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Abstract
The main aim of this present paper is to establish fractional conformable inequalities
for the weighted and extended Chebyshev functionals. We present some special
cases of our main result in terms of the Riemann–Liouville fractional integral operator
and classical inequalities.
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1 Introduction
Fractional calculus is the study of integrals and derivatives of arbitrary order which was
a natural outgrowth of conventional definitions of calculus integral and derivative. In all
areas of sciences, especially in mathematics, fractional calculus is a developing field with
deep applications, though the idea was introduced more than three hundred years ago.
Many theories of mathematics applicable to the study of fractional calculus were emerging
at the end of the 19th century.

Fractional integral has been widely studied in the literature. The idea has been de-
fined by many mathematicians with slightly different formulas, for example, Riemann–
Liouville, Weyl, Erdélyi–Kober, Hadamard integral, and Liouville and Katugampola frac-
tional integrals [21, 25, 26, 28, 34]. In the last few years, Khalil et al. [27] and Adeljawad
[1] established a new class of fractional derivatives and integrals, called fractional con-
formable derivatives and integrals. Jarad et al. [23] introduced the fractional conformable
integral operators. Based on that notion, one obtains generalizations of the Hadamard,
Hermite–Hadamard, Opial, Grüss, Ostrowski, and Chebyshev inequalities, among oth-
ers [2, 9, 14, 22, 35, 36, 39]). Furthermore, Set et al. [40–44] have contributed significant
investigations in this direction. To study the further recent analysis for such a type of in-
equalities, the interested reader is referred to [5, 18, 24, 32, 33].
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In [7], the Chebyshev functional for two integrable functions f and g on [a, b] is defined
as

T (f , g) =
1

b – a

∫ b

a
f (τ )g(τ ) dτ –

1
b – a

(∫ b

a
f (τ ) dτ

)
1

b – a

(∫ b

a
g(τ ) dτ

)
. (1)

In [3, 4, 15, 17], the applications and several inequalities related to (1) are found. In ([10],
also see [7]), the Chebyshev functional is defined by

T (f , g, h) =
∫ b

a
h(τ ) dτ

∫ b

a
h(τ )f (τ )g(τ ) dτ –

∫ b

a
h(τ )f (τ ) dτ

∫ b

a
h(τ )g(τ ) dτ , (2)

where f and g are integrable on [a, b] and h is a positive and integrable function on [a, b].
Applications of the functional defined in (2) are found in probability and statistical prob-
lems. Further applications in differential and integral equations are found in [6, 16, 31].
Elezovic et al. [19] defined

∣∣T (f , g, h)
∣∣ ≤ 1

2

(∫ b

a

∫ b

a
h(θ )h(ϑ)|θ – ϑ | 1

p′ + 1
q′

∣∣∣∣
∫ θ

ϑ

∣∣f ′(τ )
∣∣p dτ

∣∣∣∣
r
p

dθ dϑ

) 1
r

×
(∫ b

a

∫ b

a
h(θ )h(ϑ)|θ – ϑ | 1

p′ + 1
q′

∣∣∣∣
∫ θ

ϑ

∣∣g ′(τ )
∣∣q dτ

∣∣∣∣
r
q

dθ dϑ

) 1
r′

≤ 1
2
∥∥f ′∥∥∥∥g ′∥∥

(∫ b

a

∫ b

a
h(θ )h(ϑ)|θ – ϑ | 1

p′ + 1
q′ dθ dϑ

)
, (3)

where f ′ ∈ Lp([a, b]), g ′ ∈ Lq([a, b]), p, q, r > 1, 1
p + 1

p′ = 1, 1
q + 1

q′ = 1 and 1
r + 1

r′ = 1. In [13],
the authors defined the following fractional integral inequality for Chebyshev functionals:

2
∣∣Iαh(τ )Iαhfg(τ ) – Iαhf (τ )Iαhg(τ )

∣∣

≤ ‖f ′‖p‖g ′‖q

Γ 2(α)

∫ τ

0

∫ τ

0
(τ – θ )α–1(τ – ϑ)α–1|θ – ϑ |h(θ )h(ϑ) dθ dϑ , (4)

where f ′ ∈ Lp([0,∞[), g ′ ∈ Lq([0,∞[), p, q > 1, 1
p + 1

q = 1.
Let us consider the extended Chebyshev functional [8, 30]

T̃
(
f , g, h, h′) =

∫ b

a
h′(τ ) dτ

∫ b

a
h(τ )f (τ )g(τ ) dτ +

∫ b

a
h(τ ) dτ

∫ b

a
h′(τ )f (τ )g(τ ) dτ

–
∫ b

a
h(τ )f (τ ) dτ

∫ b

a
h′(τ )g(τ ) dτ

–
∫ b

a
h′(τ )f (τ ) dτ

∫ b

a
h(τ )g(τ ) dτ . (5)

In [4, 11, 29], various researchers have addressed the functionals (2) and (5). Recently
Rahman et al. [38] defined fractional conformable inequalities for Chebyshev functionals
(1) and (2). The present paper aims to develop certain fractional conformable inequalities
for the Chebyshev functionals (2) and (5). Also, we will discuss some particular cases of
our main result.
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2 Preliminaries
In this section, we present the following well-known definitions from [20, 23].

Definition 2.1 The Riemann–Liouville fractional integral Iα
a+ and Iα

b– of order α > 0, for
a continuous function f ∈ [a, b], is defined by

I
α
a f (x) =

1
Γ (α)

∫ τ

0
(τ – t)α–1f (t) dt, a < τ ≤ b, (6)

where Γ is the gamma function; for further details as regards gamma and related func-
tions, see [45].

Definition 2.2 The fractional conformable integral βIα
0 of order β > 0, for a continuous

function is defined by

β
I

α
0 f (τ ) =

1
Γ (β)

∫ τ

a

(
τα – tα

α

)β–1 f (t)
t1–α

dt; 0 < τ ≤ b. (7)

Clearly one can get 0Iα
0 f (τ ) = f (τ ) and

β
I

α
0

γ
I

α
0 f (τ ) = β+γ

I
α
0 f (τ ) = γ

I
α
0

β
I

α
0 f (τ ); β ,λ > 0.

In [23, 35, 37, 38, 40, 43], one has studied fractional conformable integral operators and
has established certain inequalities by employing the said fractional integral operators.

Remark 1 If we consider α = 1, then (7) will lead to the fractional integral in (6).

3 Main results
In this section, we establish certain fractional conformable inequalities for the weighted
and the extended Chebyshev functionals.

Theorem 3.1 Let f and g be two differentiable functions on [0,∞) and let h be positive and
integrable function on [0,∞). If f ′ ∈ Lp([0,∞[), g ′ ∈ Lq([0,∞[), p, q, r > 1 with 1

p + 1
p′ = 1,

1
q + 1

q′ = 1 and 1
r + 1

r′ = 1, then the following inequality holds for all τ > 0, α,β > 0:

2
∣∣βIαh(τ ) β

I
αhfg(τ ) – β

I
αhf (τ ) β

I
αhg(τ )

∣∣

≤
(‖f ′‖r

p

Γ (β)

∫ τ

0

∫ τ

0

(
τα – θα

α

)β–1(
τα – ϑα

α

)β–1

× θα–1ϑα–1h(θ )h(ϑ)|θ – ϑ | 1
p′ + 1

q′ dθ dϑ

) 1
r

×
(‖g ′‖r′

q

Γ (β)

∫ τ

0

∫ τ

0

(
τα – θα

α

)β–1(
τα – ϑα

α

)β–1

× θα–1ϑα–1h(θ )h(ϑ)|θ – ϑ | 1
p′ + 1

q′ dθ dϑ

) 1
r′
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≤ ‖f ′‖r
α‖g ′‖r′

q

Γ 2(β)

(∫ τ

0

∫ τ

0

(
τα – θα

α

)β–1(
τα – ϑα

α

)β–1

× θα–1ϑα–1h(θ )h(ϑ)|θ – ϑ | 1
p′ + 1

q′ dθ dϑ

)
. (8)

Proof Let us define

H(θ ,ϑ) =
(
f (θ ) – f (ϑ)

)(
g(θ ) – g(ϑ)

)
; θ ,ϑ ∈ (0, τ ). (9)

Multiplying (9) by 1
Γ (β) ( τα–θα

α
)β–1θα–1h(θ ) and then integrating with respect to θ over (0, τ ),

we have

1
Γ (β)

∫ τ

0

(
τα – θα

α

)β–1

θα–1h(θ )H(θ ,ϑ) dθ

= β
I

αhfg(τ ) – g(ϑ) β
I

αhf (τ ) – f (θ ) β
I

αhg(τ ) + f (ϑ)g(ϑ) β
I

αh(τ ). (10)

Again, multiplying (10) by 1
Γ (β) ( τα–ϑα

α
)β–1ϑα–1h(ϑ) and then integrating with respect to v

over (0, τ ), we have

1
Γ 2(β)

∫ τ

0

∫ τ

0

(
τα – θα

α

)β–1

θα–1
(

τα – ϑα

α

)β–1

ϑα–1h(θ )h(ϑ)H(θ ,ϑ) dθ dϑ

= 2
(
β
I

αh(τ ) β
I

αhfg(τ ) – β
I

αhf (τ ) β
I

αhg(τ )
)
. (11)

Also, on the other hand, we have

H(θ ,ϑ) =
∫ θ

ϑ

∫ θ

ϑ

f ′(x)g ′(y) dx dy. (12)

By employing the Hölder inequality, we have

∣∣f (θ ) – f (ϑ)
∣∣ ≤ |θ – ϑ | 1

p′
∣∣∣∣
∫ θ

ϑ

∣∣f ′(x)
∣∣p dx

∣∣∣∣
1
p

(13)

and

∣∣g(θ ) – g(ϑ)
∣∣ ≤ |θ – ϑ | 1

q′
∣∣∣∣
∫ θ

ϑ

∣∣g ′(y)
∣∣q dy

∣∣∣∣
1
q

. (14)

Then H becomes

∣∣H(θ ,ϑ)
∣∣ ≤ |θ – ϑ | 1

p′ + 1
q′

∣∣∣∣
∫ ϑ

θ

∣∣f ′(x)
∣∣p dx

∣∣∣∣
1
p
∣∣∣∣
∫ θ

ϑ

∣∣g ′(τ )
∣∣q dy

∣∣∣∣
1
q

. (15)

Therefore, from (11) and (15), we can write

2
∣∣βIαh(τ ) β

I
αhfg(τ ) – β

I
αhf (τ ) β

I
αhg(τ )

∣∣

=
1

Γ 2(β)

∫ τ

0

∫ τ

0

(
τα – θα

α

)β–1

θα–1
(

τα – ϑα

α

)β–1

ϑα–1h(θ )h(ϑ)
∣∣H(θ ,ϑ)

∣∣dθ dϑ
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≤ 1
Γ 2(β)

∫ τ

0

∫ τ

0

(
τα – θα

α

)β–1

θα–1
(

τα – ϑα

α

)β–1

ϑα–1h(θ )h(ϑ)

× |θ – ϑ | 1
p′ + 1

q′
∣∣∣∣
∫ θ

ϑ

∣∣f ′(x)
∣∣p dx

∣∣∣∣
1
p
∣∣∣∣
∫ θ

ϑ

∣∣g ′(τ )
∣∣q dt

∣∣∣∣
1
q

dθ dϑ . (16)

Now, by using the Hölder inequality for the double integral, we have

2
∣∣βIαh(τ ) β

I
αhfg(τ ) – β

I
αhf (τ ) β

I
αhg(τ )

∣∣

≤ 1
Γ 2(β)

(∫ τ

0

∫ τ

0

(
τα – θα

α

)β–1

θα–1
(

τα – ϑα

α

)β–1

× ϑα–1h(θ )h(ϑ)|θ – ϑ | 1
p′ + 1

q′
∣∣∣∣
∫ θ

ϑ

∣∣f ′(x)
∣∣p dx

∣∣∣∣
r
p

dθ dϑ

) 1
r

×
(∫ τ

0

∫ τ

0

(
τα – θα

α

)β–1

θα–1
(

τα – ϑα

α

)β–1

× ϑα–1h(θ )h(ϑ)|θ – ϑ | 1
p′ + 1

q′
∣∣∣∣
∫ θ

ϑ

∣∣g ′(x)
∣∣p dx

∣∣∣∣
r′
q

dθ dϑ

) 1
r′

. (17)

Now, using the following properties:

∣∣∣∣
∫ θ

ϑ

∣∣f ′(x)
∣∣p dx

∣∣∣∣ ≤ ∥∥f ′∥∥p
p,

∣∣∣∣
∫ θ

ϑ

∣∣g ′(y)
∣∣q dy

∣∣∣∣ ≤ ∥∥g ′∥∥q
q, (18)

(17) can be written as

2
∣∣βIαh(τ ) β

I
αhfg(τ ) – β

I
αhf (τ ) β

I
αhg(τ )

∣∣

≤
( ‖f ′‖r

p

Γ r(β)

∫ τ

0

∫ τ

0

(
τα – θα

α

)β–1

θα–1
(

τα – ϑα

α

)β–1

× ϑα–1h(θ )h(ϑ)|θ – ϑ | 1
p′ + 1

q′ |dθ dϑ

) 1
r

×
( ‖g ′‖r′

q

Γ r′ (β)

∫ τ

0

∫ τ

0

(
τα – θα

α

)β–1

θα–1
(

τα – ϑα

α

)β–1

× ϑα–1h(θ )h(ϑ)|θ – ϑ | 1
p′ + 1

q′ dθ dϑ

) 1
r′

. (19)

Therefore,

2
∣∣βIαh(τ ) β

I
αhfg(τ ) – β

I
αhf (τ ) β

I
αhg(τ )

∣∣

≤ ‖f ′‖r
α‖g ′‖r′

q

Γ 2(β)

(∫ τ

0

∫ τ

0

(
τα – θα

α

)β–1(
τα – ϑα

α

)β–1

× θα–1ϑα–1h(θ )h(ϑ)|θ – ϑ | 1
p′ + 1

q′ dθ dϑ

)
,

which gives the required proof. �
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By considering α = 1 in Theorem 3.1, we get the following well-known result of Dahmani
et al. [12].

Corollary 1 Let f and g be two differentiable functions on [0,∞) and let h be positive and
integrable function on [0,∞). If f ′ ∈ Lp([0,∞[), g ′ ∈ Lq([0,∞[), p, q, r > 1 with 1

p + 1
p′ = 1,

1
q + 1

q′ = 1 and 1
r + 1

r′ = 1, then the following inequality holds for all τ > 0, β > 0:

2
∣∣Iβh(τ )Iβhfg(τ ) – I

βhf (τ )Iβhg(τ )
∣∣

≤
(‖f ′‖r

p

Γ (β)

∫ τ

0

∫ τ

0
(τ – θ )β–1(τ – ϑ)β–1h(θ )h(ϑ)|θ – ϑ | 1

p′ + 1
q′ dθ dϑ

) 1
r

×
(‖g ′‖r′

q

Γ (β)

∫ τ

0

∫ τ

0
(τ – θ )β–1(τ – ϑ)β–1h(θ )h(ϑ)|θ – ϑ | 1

p′ + 1
q′ dθ dϑ

) 1
r′

≤ ‖f ′‖r
α‖g ′‖r′

q

Γ 2(β)

(∫ τ

0

∫ τ

0
(τ – θ )β–1(τ – ϑ)β–1h(θ )h(ϑ)|θ – ϑ | 1

p′ + 1
q′ dθ dϑ

)
. (20)

Remark 2 Similarly, by considering α = β = 1 in Theorem 3.1, we get the inequality (3).

Theorem 3.2 Let f and g be two differentiable functions on [0,∞) and let h and h′ be
positive and integrable functions on [0,∞). If f ′ ∈ Lp([0,∞[), g ′ ∈ Lq([0,∞[), p, q, r > 1
with 1

p + 1
p′ = 1, 1

q + 1
q′ = 1 and 1

r + 1
r′ = 1, then the following inequality holds for all τ > 0,

α,β > 0:

∣∣βIαh′(τ ) β
I

αhfg(τ ) + β
I

αh(τ ) β
I

αh′fg(τ ) – β
I

αhf (τ ) β
I

αh′g(τ )

– β
I

αh′f (τ ) β
I

αhg(τ )
∣∣

≤ ‖f ′‖r
α‖g ′‖r′

q

Γ 2(β)

∫ τ

0

∫ τ

0

(
τα – θα

α

)β–1(
τα – ϑα

α

)β–1

× θα–1ϑα–1h(θ )h′(ϑ)|θ – ϑ | 1
p′ + 1

q′ dθ dϑ . (21)

Proof Multiplying (10) by 1
Γ (β) ( τα–ϑα

α
)μ–1ϑα–1h(ϑ) and then integrating with respect to ϑ

over (0, τ ), we have

1
Γ 2(β)

∫ τ

0

∫ τ

0

(
τα – θα

α

)β–1

θα–1
(

τα – ϑα

α

)μ–1

ϑα–1h(θ )h(ϑ)H(θ ,ϑ) dθ dϑ

= β
I

αh′(τ ) β
I

αhfg(τ ) + β
I

αh(τ ) β
I

αh′fg(τ )

– β
I

αhf (τ ) β
I

αh′g(τ ) – β
I

αh′f (τ ) β
I

αhg(τ ). (22)

Using (15) in (22), we obtain

∣∣βIαh′(τ ) β
I

αhfg(τ ) + β
I

αh(τ ) β
I

αh′fg(τ ) – β
I

αhf (τ ) β
I

αh′g(τ )

– β
I

αh′f (τ ) β
I

αhg(τ )
∣∣

=
1

Γ (β)Γ (μ)

∫ τ

0

∫ τ

0

(
τα – θα

α

)β–1

ϑα–1
(

τα – ϑα

α

)β–1

ϑα–1h(θ )h′∣∣H(θ ,ϑ)
∣∣dθ dϑ
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≤ ‖f ′‖α‖g ′‖α

Γ 2(β)

∫ τ

0

∫ τ

0

(
τα – θα

α

)β–1

θα–1
(

τα – ϑα

α

)μ–1

ϑα–1|θ – ϑ | 1
p′ + 1

q′

×
∣∣∣∣
∫ ϑ

θ

∣∣f ′(x)
∣∣p dx

∣∣∣∣
1
p
∣∣∣∣
∫ θ

ϑ

∣∣g ′(τ )
∣∣q dt

∣∣∣∣
1
q

h(θ )h′(ϑ) dθ dϑ . (23)

Applying the similar procedure of Theorem 3.1, we obtain the desired proof. �

If we consider α = 1 in Theorem 3.2, then we get the following well-known result [12].

Corollary 2 Let f and g be two differentiable functions on [0,∞) and let h and h′ be positive
and integrable functions on [0,∞). If f ′ ∈ Lp([0,∞[), g ′ ∈ Lq([0,∞[), p, q, r > 1 with 1

p + 1
p′ =

1, 1
q + 1

q′ = 1 and 1
r + 1

r′ = 1, then the following inequality holds for all τ > 0, β > 0:

∣∣Iβh′(τ )Iβhfg(τ ) + I
βh(τ )Iβh′fg(τ ) – I

βhf (τ )Iβh′g(τ ) – I
βh′f (τ )Iβhg(τ )

∣∣

≤ ‖f ′‖r
α‖g ′‖r′

q

Γ 2(β)

∫ τ

0

∫ τ

0
(τ – θ )β–1(τ – ϑ)β–1

× θα–1ϑα–1h(θ )h′(ϑ)|θ – ϑ | 1
p′ + 1

q′ dθ dϑ . (24)

Remark 3 If we let β = α = 1 in Theorem 3.2, then we get the inequality (4).

4 Concluding remarks
In this paper, we established certain fractional conformable inequalities related to the
weighted and the extended Chebyshev functionals. The inequalities obtained in the
present paper are more general than the existing classical inequalities cited therein. This
work will reduce to the inequalities some Riemann–Liouville integral inequalities by tak-
ing α = 1, which have been presented earlier by [12]. Also, one can get the classical results
by taking α = β = 1.
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