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Abstract
In this paper, we study the oscillation of a class of third-order Emden–Fowler delay
dynamic equations with sublinear neutral terms on time scales. By using Riccati
transformation and integral inequality, we establish several new theorems to ensure
that each solution of the equation oscillates or asymptotically approaches zero, and
the results in the literature are supplemented and extended. Examples are given to
illustrate our main results.
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1 Introduction
In this paper, we are concerned with the oscillation and asymptotic behavior of the third-
order Emden–Fowler delay dynamic equation with sublinear neutral terms of the form

(
b(t)

((
a(t)

(
x(t) + p(t)xα

(
δ(t)

))�)�)γ )� + f
(
t, x

(
τ (t)

))
= 0, t ∈ [t0,∞]T (1.1)

on a time scale T.
Throughout this paper, the following assumptions are tacitly satisfied:
(A1) a(t), b(t), p(t) ∈ C1

rd(T,R), and b�(t) ≥ 0, 0 < p(t) ≤ p < 1,

∫ ∞

t0

1
a(t)

�t = ∞,
∫ ∞

t0

b– 1
γ (t)�t = ∞; (1.2)

(A2) α,β ,γ are quotients of odd positive integers, where β ≥ γ , 0 < α ≤ 1;
(A3) δ(t), τ (t) ∈ C1

rd(T,R) such that τ (t) ≤ t, δ(t) ≤ t, limt→+∞ τ (t) = limt→+∞ δ(t) = ∞.
(A4) f ∈ C(T × R,R) is assumed that uf (t, u) > 0 for u �= 0, t ∈ T, and there exists a

function q(t) ∈ C1
rd(T,R) such that f (t,u)

uβ ≥ q(t) for u �= 0, t ∈ T.
For the basic theory and notation of calculus on the time scale T, we can see, for in-

stance, the monograph [1], which systematically gives the definition of delta (or nabla)
differentiation, the basic algorithm, and the important properties, such as the following:
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Assume that f : T → R is a function, and let t ∈ T
k . We define f �(t) to be the number,

provided it exists, with the property that, for any ε > 0, there exists a neighborhood U of
t, U = (t – δ, t + δ) ∩T for some δ > 0 such that

∣
∣f

(
σ (t)

)
– f (s) – f �(t)

(
σ (t) – s

)∣∣ ≤ ε
∣
∣σ (t) – s

∣
∣ for all s ∈ U .

We call f �(t) the delta or Hilger derivative of f at t. We say that f is delta or Hilger differ-
entiable, shortly differentiable, in T

k if f �(t) exists for all t ∈ T
k . The function f � : T →R

is said to be the delta derivative or Hilger derivative, shortly derivative, of f in T
k , where

σ (t) = inf{s ∈ T : s > t} is called the forward jump operator. The properties of the delta (�)
derivative and the knowledge of nabla (∇) derivatives can be found in the monograph [1],
which is omitted here.

Since we are interested in oscillation and asymptotic behavior of solutions to equation,
we assume that the time scale T is unbounded. In this paper, we only consider those solu-
tions of Eq. (1.1) which satisfy sup{|x(t)| : t ∈ [T,∞)T} > 0 and assume that such solutions
exist. A solution of (1.1), which is nontrivial for all large t, is said to be oscillatory if it is
neither eventually positive nor eventually negative. Otherwise, it is called nonoscillatory.

The theory of dynamic equations on time scales not only unifies the theory of differen-
tial equations and difference equations, but it also extends these classical cases to cases
“in between”, e.g., T = qN0 , T = hZ, and other different time scales, which have wide ap-
plication value in quantum theory, mathematical, theoretical, and chemical physics and
ecology. Therefore, the study of the properties of dynamic equations on time scales has
become a hot topic. In the past 20 years, there have been a lot of research results on the
oscillation of dynamic equations. As a matter of fact, Eq. (1.1) is a natural generalization of
the half-linear/Emden–Fowler dynamic equation (including related differential equation)
which arises in a variety of real world problems such as in the study of p-Laplace equations,
non-Newtonian fluid theory, the turbulent flow of a polytrophic gas in a porous medium,
and so on; see, e.g., the papers [2–5] for more details. In this paper, our main purpose is
to study the oscillation and asymptotic behavior of Eq. (1.1). In order to enlighten the re-
search ideas, we briefly review the following research progress and important results of
this problem.

Agarwal et al. [6] investigated the oscillation of a certain class of second-order differen-
tial equations with a sublinear neutral term

(
a(t)

[
x(t) + p(t)xα

(
τ (t)

)]′)′ + q(t)x
(
σ (t)

)
= 0, t > t0 > 0, (1.3)

where 0 < α < 1 is a ratio of odd positive integers.
Dzurina et al. [3], Grace and Graef [7], and Tamilvanan et al. [8] established sufficient

conditions for the oscillation of all solutions of a nonlinear differential equation

(
a(t)

(
x(t) + p(t)xα

(
τ (t)

))′)′ + q(t)xβ
(
σ (t)

)
= 0, t ≥ t0, (1.4)

where α and β are ratios of odd positive integers.
Agarwal et al. [9] and Erbe et al. [10] established several Hille and Nehari type criteria

for the third-order dynamic equation

x���(t) + p(t)x
(
τ (t)

)
= 0, t ∈ T, t ≥ t0. (1.5)
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Agarwal et al. [11, 12], Han et al. [13], and Li et al. [14] considered the oscillatory behav-
ior of the third-order dynamic equation

((
x��(t)

)γ )� + p(t)xγ
(
τ (t)

)
= 0, t ∈ T, t ≥ t0, (1.6)

where γ > 0 is the ratio of positive odd integers, and proved the following results.

Theorem 1.1 Assume that
∫ ∞

t0
p(t)(h2(τ (t), t0))γ �t = ∞ holds. Furthermore, suppose that

there exists a positive function δ(t) ∈ C1
rd(T,R) such that

lim sup
t→+∞

∫ t

t1

[
kp(s)δσ (s)ζ (s) –

1
(γ + 1)γ +1

((δ�(s))+)γ +1

(δσ (s)α(s))γ

]
�s = ∞, (1.7)

where 0 < k < 1, ζ (t) = ( h2(τ (t),t0)
σ (t) )γ . Then every solution x(t) of Eq. (1.6) is either oscillatory

or limt→∞ x(t) = 0.

Yang [15] studied the oscillatory and asymptotic behavior of third-order nonlinear vari-
able delay dynamic equations

r(t)φ
([

a(t)y�(t)
]�)�

+ P(t)F
(
φ
(
x
(
δ(t)

)))
= 0, t ∈ T, t ≥ t0, (1.8)

where y(t) = x(t) + B(t)g(x(τ (t))), φ(u) = |u|λ–1u, λ > 0 is the ratio of positive odd integers,
and got the following results.

Theorem 1.2 If there exists a function δ(t) ∈ C1
rd(T,R) such that

lim sup
t→+∞

∫ t

t1

[
Lϕ(s)P(s)�λ(s) –

1
(λ + 1)λ+1

[|ϕ�(s)|r(σ (s))]λ+1

[r(s)ϕ(s)]λ

]
�s = ∞, (1.9)

where �(t) = k[1–βB(δ(t))]h2(δ(t),t0)
2a(δ(t))σ (t) , then every solution x(t) of Eq. (1.8) is either oscillatory or

limt→∞ x(t) = 0.

Grace [16] was concerned with new oscillation criteria for third-order nonlinear differ-
ence equations with a nonlinear non-positive neutral term of the form

�
((

a(t)
(
�2(x(t) – p(t)xα(t – k)

)))γ )
+ q(t)xβ (t – m + 1) = 0, (1.10)

where α, γ , and β are the ratios of positive odd integers.
Candan [17] was concerned with oscillation of the third-order nonlinear neutral dy-

namic equation

[
r2(t)

((
r1(t)

(
y(t) + p(t)y

(
τ (t)

))�)�)γ ]� + f
(
t, y

(
δ(t)

))
= 0, t ∈ [t0,∞]T, (1.11)

where γ ≥ 1 is a ratio of odd positive integers.
It would also be interesting to establish sufficient conditions for the oscillation and

asymptotic behavior of solutions to Eq. (1.1) for the other ranges of the neutral coefficient
p(t) such as (1.10). For this research issue, see, e.g., the papers [18, 19] for more details.



Zhang and Feng Advances in Difference Equations         (2021) 2021:53 Page 4 of 14

It is not difficult to see that the results on the oscillation of delay dynamic (differen-
tial/difference) equations with sublinear neutral terms are mainly concentrated in the sec-
ond order (see [3, 6–8] and the references cited therein), but the results of the third or-
der are relatively lower [16, 20]. Numerous researchers have studied the special case of
Eq. (1.1), see, e.g., Ref [9–30]. Inspired by the above papers, in this paper, by employing
the Riccati transformation and some integral inequality, we present sufficient conditions
to ensure that every solution of Eq. (1.1) is oscillatory or asymptotically converges to zero.
Our results improve and generalize the results of the papers [13, 15].

2 Preliminaries
Before proving the main theorems, we need some useful lemmas which will be used later.

In [1], p. 190, Taylor’s monomials hn(t, s)∞n=0 are defined recursively by

h0(t, s) = 1, hn+1(t, s) =
∫ t

s
hn(τ , s)�τ , t, s ∈ T, n ≥ 1.

It follows from [1] that h1(t, s) = t – s for any time-scale, but simple formulas in general do
not hold for n ≥ 2.

Lemma 2.1 ([10]) If u satisfies u(t) > 0, u�(t) > 0, u��(t) > 0, u���(t) < 0, t ∈ [t0,∞)T, then

lim inf
t→∞

tu(t)
h2(t, t0)u�(t)

≥ 1. (2.1)

Lemma 2.2 ([10]) Set the following conditions to be established:
(1) u ∈ C2

rd(I,R), where I = [t0,∞)T,
(2) u(t) > 0, u�(t) > 0, and u��(t) < 0, t ∈ I.
Then, for any k ∈ (0, 1), there exists t1 ∈ I such that, while t ∈ I and t ≥ t1,

u
(
σ (t)

) ≤ σ (t)
kτ (t)

u
(
τ (t)

)
. (2.2)

Lemma 2.3 Keller’s chain rule

(
zβ (t)

)� ≥
⎧
⎨

⎩
β

∫ 1
0 (z(σ (t)))β–1z�(t) dh = β(z(σ (t)))β–1z�(t), 0 < β ≤ 1,

β
∫ 1

0 (z(t))β–1z�(t) dh = β(z(t))β–1z�(t), β > 1,
(2.3)

where z(t) is �-differentiable and eventually positive or eventually negative.

Its proof is not difficult from the monograph [1, Theorem 2.57], and so it is omitted here.

Lemma 2.4 Assume that A ≥ 0, B > 0, and γ > 0 are arbitrary real numbers. Then, for all
X ≥ 0,

AX – BX
1+γ
γ ≤ γ γ

(γ + 1)γ +1 · Aγ +1

Bγ
. (2.4)
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Proof Let g(X) = AX –BX
γ +1
γ , X ∈ [0,∞), A ≥ 0, B > 0, and γ > 0 be arbitrary real numbers

and

g ′(X) = A –
γ + 1

γ
BX

1
γ = 0. (2.5)

We can obtain X∗ = ( Aγ

B(γ +1) )γ , the unique solution to (2.5). It is clear that g ′(X) > 0 for all
X < X∗ and g ′(X) < 0 for all X > X∗. Then g(X) attains its maximum value on [0,∞) at X∗,
and

max
X∈[0,∞)

g(X) = g
(
X∗) =

γ γ

(γ + 1)γ +1
Aγ +1

Bγ
.

Thus (2.4) holds, this completes the proof of the lemma.
It is obvious that Lemma 2.4 is an improvement of Lemma 2.3 in [31] about the con-

stant γ > 0, which must be a ratio of two positive odd integers is no longer suitable for
Eq. (1.1). �

3 Main results
Theorem 3.1 Assume that (1.2) holds. If there exists a positive function η(t) ∈ C1

rd(T,R)
such that, for any constants L ∈ (0, 1), M ∈ (0, 1] (if α = 1 have M = 1), and sufficiently large
t1 ≥ t0 > 0,

lim sup
t→+∞

∫ t

t1

[
K(s) –

1
(γ + 1)γ +1

((η�(s))+b(σ (s)))γ +1

(η(s)b(s))γ

]
�s = ∞ (3.1)

and

∫ ∞

t1

1
a(v)

∫ ∞

v
b– 1

γ (u)
(∫ ∞

u
q(s)�s

) 1
γ

�u�v = ∞ (3.2)

hold, where

K(t) = LQ(t)
(

h2(τ (t), t0)
σ (t)a(τ (t))

)γ

, Q(t) = η(t)q(t)
(

1 –
p(τ (t))
M1–α

)β

,

then every solution x(t) of Eq. (1.1) is either oscillatory or limt→∞ x(t) = 0.

Proof Assume to the contrary that x(t) is an eventually positive solution of Eq. (1.1), that is,
there exists t1 > t0 such that x(t) > 0, x(τ (t)) > 0, x(δ(t)) > 0 for all t ∈ [t1,∞)T, t1 ∈ [t0,∞)T.
Then z(t) has two possible cases:

(I) z(t) > 0, z�(t) > 0, (a(t)z�(t))� > 0, (b(t)((a(t)z�(t))�)γ )� < 0;
(II) z(t) > 0, z�(t) < 0, (a(t)z�(t))� > 0, (b(t)((a(t)z�(t))�)γ )� < 0.
If case (I) holds, then z(t) > 0, z(τ (t)) > 0, z(δ(t)) > 0 for all t > t1. Furthermore, in view of

the fact that z(t) is monotonically increasing on [t1,∞)T, there exists a positive constant
M0 such that z(t) > M0, where M0 = min{z(t1), 1} ∈ (0, 1]. According to the definition of
z(t), we can easily get

x(t) ≥
(

1 –
p(t)

M1–α
0

)
z(t), t ≥ t1. (3.3)
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From Eq. (1.1) and the above inequality, we have

(
b(t)

((
a(t)z�(t)

)�)γ )� + q(t)
(

1 –
p(τ (t))
M1–α

0

)β

zβ
(
τ (t)

) ≤ 0, t ≥ t1. (3.4)

Define the generalized Riccati transformation

ω(t) = η(t)
b(t)((a(t)z�(t))�)γ

(a(t)z�(t))γ
, t ≥ t1. (3.5)

Letting u(t) = a(t)z�(t), the above formula can be abbreviated as

ω(t) = η(t)
b(t)(u�(t))γ

uγ (t)
, t ≥ t1. (3.6)

Obviously ω(t) > 0 for t ≥ t1, and by the product rule and the quotient rule on time scales,
we have

ω�(t) = η�(t)
b(σ (t))(u�(σ (t)))γ

uγ (σ (t))
+ η(t)

(
b(t)(u�(t))γ

uγ (t)

)�

=
η�(t)

η(σ (t))
ω

(
σ (t)

)
+ η(t)

(b(t)(u�(t))γ )�

uγ (σ (t))
– η(t)

b(t)(u�(t))γ (uγ (t))�

uγ (t)uγ (σ (t))
, t ≥ t1.

From (3.4), (3.6), and the definition of ω(t), we can obtain

ω�(t) ≤ –
Q(t)zβ (τ (t))

uγ (σ (t))
+

(η�(t))+

η(σ (t))
ω

(
σ (t)

)
– η(t)

b(t)(u�(t))γ (uγ (t))�

uγ (t)uγ (σ (t))
, t ≥ t1, (3.7)

where

(
η�(t)

)
+ = max

{
0,η�(t)

}
, Q(t) = η(t)q(t)

(
1 –

p(τ (t))
M1–α

0

)β

.

In view of the fact that (b(t)(u�(t))γ )� ≤ 0, we have

(
b(t)

(
u�(t)

)γ )� = b�(t)
(
u�

(
σ (t)

))γ + γ b(t)
(
u�(t)

)γ –1u��(t) ≤ 0, t ≥ t1. (3.8)

Also b�(t) > 0, then, it is not hard for us to get u��(t) < 0 for t ≥ t1. Further, we have

u(t) ≤ u
(
σ (t)

)
and u�(t) ≥ u�

(
σ (t)

)
, t ≥ t1. (3.9)

If γ > 1, by (3.9), we can get

ω�(t) ≤ –
Q(t)zβ (τ (t))

uγ (σ (t))
+

(η�(t))+

η(σ (t))
ω

(
σ (t)

)
– γ η(t)

b(t)(u�(t))γ u�(t)
uγ (σ (t))u(t)

≤ –
Q(t)zβ (τ (t))

uγ (σ (t))
+

(η�(t))+

η(σ (t))
ω

(
σ (t)

)
– γ η(t)b(t)

(u�(t))γ +1

(u(σ (t)))γ +1

≤ –
Q(t)zβ (τ (t))

uγ (σ (t))
+

(η�(t))+

η(σ (t))
ω

(
σ (t)

)
–

γ η(t)b(t)

(b(σ (t))η(σ (t)))
γ +1
γ

ω
γ +1
γ

(
σ (t)

)
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= –Q(t)zβ–γ
(
τ (t)

) ·
(

z(τ (t))
u(σ (t))

)γ

+ P(t), t ≥ t1,

where

P(t) =
(η�(t))+

η(σ (t))
ω

(
σ (t)

)
–

γ η(t)b(t)

(b(σ (t))η(σ (t)))
γ +1
γ

ω
γ +1
γ

(
σ (t)

)
.

Since z(t) is monotonically increasing on [t1,∞)T, we get z(t1) < z(τ (t)) for t ≥ t1. Also,
since the definition of M0 and β ≥ γ , we have

zβ–γ
(
τ (t)

) ≥ zβ–γ (t1) ≥ Mβ–γ
0 , t ≥ t1

and

ω�(t) ≤ –Mβ–γ
0 Q(t) ·

(
z(τ (t))
u(σ (t))

)γ

+ P(t), t ≥ t1. (3.10)

In addition, since (3.8), we can easily get u(t), which satisfies Lemma 2.2, then there exists
a constant k ∈ (0, 1) such that

u
(
σ (t)

) ≤ σ (t)u(τ (t))
kτ (t)

, t ≥ t1. (3.11)

When letting ν(t) =
∫ t

t1
a(s)z�(s)�s, we can see that it satisfies Lemma 2.1. So there exists

some tl ∈ [t1,∞)T such that

ν(t)
ν�(t)

≥ l
h2(t, t0)

t
, t ≥ t1, (3.12)

for any t ∈ [t1,∞)T and for any l ∈ (0, 1). Meanwhile, we can easily deduce a(t)z(t) >
∫ t

t1
a(s)z�(s)�s, so

z(t)
z�(t)

=
a(t)z(t)

a(t)z�(t)
≥

∫ t
t1

a(s)z�(s)�s
a(t)z�(t)

≥ l
h2(t, t0)

t
, t ≥ t1, (3.13)

and then

z(τ (t))
u(σ (t))

=
z(τ (t))

a(σ (t))z�(σ (t))
=

1
a(σ (t))

z(τ (t))
z�(τ (t))

z�(τ (t))
z�(σ (t))

≤ klh2(τ (t), t0)
σ (t)a(τ (t))

(3.14)

for all t ≥ t1. Substituting the above formula into (3.10), we conclude that

ω�(t) ≤ –LQ(t) ·
(

h2(τ (t), t0)
σ (t)a(τ (t))

)γ

+ P(t), t ≥ t1, (3.15)

where L = Mβ–γ
0 (kl)γ ∈ (0, 1). Apply inequality (2.4) to P(t) with

A =
(η�(t))+

η(σ (t))
, B =

γ η(t)b(t)

(b(σ (t))η(σ (t)))
γ +1
γ

and X = ω
(
σ (t)

)
,
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which yields

P(t) ≤ 1
(γ + 1)γ +1

((η�(t))+b(σ (t)))γ +1

(η(t)b(t))γ
, t ≥ t1. (3.16)

Substituting the above formula into (3.15), we have

ω�(t) ≤ –LQ(t) ·
(

h2(τ (t), t0)
σ (t)a(τ (t))

)γ

+
1

(γ + 1)γ +1
((η�(t))+b(σ (t)))γ +1

(η(t)b(t))γ
(3.17)

for all t ≥ t1. Similarly, if 0 < γ < 1, it is easy for us to get (3.17). From inequality (3.17), we
have

LQ(t) ·
(

h2(τ (t), t0)
σ (t)a(τ (t))

)γ

–
1

(γ + 1)γ +1
((η�(t))+b(σ (t)))γ +1

(η(t)b(t))γ
≤ –ω�(t), t ≥ t1.

Integrating the above inequality from sufficiently large t1 to t ≥ t1, we have

∫ t

t1

LQ(s) ·
(

h2(τ (s), t0)
σ (s)a(τ (s))

)γ

–
1

(γ + 1)γ +1
((η�(s))+b(σ (s)))γ +1

(η(s)b(s))γ
�s

≤ –
∫ t

t1

ω�(s)�s = ω(t1) – ω(t) < ω(t1). (3.18)

Take the limsup on both sides of the above inequality as t → ∞, which contradicts (3.1).
If case (II) holds, by z(t) > 0 and z�(t) < 0, we know that z(t) is decreasing and

limt→+∞ z(t) = l ≥ 0. We assert that l = 0. If not, then l > 0. By the definition of limit, we
pick 0 < ε < l2–α(1 – p)/(αp) and large enough t2 ∈ [t1,∞)T such that l ≤ z(t) ≤ l + ε for all
t ∈ [t2,∞)T. So that

x(t) = z(t) – p(t)xα
(
δ(t)

)
> l – p(l + ε)α > k(l + ε) > kz(t),

where k = l–p(l+ε)α
l+ε

> 0, and thus

x
(
τ (t)

)
> kz

(
τ (t)

)
, t ≥ t2.

Substituting it into Eq. (1.1), we obtain

(
b(t)

((
a(t)z�(t)

)�)γ )� ≤ –kβq(t)zβ
(
τ (t)

)
, t ≥ t2.

Integrating the above formula from sufficiently large t ≥ t2 to ∞ and noting that zβ (τ (t)) ≥
lβ , we have

b(t)
((

a(t)z�(t)
)�)γ ≥ (kl)β

∫ ∞

t
q(s)�s, t ≥ t2,

and then

(
a(t)z�(t)

)� ≥
( (kl)β

∫ ∞
t2

q(s)�s
b(t)

) 1
γ

, t ≥ t2.
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Integrating the above inequality from sufficiently large t to ∞, we have

–z�(t) ≥ (kl)
β
γ

1
a(t)

∫ ∞

t
b– 1

γ (u)
(∫ ∞

u
q(s)�s

) 1
γ

�u, t ≥ t2.

Integrating the last inequality again from t to ∞, we can obtain

z(t1) ≥ (kl)
β
γ

∫ ∞

t1

1
a(v)

∫ ∞

v
b– 1

γ (u)
(∫ ∞

u
q(s)�s

) 1
γ

�u�v, t ≥ t2,

which contradicts (3.2), hence l = 0. The proof is completed. �

Corollary 3.2 The conclusion of Theorem 3.1 remains intact if assumption (3.1) is replaced
with two conditions

lim sup
t→+∞

∫ t

t1

Q(s) ·
(

h2(τ (s), t0)
σ (s)a(τ (s))

)γ

�s = ∞ (3.19)

and

lim inf
t→+∞

∫ t

t1

((η�(s))+b(σ (s)))γ +1

(η(s)b(s))γ
�s < ∞. (3.20)

Remark 3.3 Obviously, the result of Theorem 3.1 is more extensive. When the correspond-
ing coefficients of Eq. (1.1) are equal to those of Eq. (1.6) and Eq. (1.8), Eq. (1.1) can be sim-
plified into Eq. (1.6) or (1.8). In this case, Theorem 1.1 or Theorem 1.2 can be completely
included.

Remark 3.4 From Theorem 3.1, we can obtain different conditions for oscillation of
Eq. (1.1) with different choices of η(t). For example, η(t) = t or η(t) = 1. Now, letting us
consider η(t) = 1, we have the following corollary.

Corollary 3.5 Assume that (1.2) holds. If, for sufficiently large t1 ≥ t0 > 0,

lim sup
t→+∞

∫ t

t1

Q1(s) ·
(

h2(τ (s), t0)
σ (s)a(τ (s))

)γ

�s = ∞ (3.21)

holds, where Q1(t) = q(t)(1 – p(τ (t))
M1–α )β , and M is the same as in Theorem 3.1, then every

solution x(t) of Eq. (1.1) is either oscillatory or limt→∞ x(t) = 0.

The following theorem gives the Philos-type oscillation criterion for Eq. (1.1). First, let
us introduce now the class of functions H which will be extensively used in the sequel.

Let D =: {(t, s) : t ≥ s ≥ t0} and D0 =: {(t, s) : t > s ≥ t0}. The function H ∈ C(D,R) is said
to belong to the class H if it satisfies the following conditions:

(H1) H(t, t) = 0, t ∈D, H(t, s) > 0, t ∈D0;
(H2) H�s(t, t) = 0, t ∈D, H�s(t, s) ≤ 0, t ∈D0.
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Theorem 3.6 Assume that (1.2) holds. Furthermore, suppose that there exist two positive
functions η(t) ∈ C1

rd(T,R) and h(t, s) ∈ Crd(D,R) satisfying conditions (H1), (H2), and

(H3) H�s
(
σ (t),σ (s)

)
+ H

(
σ (t),σ (s)

) (η�(t))+

η(t)
= –

h(t, s)
η(t)

H
γ

γ +1
(
σ (t),σ (s)

)
.

If, for sufficiently large t1 ≥ t0 > 0,

lim sup
t→+∞

1
H(σ (t),σ (t1))

∫ t

t1

[
K1(s) –

(h–(t, s)b(σ (s)))γ +1

(γ + 1)γ +1(η(s)b(s))γ

]
�s = ∞ (3.22)

holds, where K1(t) = H(σ (t),σ (s))K(s) and K(t) is defined by (3.1), then every solution x(t)
of Eq. (1.1) is either oscillatory or limt→∞ x(t) = 0.

Proof Assume to the contrary that x(t) is an eventually positive solution of Eq. (1.1), that
is, there exists t1 > t0 such that x(t) > 0, x(τ (t)) > 0, x(δ(t)) > 0 for all t ∈ [t1,∞)T. Then z(t)
satisfies case (I) or (II). If case (I) holds, we process as in the proof of Theorem 3.1 and get
(3.15) as follows:

K(t) = LQ(t)
(

h2(τ (t), t0)
σ (t)a(τ (t))

)γ

≤ –ω�(t) + P(t), t ≥ t1. (3.23)

Multiplying both sides of (3.23), with t replaced with s, by H(σ (t),σ (s)), integrating with
respect to s from t1 to t ≥ t1, we have

∫ t

t1

H
(
σ (t),σ (s)

)
K(s)�s

≤ –
∫ t

t1

H
(
σ (t),σ (s)

)
ω�(s)�s +

∫ t

t1

H
(
σ (t),σ (s)

)
P(s)�s. (3.24)

Integrating by parts, we obtain

∫ t

t1

H
(
σ (t),σ (s)

)
ω�(s)�s

= –H
(
σ (t),σ (t1)

)
ω(t1) –

∫ t

t1

H�s
(
σ (t),σ (s)

)
ω

(
σ (s)

)
�s. (3.25)

Using conditions (H1)–(H3) and inequality (2.4), we deduce that

∫ t

t1

H
(
σ (t),σ (s)

)
K(s)�s

≤ H
(
σ (t),σ (t1)

)
ω(t1) +

∫ t

t1

h–(t, s)
η(σ (s))

H
γ

γ +1
(
σ (t),σ (s)

)
ω

(
σ (s)

)
�s

–
∫ t

t1

H
(
σ (t),σ (s)

) γ η(t)b(t)

(b(σ (t))η(σ (t)))
γ +1
γ

ω
γ +1
γ (t)�s

≤ H
(
σ (t),σ (t1)

)
ω(t1) +

1
(γ + 1)γ +1 · (h–(t, s)b(σ (s)))γ +1

(η(s)b(s))γ
�s, t ≥ t1,
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this implies that

1
H(σ (t),σ (t1))

∫ t

t1

[
H

(
σ (t),σ (s)

)
K(s) –

1
(γ + 1)γ +1 · (h–(t, s)b(σ (s)))γ +1

(η(s)b(s))γ

]
�s

≤ ω(t1), t ≥ t1,

which contradicts condition (3.22).
If case (II) holds, then clearly limt→∞ x(t) = 0. The proof is completed. �

Remark 3.7 From Theorem 3.6, we can obtain different conditions for oscillation of all
solutions of Eq. (1.1) with different choices of η(t) and H(t, s). For example, H(t, s) = (t –s)m

or H(t, s) = (ln t+1
s+1 )m. Now, let us consider the function H(t, s) defined by

H(t, s) = (t – s)m, m ≥ 1, t ≥ s ∈ [t0,∞)T.

Hence we have the following Kamenev-type oscillation criterion for Eq. (1.1).

Corollary 3.8 Assume that (1.2) holds. Furthermore, suppose that there exist a positive
function η(t) ∈ C1

rd(T,R) and a constant m ≥ 1 such that, for all sufficiently large t1 ≥ t0 > 0,

lim sup
t→+∞

1
tm

∫ t

t1

[
(t – s)mK(s) –

1
(γ + 1)γ +1 ·

(
h–(t, s)b(σ (s))

η(s)b(s)

)γ +1]
�s = ∞

holds, where K(t) is defined by (3.1). Then every solution x(t) of Eq. (1.1) is either oscillatory
or limt→∞ x(t) = 0.

Corollary 3.9 Assume that (1.2) holds. Furthermore, suppose that there exist two positive
functions η(t) ∈ C1

rd(T,R) and r(t, s) ∈ Crd(D,R) satisfying conditions (H1), (H2), and

(H4) H�s
(
σ (t),σ (s)

)
+ H

(
σ (t),σ (s)

) (η�(t))+

η(t)
= –

r(t, s)
η(t)

√
H

(
σ (t),σ (s)

)
.

If, for all sufficiently large t1 ≥ t0 > 0,

lim sup
t→+∞

1
H(σ (t),σ (t1))

∫ t

t1

[
K1(s) –

H
1–γ

2 (σ (t),σ (s))(r–(t, s)b(σ (s)))γ +1

(γ + 1)γ +1(η(s)b(s))γ

]
�s = ∞

holds, where K1(t) is defined by (3.22), then every solution x(t) of Eq. (1.1) is either oscillatory
or limt→∞ x(t) = 0.

4 Application
In this section, we give an example to illustrate our main results of this paper.

Example 4.1 Consider a third-order neutral dynamic equation

(
t3

((
e–t

(
x(t) +

1
2t

x
1
3 (t – 1)

)�)�)3)�

+ λx5
(

t
2

)
= 0, t ∈ [1,∞)T, (4.1)
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where λ > 0 is a constant.
Here,

α =
1
3

, γ = 3, β = 5, b(t) = t3, a(t) = e–t , p(t) =
1
2t

,

q(t) = λ, δ(t) = t – 1 < t, τ (t) =
t
2

< t.

According to [1], when T = 2Z ,

σ (t) = 2t, h2(t, s) =
(t – s)(t – 2s)

3
.

Letting η(t) = 1, it is clear that conditions (A1)–(A4) and (1.2) hold. Next, we will prove
that (3.21) is satisfied. It is the key to prove that the following

lim sup
t→+∞

∫ t

t1

Q1(s) ·
(

h2(τ (s), t0)
σ (s)a(τ (s))

)γ

�s = ∞ (4.2)

is true. Since, for any fixed M ∈ (0, 1], we have

Q1(t) = q(t)
(

1 –
p(τ (t))
M1–α

)β

= λ

(
1 –

1
t

M 2
3

)5

= λ
(
1 – M– 2

3 t–1)5. (4.3)

And obviously, when t > M– 2
3 , 1 – M– 2

3 t–1 ≥ 1
2 always holds. Therefore when 4 = t1 >

2M– 2
3 = t0, we have

h2

(
t
2

, 4
)

=
( t

2 – 4)( t
2 – 8)

3
=

1
12

t2 – 2t +
32
3

≥ 1. (4.4)

Hence, from (4.3) and (4.4),

∫ ∞

t1

Q1(s) ·
(

h2(τ (s), t0)
σ (s)a(τ (s))

)γ

�s =
∫ ∞

t1

λ
(
1 – M– 2

3 s–1)5 ·
( 1

12 s2 – 2s + 32
3

2s · e– s
2

)3

�s

≥ λ

25

∫ ∞

t1

e
3s
2 �s = ∞

holds and (4.2) is true. Thus, by Corollary 3.5, we know that every solution x(t) of (4.1) is
either oscillatory or limt→∞ x(t) = 0.

Remark 4.2 As fairly noticed by the referees, it would be of interest to study Eq. (1.1) with
nabla (∇) derivative or mixed delta (�)-nabla (∇) derivatives.

5 Conclusions
In this paper, we consider the oscillation and asymptotic behavior of a class of third-order
Emden–Fowler delay dynamic equations with sublinear neutral terms on time scales. Un-
der the conditions of (A1)–(A4), the above theorems and related corollaries are obtained,
and the correctness of the conclusion is verified by an example.
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