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Abstract
In this paper, we investigate the existence and uniqueness of a solution for a class of
ψ -Hilfer implicit fractional integro-differential equations with mixed nonlocal
conditions. The arguments are based on Banach’s, Schaefer’s, and Krasnosellskii’s fixed
point theorems. Further, applying the techniques of nonlinear functional analysis, we
establish various kinds of the Ulam stability results for the analyzed problem, that is,
the Ulam–Hyers stability, generalized Ulam–Hyers stability, Ulam–Hyers–Rassias
stability, and generalized Ulam–Hyers–Rassias stability. Finally, we provide some
examples to illustrate the applicability of our results.
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1 Introduction
Fractional calculus is a generalization of ordinary differentiation and integration of ar-
bitrary order, which can be noninteger. Differential equations of fractional order have
attracted the attention of several researchers; see the monographs [1–8] and references
therein. In the literature, there exist several definitions of fractional integrals and deriva-
tives, from the most popular Riemann–Liouville and Caputo-type fractional derivatives
to the other ones such as Hadamard fractional derivative, the Erdélyi–Kober fractional
derivative, and so forth. A generalization of both Riemann–Liouville and Caputo deriva-
tives was given by Hilfer [9], which is known as the Hilfer fractional derivative Dα,βx(t)
of order α and type β ∈ [0, 1]. The Hilfer fractional derivative interpolates between the
Riemann–Liouville and Caputo derivatives as it reduces to the Riemann–Liouville and Ca-
puto fractional derivatives for β = 0 and β = 1, respectively. The Hilfer fractional derivative
is used in theoretical simulation of dielectric relaxation in glass-forming materials and in
fractional diffusion equations; see [10, 11]. Some properties and applications of the Hilfer
derivative can be found in [12–16] and references therein.

The fractional derivative with another function, in the Hilfer sense, called the ψ-Hilfer
fractional derivative and introduced in [17], generalizes the Hilfer fractional derivative [9].
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The ψ-Hilfer fractional derivative is defined with respect to another function and unifies
several definitions of fractional derivatives available in the literature. Thus the ψ-Hilfer
fractional derivative covers a wide class of fractional derivatives and provides a platform
to obtain a particular one by fixing the function ψ ; see Remark 2.4. For some recent results
on the existence and uniqueness of solutions of initial value problems and on the Ulam–
Hyers–Rassias stability, see [10, 11, 18–27] and references therein.

Nonlocal boundary value problems have become a rapidly growing area of research. The
study of this type of problems is driven not only by theoretical interest, but also by the fact
that several phenomena in engineering, physics, and life sciences can be modeled in this
way. The idea of nonlocal conditions dates back to the work of Hilb [28]. However, the
systematic investigation of a certain class of spatial nonlocal problems was carried out by
Bitsadze and Samarskii [29]. We refer the reader to [30, 31] and references therein for a
motivation regarding nonlocal conditions.

In [32] the authors considered fractional differential equations with mixed nonlocal frac-
tional derivatives, integrals, and multipoint conditions of the form

⎧
⎨

⎩

cDαx(t) = f (t, x(t)), t ∈ (0, T],
∑m

i=1 γix(ηi) +
∑n

j=1 λj
cDβj x(ξi) +

∑k
r=1 σrIδr x(φr) = A,

(1.1)

where x ∈ C1([0, T],R), cDα and cDβj denote the Caputo fractional derivatives of orders α

and βj, respectively, 0 < βj ≤ α ≤ 1 for j = 1, 2, . . . , n, Iδr is the Riemann–Liouville fractional
integral operator of order δr > 0 for r = 1, 2, . . . , k, γi, λj, σr , A ∈ R, ηi, ξj,φr ∈ [0, T], i =
1, 2, . . . , m, and f ∈ C([0, T] × R,R). The existence and uniqueness results were obtained
by applying Schaefer’s fixed point theorem and Banach’s contraction mapping principle.
In addition, the authors established different kinds of Ulam stability for the problem.

In [33] the authors studied the existence, uniqueness, and Ulam–Hyers–Rassias stability
for a class of ψ-Hilfer fractional differential equations described by

⎧
⎨

⎩

HD
α,ρ;ψ
a+ x(t) = f (t, x(t), HD

α,ρ;ψ
a+ x(t)), t ∈ J = (a, T],

I1–γ ;ψ
a+ x(a) = xa, α ≤ γ = α + ρ – αρ, T > a,

(1.2)

where HD
α,ρ;ψ
a+ is the ψ-Hilfer fractional derivative of order α ∈ (0, 1] and type ρ ∈ [0, 1],

I1–γ ;ψ
a+ is the Riemann–Liouville fractional integral of order 1 –γ with respect to the func-

tion ψ , f ∈ C(J ×R
2,R), and xa ∈ R.

Harikrishman et al. [34] discussed the existence and uniqueness of nonlocal initial value
problems for Pantograph equations with ψ-Hilfer fractional derivative of the form

⎧
⎨

⎩

HD
α,ρ;ψ
a+ x(t) = f (t, x(t), x(λt)), t ∈ J = (a, b], 0 < λ < 1,

I1–γ ;ψ
a+ x(a) =

∑k
i=1 cix(τi), τi ∈ (a, b],α ≤ γ = α + ρ – αρ,

(1.3)

where HD
α,ρ;ψ
a+ is the ψ-Hilfer fractional derivative of order α ∈ (0, 1) and type ρ ∈ [0, 1],

I1–γ ;ψ
a+ is the Riemann–Liouville fractional integral of order 1 – γ with respect to the con-

tinuous function ψ such that ψ ′ > 0, and f ∈ C(J ×R
2,R).

In [35] the authors established existence, uniqueness and Ulam–Hyers stability of im-
plicit Pantograph fractional differential equations involving ψ-Hilfer fractional derivatives
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of the form

⎧
⎨

⎩

HD
α,ρ;ψ
0+ x(t) = f (t, x(t), x(λt), HD

α,ρ;ψ
0+ x(λt)), t ∈ J = (0, T], T > 0, 0 < λ < 1,

I1–γ ;ψ
0+ x(0+) =

∑m
i=1 biIβ ;ψ

0+ x(ξi), ξi ∈ J ,α ≤ γ = α + ρ – αρ,
(1.4)

where HD
α,ρ;ψ
0+ is the ψ-Hilfer fractional derivative of order α ∈ (0, 1) and type ρ ∈ [0, 1],

I1–γ ;ψ
0+ and Iβ ;ψ

0+ are the ψ-Riemann–Liouville fractional integrals of orders 1–γ and β > 0,
respectively, with respect to the continuous function ψ such that ψ ′ �= 0, f ∈ C(J ×R

3,R),
bi ∈R, and 0 < ξ1 ≤ ξ2 ≤ · · · ≤ ξm < T .

Motivated by papers [33–35] and some familiar results on fractional integro-differential
equations, we establish the existence and uniqueness results and different types of Ulam
stability, such as Ulam–Hyers (UH), generalized Ulam–Hyers (GUH), Ulam–Hyers–
Rassias (UHR), and generalized Ulam–Hyers–Rassias (GUHR) stability for a class of ψ-
Hilfer implicit fractional integro-differential equations with mixed nonlocal boundary
conditions of the form

⎧
⎨

⎩

HD
α,ρ;ψ
0+ x(t) = f (t, x(t), HD

α,ρ;ψ
0+ x(t),Iα;ψ

0+ x(t)), t ∈ (0, T],
∑m

i=1 ωix(ηi) +
∑n

j=1 κj
HD

βj ,ρ;ψ
0+ x(ζj) +

∑k
r=1 σrIδr ;ψ

0+ x(θr) = A,
(1.5)

where HD
u,ρ;ψ
0+ is the ψ-Hilfer fractional derivative of order u = {α,βj} with 0 < α,βj ≤ 1,

α ≥ βj + ρ(1 – βj), j = 1, . . . , n, and 0 ≤ ρ ≤ 1, Iα;ψ
0+ and Iδr ;ψ

0+ are the ψ-Riemann–Liouville
fractional integrals of orders α and δr > 0, respectively, ωi,κj,σr , A ∈ R, ηi, ζj, θr ∈ J , i =
1, 2, . . . , m, j = 1, 2, . . . , n, r = 1, 2, . . . , k, f : J × R

3 → R is a given continuous function, and
J := [0, T], T > 0. We emphasize that the mixed nonlocal boundary conditions include mul-
tipoint, fractional derivative multiorder, and fractional integral multiorder boundary con-
ditions.

The paper is organized as follows: In Sect. 2, we recall some basic and essential defini-
tions and lemmas. In Sect. 3, we obtain the existence and uniqueness results for problem
(1.5) via Banach’s, Schaefer’s, and Krasnosel’skĭı’s fixed point theorems. In Sect. 4, we dis-
cuss the Ulam–Hyers, generalized Ulam–Hyers, Ulam–Hyers–Rassias, and generalized
Ulam–Hyers–Rassias stability results. Finally, in Sect. 5, we give some examples to illus-
trate the benefit of our main results.

2 Background material and auxiliary results
In this section, we introduce some notation, spaces, definitions, and some useful funda-
mental lemmas.

We denote C[J ,R] the Banach space of all continuous functions from an interval J into
R with the norm defined by

‖f ‖ = sup
t∈J

{∣
∣f (t)

∣
∣
}

.

The weighted space Cγ ,ψ [J ,R] of continuous functions f on J is defined by

Cγ ,ψ [J ,R] =
{

f (t) : (0, T] :
(
ψ(t) – ψ(0)

)γ f (t) ∈ C[J ,R]
}
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with the norm

‖f ‖Cγ ,ψ [J ,R] =
∥
∥
(
ψ(t) – ψ(0)

)γ f (t)
∥
∥ = sup

t∈J

{∣
∣
(
ψ(t) – ψ(0)

)γ f (t)
∣
∣
}

.

Definition 2.1 ([2]) Let (0, b] be a finite or infinite interval on the half-axis R
+, and let

α ∈ R
+. Also, let ψ(x) be an increasing positive function on (0, b], having a continuous

derivative ψ ′(x) on (0, b). The ψ-Riemann–Liouville fractional integral of a function f
with respect to another function ψ on [0, b] is defined by

Iα;ψ
0+ f (t) =

1
�(α)

∫ t

0
ψ ′(τ )

(
ψ(t) – ψ(τ )

)α–1f (τ ) dτ , t > 0, (2.1)

where � is the gamma function.

Definition 2.2 ([2]) Let ψ ′(x) �= 0, α > 0, and n ∈ N. The Riemann–Liouville fractional
derivatives of a function f with respect to another function ψ of order α is defined by

D
α;ψ
0+ f (t) =

(
1

ψ ′(t)
d
dt

)n

In–α;ψ
0+ f (t), (2.2)

where n = [α] + 1, and [α] represents the integer part of the real number α.

Definition 2.3 ([17]) Let f ,ψ ∈ Cn(J ,R) be two functions such that ψ ≥ 0 and ψ ′(t) �= 0
for all t ∈ J and n – 1 < α < n with n ∈N. The ψ-Hilfer fractional derivative of a function f
of order α and type 0 ≤ ρ ≤ 1 is defined by

H
D

α,ρ;ψ
0+ f (t) = Iρ(n–α);ψ

0+

(
1

ψ ′(t)
d
dt

)n

I (1–ρ)(n–α);ψ
0+ f (t), (2.3)

where n = [α] + 1, and [α] represents the integer part of the real number α.

Remark 2.4 The operator HD
α,ρ;ψ
a+ is reduced to the fractional derivative of Hilfer when

ψ(t) → t [9], of Hilfer–Hadamard when ψ(t) → log t [36], of Hilfer–Katugampola when
ψ(t) → tρ , ρ > 0 [37], of Riemann–Liouville when ψ(t) → t, β → 0 [2], of Caputo type
when ψ(t) → t, β → 1 [2], of generalized Riemann–Liouville when β → 0 [2], and of
generalized Caputo when β → 1 [38].

The following lemma presents the semigroup properties of the ψ-Hilfer fractional inte-
gral and derivative.

Lemma 2.5 ([2]) Let α ≥ 0, 0 ≤ ρ < 1, and f ∈ L1[J ,R]. Then

Iα;ψ
0+ Iβ ;ψ

0+ f (t) = Iα+β ;ψ
0+ f (t) for a.e. t ∈ J . (2.4)

In particular, if f ∈ Cγ ,ψ [J ,R] and f ∈ C[J ,R], then

Iα;ψ
0+ Iβ ;ψ

0+ f (t) = Iα+β ;ψ
0+ f (t) for all t ∈ (0, T],
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and

H
D

α;ψ
0+ Iα;ψ

0+ f (t) = f (t) for all t ∈ J .

The composition of the ψ-Hilfer fractional integral and derivative operators is given by
the following lemma.

Lemma 2.6 ([2]) Let 0 < α ≤ 1, 0 ≤ ρ < 1, and γ = α + ρ – αρ . If f (t) ∈ Cγ
1–γ [J ,R], then

Iγ ;ψ
0+

H
D

γ ;ψ
0+ f (t) = Iα;ψ

0+
H
D

α,ρ;ψ
0+ f (t), and H

D
γ ;ψ
0+ Iα;ψ

0+ f (t) = H
D

ρ(1–α);ψ
0+ f (t).

Next, we take into account some important properties of the ψ-fractional derivative and
integral operators.

Proposition 2.7 ([2, 17]) Let α ≥ 0, υ > 0, and t > 0. Then the ψ-fractional integral and
derivative of a power function are given by

(i) Iα;ψ
0+ (ψ(s) – ψ(0))υ–1(t) = �(υ)

�(υ+α) (ψ(t) – ψ(0))υ+α–1;
(ii) D

α,ρ;ψ
0+ (ψ(s) – ψ(0))υ–1(t) = �(υ)

�(υ–α) (ψ(t) – ψ(0))υ–α–1;
(iii) HD

α,ρ;ψ
0+ (ψ(s) – ψ(0))υ–1(t) = �(υ)

�(υ–α) (ψ(t) – ψ(0))υ–α–1.
In particular, for n ≤ k ∈N and υ > n,

H
D

α,ρ;ψ
0+

(
ψ(s) – ψ(0)

)υ–1(t) =
k!

�(k + 1 – α)
(
ψ(t) – ψ(0)

)k–α .

On the other hand, for n ≥ k,

H
D

α,ρ;ψ
0+

(
ψ(s) – ψ(0)

)k(t) = 0.

Lemma 2.8 Let 0 < α, β ≤ 1, 0 ≤ ρ ≤ 1, and α ≥ β + ρ(1 – β). If f ∈ C1–γ ,ψ [0, T], then

H
D

β ,ρ;ψ
0+ Iα;ψ

0+ f (t) = Iα–β ;ψ
0+ f (t). (2.5)

Proof Letting λ = β + ρ(1 – β), we get

H
D

β ,ρ;ψ
0+

(
Iα;ψ

0+ f (t)
)

= Iλ–β ;ψ
0+ D

λ;ψ
0+

(
Iα;ψ

0+ f (t)
)

= Iλ–β ;ψ
0+

(
1

ψ ′(t)
d
dt

)

I1–λ;ψ
0+

(
Iα;ψ

0+ f (t)
)

= Iλ–β ;ψ
0+

(
1

ψ ′(t)
d
dt

)

I1–λ+α;ψ
0+ f (t).

By Definition 2.1 we obtain

(
1

ψ ′(t)
d
dt

)

I1–λ+α;ψ
0+ f (t)

=
1

ψ ′(t)�(1 – λ + α)
d
dt

∫ t

0
ψ ′(τ )

(
ψ(t) – ψ(τ )

)α–λf (τ ) dτ
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=
1

ψ ′(t)�(1 – λ + α)

∫ t

0
(α – λ)ψ ′(t)ψ ′(τ )

(
ψ(t) – ψ(τ )

)α–λ–1f (τ ) dτ

=
1

�(α – λ)

∫ t

0
ψ ′(τ )

(
ψ(t) – ψ(τ )

)α–λ–1f (τ ) dτ

= Iα–λ;ψ
0+ f (t).

Then

H
D

β ,ρ;ψ
0+ Iα;ψ

0+ f (t) = Iα–β ;ψ
0+ f (t). �

Lemma 2.9 ([17]) If f ∈ Cn[J ,R], n – 1 < α < n, 0 ≤ β ≤ 1, and γ = α + ρ(n – α), then

Iα;ψ
0+

H
D

α,ρ;ψ
0+ f (t) = f (t) –

n∑

k=1

(ψ(t) – ψ(0))γ –k

�(γ – k + 1)
f [n–k]
ψ I (1–ρ)(n–α);ψ

0+ f (0) (2.6)

for all t ∈ J , where f [n]
ψ f (t) := ( 1

ψ ′(t)
d
dt )nf (t). Moreover, if 0 < α < 1, then

Iα;ψ
0+

H
D

α,ρ;ψ
0+ f (t) = f (t) –

(ψ(t) – ψ(0))γ –1

�(γ )
I (1–ρ)(1–α);ψ

0+ f (0) (2.7)

for all 0 < γ < 1 and t ∈ J .
In addition, if f ∈ C1–γ ;ψ [J ,R] and I1–γ ;ψ

0+ f ∈ C1
1–γ ;ψ [J ,R], then

Iγ ;ψ
0+

H
D

γ ;ψ
0+ f (t) = f (t) –

(ψ(t) – ψ(0))γ –1

�(γ )
I (1–γ );ψ

0+ f (0)

for all 0 < γ < 1 and t ∈ J .

To transform problem (1.5) into a fixed point problem, problem (1.5) must be converted
to an equivalent Volterra integral equation. We provide the following lemma, which is
important in our main results and concerns a linear variant of problem (1.5).

Lemma 2.10 Let h ∈ C(J ,R), α ∈ (0, 1], ρ ∈ [0, 1), γ = α + ρ(1 – α), βj ∈ (0, 1], α ≥ βj +
ρ(1 – βj), j = 1, 2, . . . , n, δr > 0, r = 1, 2, . . . , k, and � �= 0. Then the function x ∈ C1–γ ,ψ (J ,R)
is a solution of the linear ψ-Hilfer fractional differential equation equipped with mixed
nonlocal conditions

⎧
⎨

⎩

HD
α,ρ;ψ
0+ x(t) = h(t), t ∈ (0, T],

∑m
i=1 ωix(ηi) +

∑n
j=1 κj

HD
βj ,ρ;ψ
0+ x(ζj) +

∑k
r=1 σrIδr ;ψ

0+ x(θr) = A,
(2.8)

if and only if x satisfies the integral equation

x(t) = Iα;ψ
0+ h(t) +

(ψ(t) – ψ(0))γ –1

�

[

A –
m∑

i=1

ωiIα;ψ
0+ h(ηi) –

k∑

r=1

σrIα+δr ;ψ
0+ h(θr)

–
n∑

j=1

κjI
α–βj ;ψ
0+ h(ζj)

]

, (2.9)
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where

� =
m∑

i=1

ωi
(
ψ(ηi) – ψ(0)

)γ –1 +
k∑

r=1

σr�(γ )(ψ(θr) – ψ(0))γ +δr–1

�(γ + δr)

+
n∑

j=1

κj�(γ )(ψ(ζj) – ψ(0))γ –βj–1

�(γ – βj)
. (2.10)

Proof Let x be a solution of problem (2.8). By Lemma 2.9 we have

x(t) = Iα;ψ
0+ h(t) +

(ψ(t) – ψ(0))γ –1

�(γ )
c1, (2.11)

where c1 ∈R is an arbitrary constant.
Taking the operators HD

βj ,ρj ;ψ
0+ and Iδr ;ψ

0+ on (2.11), we obtain

H
D

βj ,ρ;ψ
0+ x(t) = Iα–βj ;ψ

0+ h(t) + c1
(ψ(t) – ψ(0))γ –βj–1

�(γ – βj)
,

Iδr ;ψ
0+ x(t) = Iδr+α;ψ

0+ h(t) + c1
(ψ(t) – ψ(0))γ +δr–1

�(γ + δr)
.

Applying the given boundary condition in (2.8), we get

A =
m∑

i=1

ωiIα;ψ
0+ h(ηi) +

k∑

r=1

σrIα+δr ;ψ
0+ h(θr) +

n∑

j=1

κjI
α–βj ;ψ
0+ h(ζj)

+ c1

[ m∑

i=1

ωi(ψ(ηi) – ψ(0))γ –1

�(γ )
+

k∑

r=1

σr(ψ(θr) – ψ(0))γ +δr–1

�(γ + δr)

+
n∑

j=1

κj(ψ(ζj) – ψ(0))γ –βj–1

�(γ – βj)

]

,

from which we get

c1 =
�(γ )
�

[

A –
m∑

i=1

ωiIα;ψ
0+ h(ηi) –

k∑

r=1

σrIα+δr ;ψ
0+ h(θr) –

n∑

j=1

κjI
α–βj ;ψ
0+ h(ζj)

]

,

where � is defined by (2.10). Inserting this value of c1 into (2.11), we get (2.9).
Conversely, suppose that x is a solution of problem (2.8). Taking the ψ-Hilfer fractional

derivative HD
α,ρ;ψ
0+ into both sides of the Volterra integral equation (2.9) and using Propo-

sition 2.7 with Lemma 2.8, it follows that

H
D

α,ρ;ψ
0+ x(t) = H

D
α,ρ;ψ
0+ Iα;ψ

0+ h(t) +
1
�

[

A –
m∑

i=1

ωiIα;ψ
0+ h(ηi) –

k∑

r=1

σrIα+δr ;ψ
0+ h(θr)

–
n∑

j=1

κjI
α–βj ;ψ
0+ h(ζi)

]

H
D

α,ρ;ψ
0+

(
ψ(t) – ψ(0)

)γ –1

= h(t),
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for t ∈ J , where 0 < γ = α + ρ(1 – α) ≤ 1. Next, we show that x satisfies the boundary
conditions. Applying the operator HD

βj ,ρ;ψ
0+ and Iδr ;ψ

0+ to both sides of (2.9) with Lemma 2.8
and Proposition 2.7, for i = 1, 2, . . . , m, j = 1, 2, . . . , n, and r = 1, 2, . . . , k, we obtain

m∑

i=1

ωix(ηi) =
m∑

i=1

ωiIα;ψ
0+ h(ηi) +

m∑

i=1

ωi(ψ(ηi) – ψ(0))γ –1

��(γ )

×
[

A –
m∑

i=1

ωiIα;ψ
0+ h(ηi) –

k∑

r=1

σrIα+δr ;ψ
0+ h(θr) –

n∑

j=1

κjI
α–βj ;ψ
0+ h(ζj)

]

,

n∑

j=1

κj
H
D

βj ,ρ;ψ
0+ x(ζj) =

n∑

j=1

κjI
α–βj ;ψ
0+ h(ζj) +

n∑

j=1

κj�(γ )(ψ(ζj) – ψ(0))γ –βj–1

��(γ – βj)

×
[

A –
m∑

i=1

ωiIα;ψ
0+ h(ηi) –

k∑

r=1

σrIα+δr ;ψ
0+ h(θr)

–
n∑

j=1

κjI
α–βj ;ψ
0+ h(ζi)

]

,

k∑

r=1

σrIδr ;ψ
0+ x(θr) =

k∑

r=1

σrIα+δr ;ψ
0+ h(θr) +

k∑

r=1

σr�(γ )(ψ(θr) – ψ(0))γ +δr–1

��(γ + δr)

×
[

A –
m∑

i=1

ωiIα;ψ
0+ h(ηi) –

k∑

r=1

σrIα+δr ;ψ
0+ h(θr) –

n∑

j=1

κjI
α–βj ;ψ
0+ h(ζi)

]

,

where � is given by (2.10). Therefore

m∑

i=1

ωix(ηi) +
n∑

j=1

κj
H
D

βj ,ρ;ψ
0+ x(ζj) +

k∑

r=1

σrIδr ;ψ
0+ x(θr) = A.

The lemma is proved. �

Fixed point theorems play a major role in establishing the existence theory for problem
(1.5). We collect here some well-known fixed point theorems used in this paper.

Lemma 2.11 (Banach contraction principle [39]) Let D be a nonempty closed subset of a
Banach space E. Then any contraction mapping T from D into itself has a unique fixed
point.

Lemma 2.12 (Schaefer’s fixed point theorem [39]) Let M be a Banach space, let T : M →
M be a completely continuous operator, and let the set D = {x ∈ M : x = κTx, 0 < κ ≤ 1} be
bounded. Then T has a fixed point in M.

Lemma 2.13 (Krasnosel’skĭı’s fixed point theorem [40]) Let M be a closed, bounded,
convex, and nonempty subset of a Banach space. Let A, B be the operators such that
(i) Ax+By ∈M whenever x, y ∈M; (ii) A is compact and continuous; (iii) B is a contraction
mapping. Then there exists z ∈M such that z = Az + Bz.
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3 Existence results
In this section, we present results on the existence of a solution of problem (1.5).

For simplicity, we set

Fx(t) = f
(
t, x(t), H

D
α,ρ;ψ
0+ x(t),Iα;ψ

0+ x(t)
)
, t ∈ J .

In this paper, the expression Iα,ρ
0+ Fx(s)(c) means that

Iq;ψ
0+ Fx(s)(c) =

1
�(q)

∫ c

0
ψ ′(s)

(
ψ(c) – ψ(s)

)q–1Fx(s) ds,

where q = {α,α – βj,α + δr} and c = {t,ηi, ζj, θr}, i = 1, 2, . . . , m, j = 1, 2, . . . , n, r = 1, 2, . . . , k.
In view of Lemma 2.10, the operator Q : C1–γ ,ψ [J ,R] → C1–γ ,ψ [J ,R] is defined by

(Qx)(t) = Iα;ψ
0+ Fx(s)(t) +

(ψ(t) – ψ(0))γ –1

�

[

A –
m∑

i=1

ωiIα;ψ
0+ Fx(s)(ηi)

–
k∑

r=1

σrIα+δr ;ψ
0+ Fx(s)(θr) –

n∑

j=1

κjI
α–βj ;ψ
0+ Fx(s)(ζj)

]

. (3.1)

Note that problem (1.5) has solutions if and only if the operator Q has fixed points. In
the following subsection, we establish the existence of solutions for the problem (1.5) by
applying Banach’s, Schaefer’s, and Krasnosel’skĭı’s fixed point theorems.

We list here the necessary assumptions to prove our main results.
(H1) There exist constants L1, L3 > 0, and 0 < L2 < 1 such that

∣
∣f (t, u1, v1, w1) – f (t, u2, v2, w2)

∣
∣ ≤ L1|u1 – u2| + L2|v1 – v2| + L3|w1 – w2|

for any ui, vi, wi ∈R, i = 1, 2, and t ∈ J .
(H2) There exist nonnegative continuous functions h1, h2, h3, h4 ∈R such that

∣
∣f (t, u, v, w)

∣
∣ ≤ h1(t) + h2(t)|u| + h3(t)|v| + h4(t)|w|, u, v, w ∈R, t ∈ J ,

with h∗
1 = supt∈J h1(t), h∗

2 = supt∈J h2(t), h∗
3 = supt∈J h3(t), h∗

4 = supt∈J h4(t).
(H3) f (t, u, v, w) ≤ q(t), (t, u, v, w) ∈ J ×R

3, where q ∈ C(J ,R+).
For computational convenience, we use of the following notations:

�(u, B) =
(ψ(B) – ψ(0))u+γ –1

�(u + γ )
, (3.2)

�1(u, B) =
�(γ )
1 – L2

[
L1�(u, B) + L3�(α + u, B)

]
, (3.3)

�2(u, B) =
�(γ )
1 – h∗

3

[
h∗

2�(u, B) + h∗
4�(α + u, B)

]
, (3.4)

�ε =
1

|�|

[ m∑

i=1

|ωi|�ε(α,ηi) +
k∑

r=1

|σr|�ε(α + δr , θr) +
n∑

j=1

|κj|�ε(α – βj, ζj)

]

, (3.5)

�� =
(
ψ(T) – ψ(0)

)1–γ
��(α, T) + ��, (3.6)
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� =
(
ψ(T) – ψ(0)

)1–γ
�(α – γ + 1, T) +

1
|�|

[ m∑

i=1

|ωi|�(α – γ + 1,ηi)

+
k∑

r=1

|σr|�(α + δr – γ + 1, θr) +
n∑

j=1

|κj|�(α – βj – γ + 1, ζj)

]

, (3.7)

where ε = {1, 2} and � = {1, 2}.

3.1 Existence and uniqueness via Banach contraction mapping principle
We will first prove the existence and uniqueness of a solution for problem (1.5) by using
the Banach contraction mapping principle (Banach’s fixed point theorem).

Theorem 3.1 Let f : J ×R
3 →R be a continuous function satisfying (H1). If

�1 < 1, (3.8)

where �1 is given by (3.6), then problem (1.5) has a unique solution x ∈ C1–γ ,ψ on J .

Proof Firstly, we transform problem (1.5) into a fixed point problem, x = Qx, where the
operator Q is defined as in (3.1). It is clear that the fixed points of the operator Q are
solutions of problem (1.5). Applying the Banach contraction mapping principle, we will
show that the operator Q has a fixed point, which is a unique solution of problem (1.5).

Let supt∈[0,T] |f (t, 0, 0, 0)| := M1 < ∞. Next, we set Bϒ1 := {x ∈ C1–γ ,ψ : ‖x‖C1–γ ,ψ ≤ ϒ1}
with

ϒ1 ≥ 1
1 – �1

(
M1�

1 – L2

)

, (3.9)

where �, �1, and � are given by (2.10), (3.6), and (3.7), respectively. Observe that Bϒ1 is
a bounded, closed, and convex subset of C1–γ ,ψ . The proof is divided into two steps.

Step I. We show that QBϒ1 ⊂ Bϒ1 .
For any x ∈ Bϒ1 , we have

∣
∣
(
ψ(t) – ψ(0)

)1–γ (Qx)(t)
∣
∣

≤ (
ψ(T) – ψ(0)

)1–γIα;ψ
0+

∣
∣Fx(s)

∣
∣(T) +

1
|�|

(

|A| +
m∑

i=1

|ωi|Iα;ψ
0+

∣
∣Fx(s)

∣
∣(ηi)

+
k∑

r=1

|σ r|Iα+δr ;ψ
0+

∣
∣Fx(s)

∣
∣(θr) +

n∑

j=1

|κ j|Iα–βj ;ψ
0+

∣
∣Fx(s)

∣
∣(ζj)

)

.

Consider

Iα;ψ
0+

∣
∣x(τ )

∣
∣(s) =

1
�(α)

∫ s

0
ψ ′(τ )

(
ψ(s) – ψ(τ )

)α–1∣∣x(τ )
∣
∣dτ

≤ 1
�(α)

∫ s

0
ψ ′(τ )

(
ψ(s) – ψ(τ )

)α–1(
ψ(τ ) – ψ(0)

)γ –1‖x‖C1–γ ,ψ dτ

=
�(γ )(ψ(s) – ψ(0))α+γ –1

�(α + γ )
‖x‖C1–γ ,ψ .
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It follows from condition (H1) that

∣
∣Fx(t)

∣
∣ ≤ ∣

∣f
(
t, x(t), H

D
α,ρ;ψ
0+ x(t),Iα;ψ

0+ x(t)
)

– f (t, 0, 0, 0)
∣
∣ +

∣
∣f (t, 0, 0, 0)

∣
∣

≤ L1
∣
∣x(t)

∣
∣ + L2

∣
∣H
D

α,ρ;ψ
0+ x(t)

∣
∣ + L3

∣
∣Iα;ψ

0+ x(t)
∣
∣ + M1.

Then

∣
∣Fx(t)

∣
∣ ≤ 1

1 – L2

(

L1
(
ψ(t) – ψ(0)

)γ –1 +
L3�(γ )(ψ(t) – ψ(0))α+γ –1

�(α + γ )

)

‖x‖C1–γ ,ψ +
M1

1 – L2
.

Thus we get

Iα;ψ
0+

∣
∣Fx(s)

∣
∣(T) ≤ �1(α, T)‖x‖C1–γ ,ψ +

M1(ψ(T) – ψ(0))α

(1 – L2)�(α + 1)
, (3.10)

Iα;ψ
0+

∣
∣Fx(s)

∣
∣(ηi) ≤ �1(α,ηi)‖x‖C1–γ ,ψ +

M1(ψ(ηi) – ψ(0))α

(1 – L2)�(α + 1)
, (3.11)

Iα+δr ;ψ
0+

∣
∣Fx(s)

∣
∣(θr) ≤ �1(α + δr , θr)‖x‖C1–γ ,ψ +

M1(ψ(θr) – ψ(0))α+δr

(1 – L2)�(α + δr + 1)
, (3.12)

Iα–βj ;ψ
0+

∣
∣Fx(s)

∣
∣(ζj) ≤ �1(α – βj, ζj)‖x‖C1–γ ,ψ +

M1(ψ(ζj) – ψ(0))α–βj

(1 – L2)�(α – βj + 1)
. (3.13)

From (3.10)–(3.13) we obtain

∣
∣
(
ψ(t) – ψ(0)

)1–γ (Qx)(t)
∣
∣ ≤ �1ϒ1 +

M1�

1 – L2
,

which implies that ‖Qx‖C1–γ ,ψ ≤ ϒ1. Therefore QBϒ1 ⊂ Bϒ1 .
Step II. We show that the operator Q : C1–γ ,ψ → C1–γ ,ψ is a contraction.
For all x, y ∈ C1–γ ,ψ and t ∈ J , we have

∣
∣
(
ψ(t) – ψ(0)

)1–γ (
(Qx)(t) – (Qy)(t)

)∣
∣

≤ (
ψ(T) – ψ(0)

)1–γIα;ψ
0+

∣
∣Fx(s) – Fy(s)

∣
∣(T) +

1
|�|

( m∑

i=1

|ωi|Iα;ψ
0+

∣
∣Fx(s) – Fy(s)

∣
∣(ηi)

+
k∑

r=1

|σr|Iα+δr ;ψ
0+

∣
∣Fx(s) – Fy(s)

∣
∣(θr) +

n∑

j=1

|κj|Iα–βj ;ψ
0+

∣
∣Fx(s) – Fy(s)

∣
∣(ζj)

)

. (3.14)

From (H1) we obtain

∣
∣Fx(t) – Fy(t)

∣
∣ =

∣
∣f

(
t, x(t), Fx(t),Iα;ψ

0+ x(t)
)

– f
(
t, y(t), Fy(t),Iα;ψ

0+ y(t)
)∣
∣

≤ L1
∣
∣x(t) – y(t)

∣
∣ + L2

∣
∣Fx(t) – Fy(t)

∣
∣ + L3

∣
∣Iα;ψ

0+ x(t) – Iα;ψ
0+ y(t)

∣
∣,

and thus

∣
∣Fx(t) – Fy(t)

∣
∣

≤
‖x – y‖C1–γ ,ψ

1 – L2

(

L1
(
ψ(t) – ψ(0)

)γ –1 +
L3�(γ )(ψ(t) – ψ(0))α+γ –1

�(α + γ )

)

. (3.15)
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Then by substituting (3.15) into (3.14) we get

∣
∣
(
ψ(t) – ψ(0)

)1–γ (
(Qx)(t) – (Qy)(t)

)∣
∣

≤
{

(
ψ(T) – ψ(0)

)1–γ
�1(α, T) +

1
|�|

[ m∑

i=1

|ωi|�1(α,ηi) +
k∑

r=1

|σr|�1(α + δr , θr)

+
n∑

j=1

|κj|�1(α – βj, ζj)

]}

‖x – y‖C1–γ ,ψ
,

which implies that ‖Qx – Qy‖C1–γ ,ψ
≤ �1‖x – y‖C1–γ ,ψ

. Since �1 < 1, the operator Q is a
contraction map. Therefore by the Banach contraction mapping principle (Lemma 2.11)
problem (1.5) has a unique solution in C1–γ ,ψ . The proof is completed. �

3.2 Existence result via Schaefer’s fixed point theorem
The next existence result is based on Schaefer’s fixed point theorem.

Theorem 3.2 Let f : J × R
3 → R be a continuous function satisfying (H2). Then problem

(1.5) has at least one solution on J .

Proof We show that the operator Q defined in (3.1) has at least one fixed point in C1–γ ,ψ .
The proof is divided into four steps.

Step I. The operator Q is continuous.
Let xn be a sequence such that xn → x in C1–γ ,ψ . Then for each t ∈ J , we obtain

∣
∣
(
ψ(t) – ψ(0)

)1–γ (
(Qxn)(t) – (Qx)(t)

)∣
∣

≤ (
ψ(T) – ψ(0)

)1–γIα;ψ
0+

∣
∣Fxn (s) – Fx(s)

∣
∣(T) +

1
|�|

[ m∑

i=1

|ωi|Iα;ψ
0+

∣
∣Fxn (s) – Fx(s)

∣
∣(ηi)

+
k∑

r=1

|σr|Iα+δr ;ψ
0+

∣
∣Fxn (s) – Fx(s)

∣
∣(θr) +

n∑

j=1

|κj|Iα–βj ;ψ
0+

∣
∣Fxn (s) – Fx(s)

∣
∣(ζj)

]

≤
[
(
ψ(T) – ψ(0)

)1–γIα;ψ
0+

(
ψ(s) – ψ(0)

)γ –1(T)

+
1

|�|

( m∑

i=1

|ωi|Iα;ψ
0+

(
ψ(s) – ψ(0)

)γ –1(ηi)

+
k∑

r=1

|σr|Iα+δr ;ψ
0+

(
ψ(s) – ψ(0)

)γ –1(θr) +
n∑

j=1

|κj|Iα–βj ;ψ
0+

(
ψ(s) – ψ(0)

)γ –1(ζj)

)]

× ‖Fxn – Fx‖C1–γ ,ψ .

Since f is a continuous, this implies that Fx is also continuous. Hence we obtain

‖Qxn – Qx‖C1–γ ,ψ → 0 as n → ∞.

Step II. The operator Q maps bounded sets into bounded sets in C1–γ ,ψ .
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For ϒ2 > 0, there exists a constant μ > 0 such that, for each x ∈ B̄ϒ2 = {x ∈ C1–γ ,ψ :
‖x‖C1–γ ,ψ ≤ ϒ2}, we have ‖Qx‖C1–γ ,ψ ≤ μ.

Indeed, for any t ∈ J and x ∈ B̄ϒ2 , we have

∣
∣
(
ψ(t) – ψ(0)

)1–γ (Qx)(t)
∣
∣

≤ (
ψ(T) – ψ(0)

)1–γIα;ψ
0+

∣
∣Fx(s)

∣
∣(T) +

1
|�|

[

|A| +
m∑

i=1

|ωi|Iα;ψ
0+

∣
∣Fx(s)

∣
∣(ηi)

+
k∑

r=1

|σr|Iα+δr ;ψ
0+

∣
∣Fx(s)

∣
∣(θr) +

n∑

j=1

|κj|Iα–βj ;ψ
0+

∣
∣Fx(s)

∣
∣(ζj)

]

. (3.16)

It follows from condition (H2) that

∣
∣Fx(t)

∣
∣ ≤ h∗

1 + h∗
2
∣
∣x(t)

∣
∣ + h∗

3
∣
∣Fx(t)

∣
∣ + h∗

4
∣
∣Iα;ψ

0+ x(t)
∣
∣,

and thus

∣
∣Fx(t)

∣
∣ ≤ 1

1 – h∗
3

[

h∗
1 +

(

h∗
2
(
ψ(t) – ψ(0)

)γ –1 +
h∗

4�(γ )(ψ(t) – ψ(0))α+γ –1

�(α + γ )

)

‖x‖C1–γ ,ψ

]

.

(3.17)

Then by substituting (3.17) into (3.16) we get

∣
∣
(
ψ(t) – ψ(0)

)1–γ (Qx)(t)
∣
∣

≤ ‖x‖1–γ ,ψ

[
(
ψ(T) – ψ(0)

)1–γ
�2(α, T) +

1
|�|

( m∑

i=1

|ωi|�2(α,ηi)

+
k∑

r=1

|σr|�2(α + δr , θr) +
n∑

j=1

|κj|�2(α – βj, ζj)

)]

+
h∗

1�

1 – h∗
3

,

from which we get

‖Qx‖C1–γ ,ψ ≤ �2ϒ2 +
h∗

1�

1 – h∗
3

:= μ.

Step III. The operator Q maps bounded sets into equicontinuous sets of C1–γ ,ψ .
For 0 ≤ t1 < t2 ≤ T and x ∈ B̄ϒ2 where B̄ϒ2 is as defined in Step II, since f is bounded on

the compact set J × B̄3
ϒ2

, we have

∣
∣
(
ψ(t2) – ψ(0)

)1–γ (Qx)(t2) –
(
ψ(t1) – ψ(0)

)1–γ (Qx)(t1)
∣
∣

=
∣
∣
(
ψ(t2) – ψ(0)

)1–γIα;ψ
0+ Fx(t2) –

(
ψ(t1) – ψ(0)

)1–γIα;ψ
0+ Fx(t1)

∣
∣

=
∣
∣
∣
∣

(
ψ(t2) – ψ(0)

)1–γ

∫ t2

0
ψ ′(τ )

(
ψ(t2) – ψ(τ )

)α–1Fx(τ ) dτ

–
(
ψ(t1) – ψ(0)

)1–γ

∫ t1

0
ψ ′(τ )

(
ψ(t1) – ψ(τ )

)α–1Fx(τ ) dτ

∣
∣
∣
∣.
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Set sup(t,u,v,w)∈J×B3
ϒ2

|f (t, u, v, w)| = f̂ < ∞. Since (ψ(t) – ψ(0))1–γ (ψ(t) – ψ(τ ))α–1 is a de-
creasing function on t ∈ (0, T), it follows that

∣
∣
(
ψ(t2) – ψ(0)

)1–γ (Qx)(t2) –
(
ψ(t1) – ψ(0)

)1–γ (Qx)(t1)
∣
∣

≤ f̂
�(α)

∣
∣
∣
∣

(
ψ(t2) – ψ(0)

)1–γ

∫ t2

t1

ψ ′(τ )
(
ψ(t2) – ψ(τ )

)α–1 dτ

+
(
ψ(t1) – ψ(0)

)1–γ

∫ t1

0
ψ ′(τ )

(
ψ(t1) – ψ(τ )

)α–1 dτ

–
(
ψ(t2) – ψ(0)

)1–γ
∫ t1

0
ψ ′(τ )

(
ψ(t2) – ψ(τ )

)α–1 dτ

∣
∣
∣
∣

=
f̂

�(α + 1)
[(

ψ(t2) – ψ(0)
)1–γ (

ψ(t2) – ψ(t1)
)α +

(
ψ(t1) – ψ(0)

)1–γ (
ψ(t1) – ψ(0)

)α

+
(
ψ(t2) – ψ(0)

)1–γ {(
ψ(t2) – ψ(t1)

)α –
(
ψ(t2) – ψ(0)

)α}]
.

This inequality is independent of x and tends to zero as t2 → t1, which implies that
‖(Qx)(t2) – (Qx)(t1)‖C1–γ ,ψ → 0 as t2 → t1. Thus, Steps I to III, together with the Arzelá–
Ascoli theorem, we conclude that the operator Q is completely continuous.

Step IV. The set E = {x ∈ C1–γ ,ψ : x = �Qx, 0 < � ≤ 1} is bounded (a priori bounds).
Let x ∈ E. Then x = �Qx for some 0 < � ≤ 1. From (H2), for each t ∈ J , we can get the

estimate

x(t) = �

(

Iα;ψ
0+ Fx(t) +

(ψ(t) – ψ(0))γ –1

�

[

A –
m∑

i=1

ωiIα;ψ
0+

(
Fx(s)

)
(ηi)

–
k∑

r=1

σrIα+δr ;ψ
0+

(
Fx(s)

)
(θr) –

n∑

j=1

κjI
α–βj ;ψ
0+

(
Fx(s)

)
(ζj)

])

.

It follows from Step II that for each t ∈ J , ‖Qx‖C1–γ ,ψ ≤ μ < ∞. This implies that the set
C1–γ ,ψ is bounded.

By all hypotheses of Theorem 3.2 we conclude that there exists a positive constant N
such that ‖x‖C1–γ ,ψ ≤ N < ∞. By Schaefer’s fixed point theorem (Lemma 2.12) the operator
Q has at least one fixed point, which is a solution of problem (1.5). This completes the
proof. �

3.3 Existence result via Krasnosel’skiı̆’s fixed point theorem
By using Krasnosel’skĭı’s fixed point theorem, we obtain the final existence theorem.

Theorem 3.3 Let f : J ×R
3 →R be a continuous function satisfying (H1) and (H3). If

�1 < 1, (3.18)

where �1 is defined by (3.5), then problem (1.5) has at least one solution on J .

Proof Let supt∈J |q(t)| = q∗. By choosing a suitable Bϒ3 := {x ∈ C1–γ ,ψ : ‖x‖C1–γ ,ψ ≤ ϒ3},
where ϒ3 ≥ |A|

|�| + q∗�, we define the operators Q1 and Q2 on Bϒ3 by

(Q1x)(t) = Iα;ψ
0+ Fx(s)(t), t ∈ J ,
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(Q2x)(t) =
(ψ(t) – ψ(0))γ –1

�

[

A –
m∑

i=1

ωiIα;ψ
0+ Fx(s)(ηi)

–
k∑

r=1

σrIα+δr ;ψ
0+ Fx(s)(θr) –

n∑

j=1

κjI
α–βj ;ψ
0+ Fx(s)(ζj)

]

, t ∈ J .

Note that Q = Q1 + Q2. For any x, y ∈ Bϒ3 , we have

∣
∣
(
ψ(t) – ψ(0)

)1–γ (
(Q1x)(t) + (Q2y)(t)

)∣
∣

≤ (
ψ(T) – ψ(0)

)1–γIα;ψ
0+

∣
∣Fx(s)

∣
∣(T) +

1
|�|

[

|A| +
m∑

i=1

|ωi|Iα;ψ
0+

∣
∣Fy(s)

∣
∣(ηi)

+
k∑

r=1

|σr|Iα+δr ;ψ
0+

∣
∣Fy(s)

∣
∣(θr) +

n∑

j=1

|κj|Iα–βj ;ψ
0+

∣
∣Fy(s)

∣
∣(ζj)

]

≤ q∗(ψ(T) – ψ(0)
)1–γ

�(α – γ + 1, T) +
1

|�|

[

|A| + q∗
( m∑

i=1

|ωi|�(α – γ + 1,ηi)

+
k∑

r=1

|σr|�(α + δr – γ + 1, θr) +
n∑

j=1

|κj|�(α – βj – γ + 1, ζj)

)]

≤ |A|
|�| + q∗

[
(
ψ(T) – ψ(0)

)1–γ
�(α – γ + 1, T) +

1
|�|

( m∑

i=1

|ωi|�(α – γ + 1,ηi)

+
k∑

r=1

|σr|�(α + δr – γ + 1, θr) +
n∑

j=1

|κj|�(α – βj – γ + 1, ζj)

)]

≤ |A|
|�| + q∗� ≤ ϒ3.

This implies that Q1x + Q2y ∈ Bϒ3 , which satisfies assumption (i) of Lemma 2.13.
We now show that assumption (ii) of Lemma 2.13 is satisfied.
Let xn be a sequence such that xn → x in C1–γ ,ψ . Then for each t ∈ J , we have

∣
∣
(
ψ(t) – ψ(0)

)1–γ (
(Q1xn)(t) – (Q1x)(t)

)∣
∣

≤ (
ψ(T) – ψ(0)

)1–γIα;ψ
0+

∣
∣Fxn (s) – Fx(s)

∣
∣(T)

≤ (
ψ(T) – ψ(0)

)1–γIα;ψ
0+

(
ψ(s) – ψ(0)

)γ –1(T)‖Fxn – Fx‖C1–γ ,ψ .

Since f is continuous, this implies that the operator Fx is also continuous. Hence we obtain

‖Fxn – Fx‖C1–γ ,ψ
→ 0 as n → ∞.

This shows that the operator Q1x is continuous, since ‖Q1xn –Q1x‖1–γ ,ψ → 0 as n → ∞.
Also, the set Q1Bϒ3 is uniformly bounded as

‖Q1x‖C1–γ ,ψ ≤ q∗(ψ(T) – ψ(0)
)1–γ

�(α – γ + 1, T).
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Next, we prove the compactness of Q1. For each t1, t2 ∈ J with 0 ≤ t1 < t2 ≤ T , we have
(see Step III of Theorem 3.2)

∣
∣
(
ψ(t1) – ψ(0)

)1–γ (Q1x)(t1) –
(
ψ(t2) – ψ(0)

)1–γ (Q1x)(t2)
∣
∣

≤ q∗

�(α + 1)
[(

ψ(t2) – ψ(0)
)1–γ (

ψ(t2) – ψ(t1)
)α +

(
ψ(t1) – ψ(0)

)1–γ (
ψ(t1) – ψ(0)

)α

+
(
ψ(t2) – ψ(0)

)1–γ {(
ψ(t2) – ψ(t1)

)α –
(
ψ(t2) – ψ(0)

)α}]
.

Obviously, the right-hand side in this inequality is independent of x and tends to zero
as t2 → t1. Therefore the operator Q1 is equicontinuous, and so by the Arzelà–Ascoli
theorem, Q1 is relatively compact.

Moreover, it is easy to prove using condition (3.18) that the operator Q2 is a contraction
mapping, and thus assumption (iii) of Lemma 2.13 holds. Thus all the assumptions of
Lemma 2.13 are satisfied. So the conclusion of Lemma 2.13 implies that the boundary
value problem (1.5) has at least one solution on J . The proof is completed. �

4 Stability analysis
In this section, we develop some sufficient conditions under which the concerned problem
(1.5) satisfies the hypotheses of different types of Ulam stability such as the Ulam–Hyers
stability (UH), generalized Ulam–Hyers stability (GUH), Ulam–Hyers–Rassias stability
(UHR), and generalized Ulam–Hyers–Rassias stability (GUHR).

Before stating the main theorem, we need the following definitions. Let ε > 0, and let
B : [0, T] → [0,∞) be a continuous function. We consider the following inequalities:

∣
∣H
D

α,ρ;ψ
0+ z(t) – f

(
t, z(t), H

D
α,ρ;ψ
0+ z(t),Iα;ψ

0+ z(t)
)∣
∣ ≤ ε, (4.1)

∣
∣H
D

α,ρ;ψ
0+ z(t) – f

(
t, z(t), H

D
α,ρ;ψ
0+ z(t),Iα;ψ

0+ z(t)
)∣
∣ ≤ εB(t), (4.2)

∣
∣H
D

α,ρ;ψ
0+ z(t) – f

(
t, z(t), H

D
α,ρ;ψ
0+ z(t),Iα;ψ

0+ z(t)
)∣
∣ ≤ B(t). (4.3)

Definition 4.1 ([41]) Problem (1.5) is said to be UH stable if there exists a constant τ >
0 such that for ε > 0 and each solution z ∈ C1

1–γ ,ψ (J ,R) of inequality (4.1), there exists a
solution x ∈ C1

1–γ ,ψ (J ,R) of problem (1.5) with

∣
∣z(t) – x(t)

∣
∣ ≤ τε, t ∈ J . (4.4)

Definition 4.2 ([41]) Problem (1.5) is said to be GUH stable if there exists a function
B ∈ C1–γ ,ψ (R+,R+) with B(0) = 0 such that for each solution z ∈ C1

1–γ ,ψ (J ,R) of inequality
(4.2), there exists a solution x ∈ C1

1–γ ,ψ (J ,R) of problem (1.5) with

∣
∣z(t) – x(t)

∣
∣ ≤ B(ε), t ∈ J . (4.5)

Definition 4.3 ([41]) Problem (1.5) is said to be UHR stable with respect to B ∈
C1–γ ,ψ (J ,R+) if there exists a real number mf ,B > 0 such that for each solution z ∈
C1

1–γ ,ψ [J ,R] of inequality (4.2), there exists a solution x ∈ C1
1–γ ,ψ (J ,R) of problem (1.5)

with

∣
∣z(t) – x(t)

∣
∣ ≤ mf ,BεB(t), t ∈ J . (4.6)
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Definition 4.4 ([41]) Problem (1.5) is said to be GUHR stable with respect to B ∈
C1–γ ,ψ (J ,R+) if there exists a real number mf ,B > 0 such that for each solution z ∈
C1

1–γ ,ψ (J ,R) of inequality (4.3), there exists a solution x ∈ C1
1–γ ,ψ (J ,R) of problem (1.5) with

∣
∣z(t) – x(t)

∣
∣ ≤ mf ,BB(t), t ∈ J . (4.7)

Remark 4.5 It is clear that (i) Definition 4.1 ⇒ Definition 4.2; (ii) Definition 4.3 ⇒ Defi-
nition 4.4; (iii) Definition 4.3 for B(·) = 1 ⇒ Definition 4.1.

Remark 4.6 A function z ∈ C1
1–γ ,ψ (J ,R) is a solution of inequality (4.1) if and only if there

exists a function w ∈ C1–γ ,ψ (J ,R) (dependent on z) such that:
(i) |w(t)| ≤ ε, t ∈ J .

(ii) HD
α,ρ;ψ
0+ z(t) = f (t, z(t), HD

α,ρ;ψ
0+ z(t),Iα;ψ

0+ z(t)) + w(t), t ∈ J .

Firstly, we present an important lemma that will be used in the proofs of UH and GUH
stability.

Lemma 4.7 Let α ∈ (0, 1], ρ ∈ [0, 1). If z ∈ C1
1–γ ,ψ (J ,R) is a solution of inequality (4.1), then

z is a solution of the inequality

∣
∣z(t) – Hz(t)

∣
∣ ≤ (

ψ(T) – ψ(0)
)γ –1

�ε, (4.8)

where

Hz(t) = Iα;ψ
0+ Fz(s)(t) +

(ψ(t) – ψ(0))γ –1

�

(

A –
m∑

i=1

ωiIα;ψ
0+ Fz(s)(ηi)

–
k∑

r=1

σrIα+δr ;ψ
0+ Fz(s)(θr) –

n∑

j=1

κjI
α–βj ;ψ
0+ Fz(s)(ζj)

)

,

and � is given by (3.7).

Proof Let z be a solution of inequality (4.1). So, in view of Remark 4.6(ii) and Lemma 2.10,
we have

⎧
⎨

⎩

HD
α,ρ;ψ
0+ z(t) = f (t, z(t), HD

α,ρ;ψ
0+ z(t),Iα;ψ

0+ z(t)) + ω(t), t ∈ (0, T],
∑m

i=1 ωiz(ηi) +
∑n

j=1 κj
HD

βj ,ρ;ψ
0+ z(ζj) +

∑k
r=1 σrIδr ;ψ

0+ z(θr) = A.
(4.9)

Thus the solution of (4.9) is of the form

z(t) = Iα;ψ
0+ Fz(s)(t) +

(ψ(t) – ψ(0))γ –1

�

(

A –
m∑

i=1

ωiIα;ψ
0+ Fz(s)(ηi) –

k∑

r=1

σrIα+δr ;ψ
0+ Fz(s)(θr)

–
n∑

j=1

κjI
α–βj ;ψ
0+ Fz(s)(ζj)

)

+ Iα;ψ
0+ w(s)(t) –

(ψ(t) – ψ(0))γ –1

�

( m∑

i=1

ωiIα;ψ
0+ w(s)(ηi)

+
k∑

r=1

σrIα+δr ;ψ
0+ w(s)(θr) +

n∑

j=1

κjI
α–βj ;ψ
0+ w(s)(ζj)

)

.
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Then by using (i) of Remark 4.6 it follows that

∣
∣z(t) – Hz(t)

∣
∣ =

∣
∣
∣
∣
∣
Iα;ψ

0+ w(s)(t) –
(ψ(t) – ψ(0))γ –1

�

( m∑

i=1

ωiIα;ψ
0+ w(s)(ηi)

+
k∑

r=1

σrIα+δr ;ψ
0+ w(s)(θr) +

n∑

j=1

κjI
α–βj ;ψ
0+ w(s)(ζj)

)∣
∣
∣
∣
∣

≤
(

�(α – γ + 1, T) +
(ψ(T) – ψ(0))γ –1

|�|

( m∑

i=1

|ωi|�(α – γ + 1,ηi)

+
k∑

r=1

|σr|�(α – γ + δr + 1, θr) +
n∑

j=1

|κj|�(α – γ – βj + 1, ζj)

))

ε

=
(
ψ(T) – ψ(0)

)γ –1
�ε,

from which we obtain inequality (4.8). The proof is completed. �

Now we present the UH and GUH stability results.

Theorem 4.8 Let f : [0, T] × R
3 → R be a continuous function. If (H1) is satisfied with

�1 < 1, where �1 is given by (3.6), then problem (1.5) is UH stable and GUH stable on J .

Proof Suppose that ε > 0 and z ∈ C1
1–γ ,ψ (J ,R) is any solution of inequality (4.1), that is,

∣
∣H
D

α,ρ;ψ
0+ z(t) – f

(
t, z(t), H

D
α,ρ;ψ
0+ z(t),Iα;ψ

0+ z(t)
)∣
∣ ≤ ε, t ∈ J .

Let x ∈ C1
1–γ ,ψ (J ,R) be the unique solution of problem (1.5). Then we have

⎧
⎨

⎩

HD
α,ρ;ψ
0+ x(t) = f (t, x(t), HD

α,ρ;ψ
0+ x(t),Iα;ψ

0+ x(t)), t ∈ J ,
∑m

i=1 ωix(ηi) +
∑n

j=1 κj
HD

βj ,ρ;ψ
0+ x(ζj) +

∑k
r=1 σrIδr ;ψ

0+ x(θr) = A.

By applying the triangle inequality we get

∣
∣z(t) – x(t)

∣
∣ =

∣
∣z(t) – Hz(t) + Hz(t) – x(t)

∣
∣ ≤ ∣

∣z(t) – Hz(t)
∣
∣ +

∣
∣Hz(t) – x(t)

∣
∣. (4.10)

By using Lemma 4.7 with (4.10) we obtain

∣
∣z(t) – x(t)

∣
∣ ≤ (

ψ(T) – ψ(0)
)γ –1

�ε

+

∣
∣
∣
∣
∣
Iα;ψ

0+ Fz(s)(t) +
(ψ(t) – ψ(0))γ –1

�

(

A –
m∑

i=1

ωiIα;ψ
0+ Fz(s)(ηi)

–
k∑

r=1

σrIα+δr ;ψ
0+ Fz(s)(θr) –

n∑

j=1

κjI
α–βj ;ψ
0+ Fz(s)(ζj)

)

– Iα;ψ
0+ Fx(s)(t)

–
(ψ(t) – ψ(0))γ –1

�

(

A –
m∑

i=1

ωiIα;ψ
0+ Fx(s)(ηi) –

k∑

r=1

σrIα+δr ;ψ
0+ Fx(s)(θr)
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–
n∑

j=1

κjI
α–βj ;ψ
0+ Fx(s)(ζj)

)∣
∣
∣
∣
∣

≤ (
ψ(T) – ψ(0)

)γ –1
�ε + Iα;ψ

0+
∣
∣Fz(s) – Fx(s)

∣
∣(t)

+
(ψ(t) – ψ(0))γ –1

|�|

( m∑

i=1

|ωi|Iα;ψ
0+

∣
∣Fz(s) – Fx(s)

∣
∣(ηi)

+
k∑

r=1

|σr|Iα+δr ;ψ
0+

∣
∣Fz(s) – Fx(s)

∣
∣(θr) +

n∑

j=1

|κj|Iα–βj ;ψ
0+

∣
∣Fz(s) – Fx(s)

∣
∣(ζj)

)

≤ (
ψ(T) – ψ(0)

)γ –1
�ε + �1

∣
∣z(t) – x(t)

∣
∣.

This implies that

∣
∣z(t) – x(t)

∣
∣ ≤ τε,

where

τ =
(ψ(T) – ψ(0))γ –1�

1 – �1
.

Hence problem (1.5) is UH stable. Now setting B = τε such that B(0) = 0 yields that
problem (1.5) is GUH stable. The proof is completed. �

Remark 4.9 Let B ∈ C1–γ ,ψ (J ,R+) be an increasing function. Then there exists λB > 0 such
that for each t ∈ J , we have the integral inequality

Iα;ψ
0+ B(t) ≤ λBB(t). (4.11)

Lemma 4.10 Let α ∈ (0, 1] and ρ ∈ [0, 1). If z ∈ C1
1–γ ,ψ (J ,R) is a solution of inequality (4.2),

then z is a solution of the inequality

∣
∣z(t) – Hz(t)

∣
∣ ≤KλBB(t)ε, (4.12)

where

K = 1 –
(ψ(T) – ψ(0))γ –1

|�|

( m∑

i=1

|ωi| +
k∑

r=1

|σr| +
n∑

j=1

|κj|
)

. (4.13)

Proof From Lemma 4.7, using Remarks 4.6(i) and 4.9, we obtain

∣
∣z(t) – Hz(t)

∣
∣ =

∣
∣
∣
∣
∣
Iα;ψ

0+ w(s)(t) –
(ψ(t) – ψ(0))γ –1

�

( m∑

i=1

ωiIα;ψ
0+ w(s)(ηi)

+
k∑

r=1

σrIα+δr ;ψ
0+ w(s)(θr) +

n∑

j=1

κjI
α–βj ;ψ
0+ w(s)(ζj)

)∣
∣
∣
∣
∣
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≤
[

1 –
(ψ(T) – ψ(0))γ –1

|�|

( m∑

i=1

|ωi| +
k∑

r=1

|σr| +
n∑

j=1

|κj|
)]

λBεB(t)

= KλBB(t)ε,

from which we obtain inequality (4.12). This completes the proof. �

Next, we are ready to prove UlHR and GUHR stability results.

Theorem 4.11 Let f : J × R
3 → R be a continuous function, and let (H1) and (4.11) be

satisfied. If �1 < 1, where �1 is given by (3.6), then problem (1.5) is UHR stable and GUHR
stable on J .

Proof Let z ∈ C1
1–γ ,ψ (J ,R) be a solution of inequality (4.2), and let x be the unique solution

of problem (1.5). By applying the triangle inequality and Lemma 4.10 we get

∣
∣z(t) – x(t)

∣
∣ =

∣
∣z(t) – Hz(t) + Hz(t) – x(t)

∣
∣

≤ ∣
∣z(t) – Hz(t)

∣
∣ +

∣
∣Hz(t) – x(t)

∣
∣

≤ KλBB(t)ε +

∣
∣
∣
∣
∣
Iα;ψ

0+ Fz(s)(t) +
(ψ(t) – ψ(0))γ –1

�

(

A –
m∑

i=1

ωiIα;ψ
0+ Fz(s)(ηi)

–
k∑

r=1

σrIα+δr ;ψ
0+ Fz(s)(θr) –

n∑

j=1

κjI
α–βj ;ψ
0+ Fz(s)(ζj)

)

– Iα;ψ
0+ Fx(s)(t)

–
(ψ(t) – ψ(0))γ –1

�

(

A –
m∑

i=1

ωiIα;ψ
0+ Fx(s)(ηi) –

k∑

r=1

σrIα+δr ;ψ
0+ Fx(s)(θr)

–
n∑

j=1

κjI
α–βj ;ψ
0+ Fx(s)(ζj)

)∣
∣
∣
∣
∣

≤ KλBB(t)ε + Iα;ψ
0+

∣
∣Fz(s) – Fx(s)

∣
∣(t) +

(ψ(t) – ψ(0))γ –1

|�|

×
( m∑

i=1

ωiIα;ψ
0+

∣
∣Fz(s) – Fx(s)

∣
∣(ηi) +

k∑

r=1

σrIα+δr ;ψ
0+

∣
∣Fz(s) – Fx(s)

∣
∣(θr)

+
n∑

j=1

κjI
α–βj ;ψ
0+

∣
∣Fz(s) – Fx(s)

∣
∣(ζj)

)

≤ KλBB(t)ε + �1
∣
∣z(t) – x(t)

∣
∣,

where �1 is defined by (3.6), which implies that

∣
∣z(t) – x(t)

∣
∣ ≤ KλB

1 – �1
B(t)ε.

By setting

mf ,B =
KλB

1 – �1
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we get the inequality

∣
∣z(t) – x(t)

∣
∣ ≤ mf ,BB(t)ε. (4.14)

Hence problem (1.5) is UHR stable. Moreover, if we set ε = 1 in (4.14) with B(0) = 0, then
problem (1.5) is GUHR stable. The proof is completed. �

5 Examples
In this section, we present two examples, which illustrate the validity and applicability of
main results.

Example 5.1 Consider the nonlocal boundary problem

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

HD
3

10 , 1
4 ;e

t
2

0+ x(t) = 10t+2
(5–sin2 π t)2 · |x(t)|

4+|x(t)| + 5 cosπ t–2
5 · |HD

3
10 , 1

4 ;e
t
2

0+ x(t)|

6+|HD

3
10 , 1

4 ;e
t
2

0+ x(t)|

+ (2t – 1) · |I
3

10 ;e
t
2

0+ x(t)|

5+|I
3

10 ;e
t
2

0+ x(t)|
, t ∈ [0, 4/5],

∑m
i=1 ( i+1

10 )x( i
10 ) +

∑n
j=1 ( 4–j

10 )HD
14+j
100 , 1

4 ;e
t
2

0+ x( 3
25 j)

+
∑k

r=1( r+1
r+4 )I

r+2
r+9 ;e

t
2

0+ x( r
5 ) = 0,

(5.1)

where α = 3/10, ρ = 1/4, T = 4/5, m = 2, n = 3, k = 1, ωi = (i + 1)/10, κj = (4 – j)/10, σr =
(r + 1)/(r + 4), ηi = i/10, ζj = 3j/25, θr = r/5, βj = (14 + j)/100, δr = (r + 2)/(r + 9), and A = 0.
From the given data we obtain that � ≈ 3.593684625 �= 0 and

f (t, u, v, w) =
10t + 2

(5 – sin2 π t)2
· |u|

4 + |u| +
5 cosπ t – 2

5
· |v|

6 + |v| + (2t – 1) · |w|
5 + |w| .

For x1, x2, y1, y2, z1, z2 ∈R and t ∈ [0, 4/5], we have

∣
∣f (t, x1, y1, z1) – f (t, x2, y2, z2)

∣
∣ ≤ 1

10
(|x1 – x2| + |y1 – y2|

)
+

3
25

|z1 – z2|.

Assumption (H1) is satisfied with L1 = 1
10 , L2 = 1

10 , L3 = 3
25 . Hence

�1 ≈ 0.5220929551 < 1.

Since all the assumptions of Theorem 3.1 are satisfied, problem (5.1) has a unique solu-
tion on [0, 4/5]. Furthermore, we can also compute that

τ :=
(ψ(T) – ψ(0))γ –1�

1 – �1
≈ 2.590447084 > 0.

Hence by Theorem 4.8 problem (5.1) is both UH and GUH stable.
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Example 5.2 Consider the nonlocal boundary problem

⎧
⎪⎨

⎪⎩

HD
3
5 , 1

2 ; 3√t
0+ x(t) = 4t–3

53t+2(1+|x(t)|+|HD

3
5 , 1

2 ; 3√t
0+ x(t)|+|I

3
5 ; 3√t

0+ x(t)|)
, t ∈ [0, 3/2],

∑m
i=1

i
5 x( i

i+4 ) +
∑n

j=1 ( 4–j
10 )HD

3j
20 , 1

2 ; 3√t
0+ x( j+1

20 ) +
∑k

r=1( 6–r
50 )I

r+1
5 ; 3√t

0+ x( r
5 ) =

√
π

2 ,
(5.2)

where α = 3/5, ρ = 1/2, T = 3/5, m = 1, n = 2, k = 2, ωi = i/5, κj = (4 – j)/10, σr = (6 – r)/50,
ηi = i/(i + 4), ζj = (j + 1)/20, θr = r/5, βj = 3j/20, δr = (r + 1)/5, and A =

√
π/2. From the given

data we obtain that � ≈ 0.8384823809 �= 0 and

f (t, u, v, w) =
4t – 3

53t+2(1 + |u| + |v| + |w|) .

For x1, x2, y1, y2, z1, z2 ∈R and t ∈ [0, 3/2], we have

∣
∣f (t, x1, y1, z1) – f (t, x2, y2, z2)

∣
∣ ≤ 3

25
(|x1 – x2| + |y1 – y2| + |z1 – z2|

)
.

Assumption (H1) is satisfied with L1 = L2 = L3 = 3
25 . Hence

�1 ≈ 0.6225720515 < 1, and K ≈ 2.021525739.

Set B(t) = ψ(t) – ψ(0). By using Proposition 2.7(i), we can simply calculate that

I
3
5 ; 3√t

0+ B(t) =
1

�( 13
5 )

[
ψ(t) – ψ(0)

] 3
5 B(t) ≤

5√1.5
�( 13

5 )
B(t).

Thus inequality (4.11) is satisfied with λB =
5√1.5

�( 13
5 )

> 0. It follows that

mf ,B =
KλB

1 – �1
≈ 4.062949933 > 0.

Hence by Theorem 4.11 problem (5.2) is both UHR and GUHR stable.

6 Conclusion
We have proved the existence and uniqueness of a solution for a class of ψ-Hilfer frac-
tional integro-differential equations with mixed nonlocal conditions. We emphasize that
the nonlocal boundary condition is very general, including multipoint, fractional deriva-
tive multiorder, and fractional integral multiorder conditions. We used the fixed point the-
orems of Banach, Schaefer, and Krasnosel’ski to investigate the existence and uniqueness of
solutions. Our results are not only new in the given setting but also provide some new spe-
cial cases by fixing the parameters involved in the problem at hand. For instance, by fixing
ωj = 0, λk = 0 for all j = 1, 2, . . . , n, k = 1, 2, . . . , r our results correspond to boundary value
problems for ψ-Hilfer nonlinear fractional integro-differential equations supplemented
with multipoint boundary conditions. In case we take δi = 0, λk = 0 for all i = 1, 2, . . . , m,
k = 1, 2, . . . , r, we obtain results for boundary value problems for ψ-Hilfer nonlinear frac-
tional integro-differential equations equipped with multiterm integral boundary condi-
tions.
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We also investigated different kinds of Ulam stability, such as the Ulam–Hyers stability,
generalized Ulam–Hyers stability, Ulam–Hyers–Rassias stability, and generalized Ulam–
Hyers–Rassias stability. The obtained results are well illustrated by examples.

The work accomplished in this paper is new and enriches the literature on boundary
value problems for nonlinear ψ-Hilfer fractional differential equations.
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