by Kudryashov and
Sinelshchikov in 2010 to describe the nonlinear wave processes in a liquid containing gas
bubbles. This equation is also considered as a general form of the well-known models KdV
and KdV–Burger equations under the following conditions:

• For [μ = α = σ = β = 0], Eq. (3) equals the well-known Korteweg–de Vries equation.
• For [α = μ = σ = 0], Eq. (3) equals the well-known Korteweg–de Vries Burgers

equation.
• For [λ = α = 1, β = σ = 0], Eq. (3) equals the generalized Korteweg–de Vries equation.

1.1 Fractional ABR operator
The ABR fractional operator is given by [44–48]

ABRDϑ
a+F (t) =

B(ϑ)
1 – ϑ

d
dt

∫ t

a
F (x)Gϑ

(
–ϑ(t – ϑ)ϑ

1 – ϑ

)
dx, (4)
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where Gϑ is the Mittag-Leffler function, defined by the following formula:

Gϑ

(
–ϑ(t – ϑ)ϑ

1 – ϑ

)
=

∞∑

n=0

( –ϑ
1–ϑ

)n(t – x)ϑn

Γ (ϑn + 1)
,

and B(ϑ) is a normalization function. Thus

ABRDϑ
a+F (x) =

B(ϑ)
1 – ϑ

∞∑

n=0

(
–ϑ

1 – ϑ

)n
RLIϑn

a F (x). (5)

For further properties of this fractional operator, you can see [44, 49, 50]. This leads to

S(x, t) = S(℘), ℘ = x +
c(1 – ϑ)t–ϑn

B(ϑ)
∑∞

n=0(– ϑ
1–ϑ

)nΓ (1 – ϑn)
,

where c is an arbitrary constant. This wave transformation converts Eq. (3) to ODE. Inte-
gration of the obtained ODEs once with zero constant of the integration gives

cS +
λ

2
S2 + S ′′ – αSS ′′ –

μ

2
S ′2 – βS ′ – σSS ′ = 0. (6)

Calculating the homogeneous balance value in Eq. (6) yields N = 2. Thus, the general for-
mula of solution according to the mK method is given by

S(℘) =
N∑

i=1

aiQiE(℘) +
N∑

i=1

biQ–iE(℘) + a0

= a2Q2E(℘) + a1QE(℘) + a0 + b1Q–E(℘) + b2Q–2E(℘), (7)

where a0, a1, a2, b1, b2 are arbitrary constants.
The rest of this article is arranged in the following order. In Sect. 2 we apply the mK

method to the nonlinear fractional nonlinear (2 + 1)-BLMP equation. Moreover, some
sketches are given to show more physical properties of both models. Section 4 discusses
the stability property of the obtained solutions. Section 5 gives the conclusion of the whole
research.

2 Abundant wave solutions of the fractional KS equation
Applying the mK method with its auxiliary equation and the suggested general solutions
for the fractional KS equation leads to a system of algebraic equations. Using Mathemat-
ica 11.2 to find the values of the parameters in this system leads to the following:

Family I
[

a1 → a2(μχ + 3σ )
δμ

, b1 → 0, b2 → 0,

λ → –
4δ2(a0μ + 3)

a2
+

8δμ�

3
+

15σ 2

μ
+

μχ2

3
+ 6σχ ,α → –

μ

3
,

where (δ �= 0,μ �= 0, a2 �= 0)
]

.

Consequently, the closed forms of solutions for the fractional KS model are given by:
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When [χ2 – 4δ� < 0 & δ �= 0]

S1 = a0 –
1

4δ2μ

[
a2

(
μ

(
χ2 – 4δ�

)

× tan2
(

1
2
√

4δ� – χ2
(

x –
(ϑ – 1)ct–2ϑ

B(ϑ)
∑∞

n=0(– ϑ
1–ϑ

)nΓ (1 – ϑn)

))

– 6σ
√

4δ� – χ2 tan

(
1
2
√

4δ� – χ2
(

x –
(ϑ – 1)ct–2ϑ

B(ϑ)
∑∞

n=0(– ϑ
1–ϑ

)nΓ (1 – ϑn)

))

+ χ (μχ + 6σ )
)]

, (8)

S2 = a0 –
1

4δ2μ

[
a2

(
μ

(
χ2 – 4δ�

)

× cot2
(

1
2
√

4δ� – χ2
(

x –
(ϑ – 1)ct–2ϑ

B(ϑ)
∑∞

n=0(– ϑ
1–ϑ

)nΓ (1 – ϑn)

))

– 6σ
√

4δ� – χ2 cot

(
1
2
√

4δ� – χ2
(

x –
(ϑ – 1)ct–2ϑ

B(ϑ)
∑∞

n=0(– ϑ
1–ϑ

)nΓ (1 – ϑn)

))

+ χ (μχ + 6σ )
)]

. (9)

When [χ2 – 4δ� > 0 & δ �= 0]

S3 = a0 –
1

4δ2μ

[
a2

(
μ

(
4δ� – χ2)

× tanh2
(

1
2
√

χ2 – 4δ�

(
x –

(ϑ – 1)ct–2ϑ

B(ϑ)
∑∞

n=0(– ϑ
1–ϑ

)nΓ (1 – ϑn)

))

+ 6σ
√

χ2 – 4δ� tanh

(
1
2
√

χ2 – 4δ�

(
x –

(ϑ – 1)ct–2ϑ

B(ϑ)
∑∞

n=0(– ϑ
1–ϑ

)nΓ (1 – ϑn)

))

+ χ (μχ + 6σ )
)]

, (10)

S4 = a0 –
1

4δ2μ

[
a2

(
μ

(
4δ� – χ2)

× coth2
(

1
2
√

χ2 – 4δ�

(
x –

(ϑ – 1)ct–2ϑ

B(ϑ)
∑∞

n=0(– ϑ
1–ϑ

)nΓ (1 – ϑn)

))

+ 6σ
√

χ2 – 4δ� coth

(
1
2
√

χ2 – 4δ�

(
x –

(ϑ – 1)ct–2ϑ

B(ϑ)
∑∞

n=0(– ϑ
1–ϑ

)nΓ (1 – ϑn)

))

+ χ (μχ + 6σ )
)]

. (11)

When [δ� > 0 & � �= 0 & δ �= 0 & χ = 0]

S5 = a0 +
1

δ2μ

[
a2 tan

(√
δ�

(
x –

(ϑ – 1)ct–2ϑ

B(ϑ)
∑∞

n=0(– ϑ
1–ϑ

)nΓ (1 – ϑn)

))

×
(

δμ� tan

(√
δ�

(
x –

(ϑ – 1)ct–2ϑ

B(ϑ)
∑∞

n=0(– ϑ
1–ϑ

)nΓ (1 – ϑn)

))
+ 3σ

√
δ�

)]
, (12)
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S6 = a0 +
1

δ2μ

[
a2 cot

(√
δ�

(
x –

(ϑ – 1)ct–2ϑ

B(ϑ)
∑∞

n=0(– ϑ
1–ϑ

)nΓ (1 – ϑn)

))

×
(

δμ� cot

(√
δ�

(
x –

(ϑ – 1)ct–2ϑ

B(ϑ)
∑∞

n=0(– ϑ
1–ϑ

)nΓ (1 – ϑn)

))
– 3σ

√
δ�

)]
. (13)

When [δ� < 0 & � �= 0 & δ �= 0 & χ = 0]

S7 = a0 –
a2

δ2μ
tanh

(√
–δ�

(
x –

(ϑ – 1)ct–2ϑ

B(ϑ)
∑∞

n=0(– ϑ
1–ϑ

)nΓ (1 – ϑn)

))

×
(

δμ� tanh

(√
–δ�

(
x –

(ϑ – 1)ct–2ϑ

B(ϑ)
∑∞

n=0(– ϑ
1–ϑ

)nΓ (1 – ϑn)

))
+ 3σ

√
–δ�

)
, (14)

S8 = a0 –
a2

δ2μ
coth

(√
–δ�

(
x –

(ϑ – 1)ct–2ϑ

B(ϑ)
∑∞

n=0(– ϑ
1–ϑ

)nΓ (1 – ϑn)

))

×
(

δμ� coth

(√
–δ�

(
x –

(ϑ – 1)ct–2ϑ

B(ϑ)
∑∞

n=0(– ϑ
1–ϑ

)nΓ (1 – ϑn)

))
+ 3σ

√
–δ�

)
. (15)

When [χ = 0 & � = –δ]

S9 = (μ�)–1
(

exp

(
2�

(
x –

(ϑ – 1)ct–2ϑ

B(ϑ)
∑∞

n=0(– ϑ
1–ϑ

)nΓ (1 – ϑn)

))
– 1

)–2

×
[(

a2(μ� – 3σ ) + a0μ�
)

exp

(
4�

(
x –

(ϑ – 1)ct–2ϑ

B(ϑ)
∑∞

n=0(– ϑ
1–ϑ

)nΓ (1 – ϑn)

))

– 2(a0 – a2)μ� exp

(
2�

(
x –

(ϑ – 1)ct–2ϑ

B(ϑ)
∑∞

n=0(– ϑ
1–ϑ

)nΓ (1 – ϑn)

))

+ a0μ� + a2μ� + 3a2σ

]
. (16)

When [χ = δ = κ & � = 0]

S10 = a0 +
a2

4

[
12σ

κμ

(
1

1 – exp(κ(x – (ϑ–1)ct–2ϑ

B(ϑ)
∑∞

n=0(– ϑ
1–ϑ

)nΓ (1–ϑn)
))

– 1
)

+ csch2
(

κ

2

(
x –

(ϑ – 1)ct–2ϑ

B(ϑ)
∑∞

n=0(– ϑ
1–ϑ

)nΓ (1 – ϑn)

))]
. (17)

When [� = 0 & χ �= 0 & δ �= 0]

S11 = a0 +
a2χ

δ2

[
2(μχ – 3σ )

μ(δ exp(χ (x – (ϑ–1)ct–2ϑ

B(ϑ)
∑∞

n=0(– ϑ
1–ϑ

)nΓ (1–ϑn)
)) – 2)

+
4χ

(δ exp(χ (x – (ϑ–1)ct–2ϑ

B(ϑ)
∑∞

n=0(– ϑ
1–ϑ

)nΓ (1–ϑn)
)) – 2)2

–
3σ

μ

]
. (18)
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When [χ = � = 0 & δ �= 0]

S12 =
a2(1 –

3σ (x– (ϑ–1)ct–2ϑ

B(ϑ)
∑∞

n=0(– ϑ
1–ϑ

)nΓ (1–ϑn)
)

μ
)

δ2(x – (ϑ–1)ct–2ϑ

B(ϑ)
∑∞

n=0(– ϑ
1–ϑ

)nΓ (1–ϑn)
)2

+ a0. (19)

When [χ = 0 & � = δ]

S13 = a0 +
1

μ�

[
a2 tan

(
–

(α – 1)c�t–2ϑ

B(ϑ)
∑∞

n=0(– ϑ
1–ϑ

)nΓ (1 – ϑn)
+ C + x�

)

×
(

μ� tan

(
�

(
x –

(ϑ – 1)ct–2ϑ

B(ϑ)
∑∞

n=0(– ϑ
1–ϑ

)nΓ (1 – ϑn)

)
+ C

)
+ 3σ

)]
.

(20)

When [χ2 – 4δ� = 0]

S14 = a0 +
1

δμχ4(xB(ϑ)t2ϑ (
∑∞

n=0(– ϑ
1–ϑ

)nΓ (1 – ϑn)) – αc + c)2

×
[

2a2�

(

(α – 1)cχ – B(ϑ)t2ϑ (χx + 2)
∞∑

n=0

(
–

ϑ

1 – ϑ

)n

Γ (1 – ϑn)

)

×
(

B(ϑ)t2ϑ

( ∞∑

n=0

(
–

ϑ

1 – ϑ

)n

Γ (1 – ϑn)

)
(
–
(
2δμ�(χx + 2) – χ2x(μχ + 3σ )

))

– (α – 1)cχ
(
χ (μχ + 3σ ) – 2δμ�

)
)]

. (21)

Family II

[
a0 → b2σ (μ(2δμ� + χ (μχ – 9σ )) + 18σ 2) – μ�2(βμ + 15σ )

6μ2σ�2 , a1 → 0, a2 → 0,

b1 → b2(μχ – 3σ )
μ�

,λ → 1
3

(
2�2(βμ – 3σ )

b2σ
+ 4δμ� +

9σ 2

μ
– μχ2

)
,α → –

μ

3
,

where
(

b2 �= 0,σ �= 0,μ �= 0,μ �= 3σ

χ
,β �= 3σ

μ

)]
.

Consequently, the closed forms of solutions for the fractional KS model are given by:
When [χ2 – 4δ� < 0 & δ �= 0]

S15 =
4b2δ

2

(χ –
√

4δ� – χ2 tan( 1
2�

√
4δ� – χ2))2

+
b2(μ(2δμ� + χ (μχ – 9σ )) + 18σ 2)

6μ2�2

+
6b2δσ – 2b2δμχ

μχ� – μ�
√

4δ� – χ2 tan( 1
2�

√
4δ� – χ2)

–
β

6σ
–

5
2μ

, (22)

S16 =
4b2δ

2

(χ –
√

4δ� – χ2 cot( 1
2�

√
4δ� – χ2))2

+
b2(μ(2δμ� + χ (μχ – 9σ )) + 18σ 2)

6μ2�2

+
6b2δσ – 2b2δμχ

μχ� – μ�
√

4δ� – χ2 cot( 1
2�

√
4δ� – χ2)

–
β

6σ
–

5
2μ

. (23)
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When [χ2 – 4δ� > 0 & δ �= 0]

S17 =
4b2δ

2

(
√

χ2 – 4δ� tanh( 1
2�

√
χ2 – 4δ�) + χ )2

+
b2(μ(2δμ� + χ (μχ – 9σ )) + 18σ 2)

6μ2�2

+
6b2δσ – 2b2δμχ

μ�
√

χ2 – 4δ� tanh( 1
2�

√
χ2 – 4δ�) + μχ�

–
β

6σ
–

5
2μ

, (24)

S18 =
4b2δ

2

(
√

χ2 – 4δ� coth( 1
2�

√
χ2 – 4δ�) + χ )2

+
b2(μ(2δμ� + χ (μχ – 9σ )) + 18σ 2)

6μ2�2

+
6b2δσ – 2b2δμχ

μ�
√

χ2 – 4δ� coth( 1
2�

√
χ2 – 4δ�) + μχ�

–
β

6σ
–

5
2μ

. (25)

When [δ� > 0 & � �= 0 & δ �= 0 & χ = 0]

S19 =
1

6μ2

[
2b2(δμ2�(3 cot2(�

√
δ�) + 1) – 9μσ

√
δ� cot(�

√
δ�) + 9σ 2)

�2

–
μ(βμ + 15σ )

σ

]
, (26)

S20 =
1

6μ2

[
2b2(δμ2�(3 tan2(�

√
δ�) + 1) + 9μσ

√
δ� tan(�

√
δ�) + 9σ 2)

�2

–
μ(βμ + 15σ )

σ

]
. (27)

When [δ� < 0 & � �= 0 & δ �= 0 & χ = 0]

S21 =
1

6μ2

[2b2(3δμ2� cot2(
√

δ�
√

�) + δμ2� – 9μσ
√

–δ� coth(�
√

–δ�) + 9σ 2)
�2

–
μ(βμ + 15σ )

σ

]
, (28)

S22 =
1

6μ2

[2b2(3δμ2� tan2(
√

δ�
√

�) + δμ2� – 9μσ
√

–δ� tanh(�
√

–δ�) + 9σ 2)
�2

–
μ(βμ + 15σ )

σ

]
. (29)

When [χ = 0 & � = –δ]

S23 =
1

6μ2

[
2b2(–μ2�2 + 3μ� tanh(��)(μ� tanh(��) – 3σ ) + 9σ 2)

�2

–
μ(βμ + 15σ )

σ

]
. (30)

When [χ = �

2 = κ & δ = 0]

S24 =
1
6

(
b2

( (κμ – 3σ )(κ( 12μ

eκ�–2 + μ) – 6σ )
4κ2μ2 +

6
(eκ� – 2)2

)
–

β

σ
–

15
μ

)
. (31)
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When [χ = δ = 0 & � �= 0]

S25 =
1

6μ2

[
6b2(μ2 – 3μ�σ + 3�2σ 2)

�2�2 –
μ(βμ + 15σ )

σ

]
. (32)

When [χ = 0 & � = δ]

S26 =
1

6μ2

[
2b2(3μ� cot(C + ��)(μ� cot(C + ��) – 3σ ) + μ2�2 + 9σ 2)

�2

–
μ(βμ + 15σ )

σ

]
. (33)

When [δ = 0 & χ �= 0 & � �= 0]

S27 =
1
6

(
b2

(
(μχ – 6σ )(μχ – 3σ )

μ2�2 +
18σχ – 6μχ2

μ�2 – μχ�e�χ
+

6χ2

(� – χe�χ )2

)

–
β

σ
–

15
μ

)
. (34)

When [χ2 – 4δ� = 0]

S28 =
1

12μ2�2

[
b2

(
μ

(
4δμ� –

χ (μχ (�χ (�χ + 4) – 8) + 36σ (�χ + 2))
(�χ + 2)2

)
+ 36σ 2

)

–
2μ�2(βμ + 15σ )

σ

]
. (35)

Here [� = x – (ϑ–1)ct–2ϑ

B(ϑ)
∑∞

n=0(– ϑ
1–ϑ

)nΓ (1–ϑn)
].

3 Figure interpretation
This section gives a physical interpretation of the shown figures as follows:

• Fig. 1 explains periodic breathes waves equations for Eq. (14) when [a0 = 2, a2 = 1,
c = –3, δ = –1, μ = 3, σ = 5, � = 4].

• Fig. 2 explains periodic solitary waves equations for Eq. (15) when [a0 = 2, a2 = 1,
c = –3, δ = –1, μ = 3, σ = 5, � = 4].

• Fig. 3 explains periodic solitary waves equations for Eq. (17) when [a0 = 2, a2 = 1,
c = –3, κ = –1, μ = 3, σ = 5].

Figure 1 Numerical simulations of Eq. (14) in three different types [a0 = 2, a2 = 1, c = –3, δ = –1, μ = 3, σ = 5,
� = 4]
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Figure 2 Numerical simulations of Eq. (15) in three different types for [a0 = 2, a2 = 1, c = –3, δ = –1, μ = 3,
σ = 5, � = 4]

Figure 3 Numerical simulations of Eq. (17) in three different types [a0 = 2, a2 = 1, c = –3, κ = –1, μ = 3, σ = 5]

4 Stability
This section of our research paper investigates one of the basic properties of any model. It
examines the stability property for the fractional nonlinear KS equation by using a Hamil-
tonian system. The momentum in the Hamiltonian system is given by the following for-
mula:

M =
1
2

∫
�

–�
S2(℘) d℘, (36)

where � is an arbitrary constant. Thus, the condition for stability is given in the following
condition:

∂M
∂c

∣
∣∣
∣
c=�

> 0, (37)

where c, � are arbitrary constants.
For an example of studying the stability of the solution of Eq. (3) by using (30) with the

following values of the constants [a0 = 1, a2 = –1, δ = –5, μ = 1
25 , σ = 1

15 , � = 5] yields

M =
1

15

∫ 5

–5

1
(2e50 cosh( 5c

t–
√

π t ) + e100 + 1)3

[
6e50

(
2
(
e200 – 1

)
sinh

(
5c

t –
√

π t

)

+ 2e50(e100 – 1
)

sinh

(
10c

t –
√

π t

)
+ 75

(
1 + 3e100 + e200) cosh

(
5c

t –
√

π t

)
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+ 2e50(38 + 37e100) cosh

(
10c

t –
√

π t

)
+ 25e100 cosh

(
15c

t –
√

π t

))

+ 74e300 + 684e200 + 666e100 + 76
]

dt. (38)

Thus, we obtain

∂M
∂c

∣
∣∣
∣
c=2

< 0. (39)

This means that this solution is unstable and, by applying the same steps to other obtained
solutions, the stability property of each one of them can be determined.

5 Conclusion
This research has successfully applied the modified Khater method with a new fractional
operator to the fractional nonlinear KS equation that is arising in the nonlinear wave pro-
cesses in a liquid containing gas bubbles. This new operator is used to avoid the disadvan-
tage of the other fractional operator. Distinct, solitary wave solutions have been obtained
for this equation. For more illustrations of the dynamical behavior of this kind of fluid,
some solutions have been sketched (Figs. 1, 2, 3) in three different formulas of each figure
(two, three-dimensional, and contour plots).
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