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Abstract
We prove the global existence of small data solution in all spaces of all dimensions
n ≥ 1 for weakly coupled systems of semilinear effectively damped wave, with
different time-dependent coefficients in the dissipation terms. Moreover, we assume
that the nonlinearity terms f (t,u) and g(t, v) satisfy some properties of parabolic
equations. We study the problem in several classes of regularity.
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1 Introduction
Let us consider the Cauchy problem for the semilinear classical damped wave equation
with power nonlinearity

utt – �u + ut = f (u), u(0, x) = u0(x), ut(0, x) = u1(x), (1)

where t ∈ [0,∞), x ∈R
n, and

f (0) = 0,
∣
∣f (u) – f (ũ)

∣
∣� |u – ũ|(|u| + |ũ|)p–1. (2)

Having the estimates proved in [17] for the corresponding homogeneous problem, for
given compactly supported initial data (u0, u1) ∈ H1(Rn) × L2(Rn) and for p ≤ pGN (n) :=

n
n–2 if n ≥ 3, the authors in [22] proved the local (in time) existence of energy solutions
u ∈ C([0, T), H1(Rn)) ∩ C1([0, T), L2(Rn)). Moreover, they proved the global (in time) ex-
istence of small data solutions by using the technique of “potential well” and “modified
potential well”. The Cauchy problem (1) was also studied in [7, 12, 13, 27, 30], where the
Fujita exponent pFuj(n) := 1 + 2

n has an important role as the critical exponent. The critical
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exponent means that we have the global (in time) existence of small data weak solutions
for p > pFuj(n), whereas the local (in time) existence for p > 1 and large data can be only
expected.

Assuming a time-dependent coefficient in the dissipation term, we first consider the
Cauchy problem

utt – �u + b(t)ut = 0, u(0, x) = u0(x), ut(0, x) = u1(x).

Among other classifications of the dissipation term b(t)ut introduced in [28] and [29], we
are interested in the effective case, where b = b(t) satisfies the following properties:

• b is a positive and monotonic function with tb(t) → ∞ as t → ∞,
• ((1 + t)2b(t))–1 ∈ L1(0,∞),
• b ∈ C3[0,∞) and |b(k)(t)|� b(t)

(1+t)k for k = 1, 2, 3,
• 1

b /∈ L1(0,∞), and there exists a constant a ∈ [0, 1) such that tb′(t) ≤ ab(t).
Examples of functions belonging to this class are the followings with r ∈ (–1, 1):

• b(t) = μ

(1+t)r for some μ > 0, b(t) = μ

(1+t)r (log(e + t))γ for some μ > 0 and γ > 0, and
b(t) = μ

(1+t)r(log(e+t))γ for some μ > 0 and γ > 0.
In [5] the authors derived such estimates for solutions to the family of parameter-
dependent Cauchy problems

utt – �u + b(t)ut = 0, v(τ , x) = 0, vt(τ , x) = f (u)(τ , x).

Using theses estimates together with Duhamel’s principle, in the same paper the authors
proved the global existence of small data solutions to the following semilinear Cauchy
problem:

utt – �u + b(t)ut = f (u), u(0, x) = u0(x), ut(0, x) = u1(x),

where f (u) satisfies condition (2).
In 2013, D’Abbicco [3] proved the global existence of small data solution for low space

dimensions and derived decay estimates for solutions to the Cauchy problem

utt – �u + b(t)ut = f (t, u), u(0, x) = u0(x), ut(0, x) = u1(x),

where

f (t, 0) = 0 and
∣
∣f (t, v) – f (t, ṽ)

∣
∣�

(

1 +
∫ t

0

1
b(r)

dr
)γ

|v – ṽ|(|v| + |ṽ|)p–1.

Weakly coupled systems can be an interesting problem, treated and improved in [16] and
[1]. In this paper, we study in all space dimensions the Cauchy problem of weakly coupled
system of semilinear effectively damped waves

utt – �u + b1(t)ut = f (t, v), u(0, x) = u0(x), ut(0, x) = u1(x),

vtt – �v + b2(t)vt = g(t, u), v(0, x) = v0(x), vt(0, x) = v1(x),
(3)
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where

(

1 + B1(t, 0)
)β �

(

1 + B2(t, 0)
)

�
(

1 + B1(t, 0)
) 1

α , (4)

f (t, 0) = 0,
∣
∣f (t, v) – f (t, ṽ)

∣
∣�

(

1 + B1(t, 0)
)γ1 |v – ṽ|(|v| + |ṽ|)p–1, (5)

g(t, 0) = 0,
∣
∣g(t, u) – g(t, ũ)

∣
∣�

(

1 + B2(t, 0)
)γ2 |u – ũ|(|u| + |ũ|)q–1, (6)

for B1(t, τ ) =
∫ t
τ

1
b1(r) dr, B2(t, τ ) =

∫ t
τ

1
b2(r) dr,α,β ∈ R

∗
+, and γ1,γ2 ∈ [–1,∞). If we take γ1 <

–1 or γ2 < –1, then we will get an empty admissible range for p or q (see the table in
Remark 2.3).

Recently, Nishihara and Wakasugi [23] studied the particular case of (3), where b1(t) =
b2(t) = 1, f (t, v) = |v|p, and g(t, u) = |u|q. Using the weighted energy method, they proved
the global (in time) existence if the inequality

max{p; q} + 1
pq – 1

<
n
2

(7)

is satisfied. Using an additional regularity Lm(Rn) for data, we conclude the so-called modi-
fied Fujita exponent pFuj,m := 1+ 2m

n ; this new exponent implies a modified condition corre-
sponding to (7), max{p;q}+1

pq–1 < n
2m . In [20] and [18] the authors studied the above system with

the same nonlinearities assumed in [23] by taking the equivalent coefficients b1 = b1(t)
and b2 = b2(t) or, in other words, α = β = 1. The global (in time) existence of small ini-
tial data solutions was proved assuming different classes of regularity of data and for all
space dimensions. Considering (3) in [21], the authors proved a global existence result for
a particular case from the set of effective dissipation terms b1(t) = μ

(1+t)r1 , r1, r2 ∈ (–1, 1),
and b2(t) = μ

(1+t)r2 with the nonlinearities f (t, v) = |v|p and f (t, u) = |u|q.

1.1 Notations
For s > 0 and m ∈ [1, 2), we introduce the function space

Am,s :=
(

Hs(
R

n) ∩ Lm(

R
n)) × (

Hs–1(
R

n) ∩ Lm(

R
n))

with the norm

∥
∥(u, v)

∥
∥
Am,s

:= ‖u‖Hs + ‖u‖Lm + ‖v‖Hs–1 + ‖v‖Lm .

We denote by p̃ and q̃ the modified exponents of the exponents p and q in the power
nonlinearities appearing in (5) and (6). Then

p̃ =

⎧

⎨

⎩

(p – 1)β + 1 if β ≥ 1,

(p – m
2 )β + m

2 if 0 < β < 1,
(8)

and

q̃ =

⎧

⎨

⎩

(q – 1)α + 1 if α ≥ 1,

(q – m
2 )α + m

2 if 0 < α < 1.
(9)
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Remark 1.1 If α = β = 1, then (1+B1(t, 0)) ≈ (1+B2(t, 0)). This case was studied in previous
papers. In this work, we restrict ourselves to the remaining cases.

2 Main results
We study the Cauchy problem (3) in several cases with respect to the regularity of the data
to cover all space dimensions and the modified exponents of power nonlinearities p̃, q̃ and
parameters α,β ,γ1,γ2. Therefore we introduce the following classification of regularity:
Data from energy space s = 1, data from Sobolev spaces with suitable regularity s ∈ (1, n

2 +
1], and, finally, large regular data s > n

2 + 1.

2.1 Data from the energy space
In this section, we are interested in system (3), where the data are taken from the function
space Am,1. In Theorem 2.1, we treat the case where both modified exponents power p̃
and q̃ are above the modified Fujita exponents

pFuj,m,γ1 := 1 +
2m(γ1 + 1)

n
and qFuj,m,γ2 := 1 +

2m(γ2 + 1)
n

,

respectively.

Theorem 2.1 Let the data (u0, u1), (v0, v1) belong to Am,1 ×Am,1 for m ∈ [1, 2). Moreover,
let the modified exponents satisfy

p̃ > pFuj,m,γ1 , q̃ > pFuj,m,γ2 , (10)

and let the exponents p and q of the power nonlinearities satisfy

2
m

≤ min{p; q} ≤ max{p; q} < ∞ if n ≤ 2,

2
m

≤ min{p; q} ≤ max{p; q} ≤ pGN (n) if n > 2.
(11)

Then there exists a constant ε0 such that if

∥
∥(u0, u1)

∥
∥
Am,1

+
∥
∥(v0, v1)

∥
∥
Am,1

≤ ε0,

then there exists a uniquely determined global (in time) energy solution to (3) in

(

C
(

[0,∞), H1(
R

n)) ∩ C1([0,∞), L2(
R

n)))2.

Furthermore, the solution satisfies the following decay estimates:

∥
∥∇ j∂ l

t u(t, ·)∥∥L2(Rn) � b1(t)–l(1 + B1(t, 0)
)– n

2 ( 1
m – 1

2 )– j
2 –l

× (∥
∥(u0, u1)

∥
∥
Am,1

+
∥
∥(v0, v1)

∥
∥
Am,1

)

,

∥
∥∇ j∂ l

t v(t, ·)∥∥L2(Rn) � b2(t)–l(1 + B2(t, 0)
)– n

2 ( 1
m – 1

2 )– j
2 –l

× (∥
∥(u0, u1)

∥
∥
Am,1

+
∥
∥(v0, v1)

∥
∥
Am,1

)

,

where j + l = 0, 1.
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Remark 2.2 We remark that for γ1 = γ2 = 0, system (3) behaves in this case like one single
equation because the modified power nonlinearities p̃ and q̃ are influenced separately only
by the modified Fujita exponent pFuj,m(n) = 2m

n + 1. Then we cannot feel in an optimal way
the interplay between the powers of nonlinearities in the existence conditions.

Remark 2.3 The final admissible ranges for the exponents p and q of power nonlinearities
can be fixed using several parameters such as α,β , the exponents γ1,γ2, the space dimen-
sion n, and the parameter of additional regularity m. As an example for the dimension
n = 1, if we take 0 < β < 1, then p̃ < p. We distinguish two cases:

• If γ1 ≥ – 1
2 , then p ≥ 2

m for p̃ > pFuj,m,γ1 which is equivalent to
p > 1

β
(2m(γ1 + 1) – m

2 + 1) + m
2 .

• If γ1 ∈ [–1, – 1
2 ), then the solution exists for

p > max

{
1
β

(

2m(γ1 + 1) –
m
2

+ 1
)

+
m
2

;
2
m

}

.

The general case for the admissible ranges from below can be summarized as follows:

β Nonlinearity parameter γ1 Admissible range for p

0 < β < 1 γ1 ≥ –1 + n
2 p > 1

β
+ 2m(γ1+1)

nβ
– m

2β
+ m

2

γ1 ∈ [–1, –1 + n
2 ) p > max

{

1
β

+ 2m(γ1+1)
nβ

– m
2β

+ m
2 ; 2

m

}

β ≥ 1 γ1 ≥ –1 + nβ

2 p > 2m(γ1+1)
nβ

+ 1

γ1 ∈ [–1, –1 + nβ

2 ) p > max

{

2m(γ1+1)
nβ

+ 1; 2
m

}

In the same way, we can get the admissible range for q with respect to the parameters α

and γ2.

Example 2.4 Let us choose the space dimension n = 2, the parameters γ1 = –1,γ2 = – 1
3 ,

and the coefficients of the dissipation terms b1(t) = (1 + t)– 1
2 and b2(t) = (1 + t) 1

2 , which
implies β = 1

α
= 3. Using (10) from the previous theorem for m = 2, we get p̃ > 1, q̃ > 7

3 .
Theses conditions together with (11) after applying (8) and (9) imply the following admis-
sible range for the exponents of power nonlinearities:

p > 1, q > 5.

The case where one exponent p̃ or q̃ is below the modified Fujita exponent, we distin-
guish four cases with respect to the values of α and β :

1. p̃ ≤ 1 + 2m(γ1+1)
n , q̃ > 1 + 2m(γ2+1)

n with min{α;β} ≥ 1 or min{α;β} ≤ 1 ≤ max{α;β}.
2. p̃ > 1 + 2m(γ1+1)

n , q̃ ≤ 1 + 2m(γ2+1)
n with min{α;β} ≥ 1 or min{α;β} ≤ 1 ≤ max{α;β}.

Theorem 2.5 Let m ∈ [1, 2),α ≥ 1, and β > 0. The data (u0, u1), (v0, v1) are assumed to
belong to Am,1 ×Am,1. Moreover, let the modified exponents satisfy

p̃ <
2m(γ1 + 1)

n
+ 1,

q̃ >
2m(γ2 + 1)

n
+ 1.

(12)
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Moreover, we assume that

n
2

> m
(

q̃ + α + γ1q̃ + γ1(α – 1) + γ2

p̃q̃ – 1 + (α – 1)(p̃ – 1)

)

(13)

and the exponents p and q of the power nonlinearities satisfy

2
m

≤ min{p; q} ≤ max{p; q} < ∞ if n ≤ 2,

2
m

≤ min{p; q} ≤ max{p; q} ≤ pGN (n) if n > 2.

Then there exists a constant ε0 such that if

∥
∥(u0, u1)

∥
∥
Am,1

+
∥
∥(v0, v1)

∥
∥
Am,1

≤ ε0,

then there exists a uniquely determined global (in time) energy solution to (3) in

(

C
(

[0,∞), H1(
R

n)) ∩ C1([0,∞), L2(
R

n)))2.

Furthermore, the solution satisfies the following decay estimates:

∥
∥∇ j∂ l

t u(t, ·)∥∥L2(Rn)

� b1(t)–l(1 + B1(t, 0)
)– n

2 ( 1
m – 1

2 )– j
2 –l+κ(p̃)(∥

∥(u0, u1)
∥
∥
Am,1

+
∥
∥(v0, v1)

∥
∥
Am,1

)

,
∥
∥∇ j∂ l

t v(t, ·)∥∥L2(Rn)

� b2(t)–l(1 + B2(t, 0)
)– n

2 ( 1
m – 1

2 )– j
2 –l(∥

∥(u0, u1)
∥
∥
Am,1

+
∥
∥(v0, v1)

∥
∥
Am,1

)

,

where j + l = 0, 1, and

κ(p̃) = γ1 –
n

2m
(p̃ – 1) + 1

represents the loss of decay in comparison with the corresponding decay estimates for the
solution u of the linear Cauchy problem with vanishing right-hand side.

Remark 2.6 Choosing p̃ = pFuj,m(n) in condition (12), we get an arbitrarily small loss of
decay κ(p̃) = ε.

We summarize the remaining results for all cases with respect to α,β , p̃, and q̃ as follows:
• If we assume in the statement of the previous theorem that α < 1 and β ≥ 1, then,

instead of (13), we get the condition

n
2

> m
( q̃ + 1 + γ1q̃ + γ2 + m

2 (α – 1)(γ1 + 1)
p̃q̃ – 1 + m

2 (α – 1)(p̃ – 1)

)

.

• If p̃ > 2m(γ1+1)
n + 1, q̃ ≤ 2m(γ2+1)

n + 1, then, instead of (13), we have to assume that

n
2

> m
(

p̃ + β + γ2p̃ + γ2(β – 1) + γ1

p̃q̃ – 1 + (β – 1)(q̃ – 1)

)

for α > 0,β ≥ 1,
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n
2

> m
( p̃ + 1 + γ2p̃ + γ1 + m

2 (β – 1)(γ2 + 1)
p̃q̃ – 1 + m

2 (β – 1)(q̃ – 1)

)

for α ≥ 1,β < 1.

2.2 Data from Sobolev spaces with suitable regularity
In this section the regularity of data has a strong influence on the admissible range of
the modified exponents or the exponents of power nonlinearities, respectively. For this
reason, we assume that the data have a different suitable regularity, that is,

(u0, u1) ∈ Hs1
(

R
n) × Hs1–1(

R
n), s1 ∈

(

1, 1 +
n
2

]

,

(v0, v1) ∈ Hs2
(

R
n) × Hs2–1(

R
n), s2 ∈

(

1, 1 +
n
2

]

,

with an additional regularity Lm(Rn), m ∈ [1, 2). In this section, we use a generalized (frac-
tional) Gagliardo–Nirenberg inequality used in [11] and [25]. Furthermore, we use a frac-
tional Leibniz rule and a fractional chain rule, which are explained in the Appendix.

Theorem 2.7 Let n ≥ 4, s1 ∈ (3 + 2γ1, n
2 + 1], s2 ∈ (3 + 2γ2, n

2 + 1], 0 < s2 – s1 < 1, and
s1� �= s2�. The data (u0, u1), (v0, v1) are supposed to belong toAm,s1 ×Am,s2 with m ∈ [1, 2).
Furthermore, we assume that

p̃ >
2m
n

(
s1 + 1 + 2γ1

2

)

+ 1, q̃ >
2m
n

(
s2 + 1 + 2γ2

2

)

+ 1. (14)

and that the exponents p and q of the power nonlinearities satisfy the conditions

s1� < p, s2� < q if n ≤ 2s1,

s1� < p, s2� < q ≤ 1 +
2

n – 2s1
if 2s1 < n ≤ 2s2,

s1� < p ≤ 1 +
2

n – 2s2
, s2� < q ≤ 1 +

2
n – 2s1

if n > 2s2.

(15)

Then there exists a constant ε0 such that if

∥
∥(u0, u1)

∥
∥
Am,s1

+
∥
∥(v0, v1)

∥
∥
Am,s2

≤ ε0,

then there exists a uniquely determined globally (in time) energy solution to (3) in

(

C
(

[0,∞), Hs1
(

R
n)) ∩ C1([0,∞), Hs1–1(

R
n)))

× (

C
(

[0,∞), Hs2
(

R
n)) ∩ C1([0,∞), Hs2–1(

R
n))).

Furthermore, for l = 0, 1, the solution satisfies the estimates

∥
∥|D|s1–l∂ l

t u(t, ·)∥∥L2(Rn) � b1(t)–l(1 + B1(t, 0)
)– n

2 ( 1
m – 1

2 )–l– s1–l
2

× (∥
∥(u0, u1)

∥
∥
Am,s1

+
∥
∥(v0, v1)

∥
∥
Am,s2

)

,

∥
∥|D|s2–l∂ l

t v(t, ·)∥∥L2(Rn) � b2(t)–l(1 + B2(t, 0)
)– n

2 ( 1
m – 1

2 )–l– s2–l
2
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× (∥
∥(u0, u1)

∥
∥
Am,s1

+
∥
∥(v0, v1)

∥
∥
Am,s2

)

.

Particular cases:
• If β ≥ 1 and s1 ≥ 3 + 2γ1, then under the assumptions of Theorem 2.7, the condition

p > s1� implies p̃ > 2m
n ( s1+1+2γ1

2 ) + 1.
• If α ≥ 1 and s2 ≥ 3 + 2γ2, then under the assumptions of Theorem 2.7, the condition

p > s2� implies q̃ > 2m
n ( s2+1+2γ2

2 ) + 1.

2.3 Large regular data
This case has been classified to benefit from the embedding in L∞(Rn), where the data are
supposed to have a high regularity, which means that

(u0, u1) ∈ Hs1
(

R
n) × Hs1–1(

R
n), s1 >

n
2

+ 1,

(v0, v1) ∈ Hs2
(

R
n) × Hs2–1(

R
n), s2 >

n
2

+ 1.

Theorem 2.8 Let n ≥ 4, (u0, u1), (v0, v1) ∈Am,s1 ×Am,s2 , m ∈ [1, 2), min{s2; s1} > n
2 + 1, and

s1 – s2 ∈ (–1, 1). Moreover, let

p > s1, q > s2,

and

p̃ >
2m
n

(
s1 + 1 + 2γ1

2

)

+ 1, q̃ >
2m
n

(
s2 + 1 + 2γ2

2

)

+ 1. (16)

Then there exists a constant ε0 such that if

∥
∥(u0, u1)

∥
∥
Am,s1

+
∥
∥(v0, v1)

∥
∥
Am,s2

≤ ε0,

then there exists a uniquely determined globally (in time) energy solution to (3) in

(

C
(

[0,∞), Hs1
(

R
n)) ∩ C1([0,∞), Hs1–1(

R
n)))

× (

C
(

[0,∞), Hs2
(

R
n)) ∩ C1([0, t], Hs2–1(

R
n))).

Furthermore, the solution satisfies for l = 0, 1 the estimates

∥
∥|D|s1–l∂ l

t u(t, ·)∥∥L2(Rn) � b1(t)–l(1 + B1(t, 0)
)– n

2 ( 1
m – 1

2 )–l– s1–l
2

× (∥
∥(u0, u1)

∥
∥
Am,s1

+
∥
∥(v0, v1)

∥
∥
Am,s2

)

,

∥
∥|D|s2–l∂ l

t v(t, ·)∥∥L2(Rn) � b2(t)–l(1 + B2(t, 0)
)– n

2 ( 1
m – 1

2 )–l– s2–l
2

× (∥
∥(u0, u1)

∥
∥
Am,s1

+
∥
∥(v0, v1)

∥
∥
Am,s2

)

.
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3 Philosophy of our approach and proofs
3.1 Some tools
First, we recall the following result from [5].

Lemma 3.1 The primitive B = B(t, τ ) of 1
b satisfies the following properties:

B(t, τ ) ≈ B(t, 0) for all τ ∈
[

0,
t
2

]

, (17)

B(τ , 0) ≈ B(t, 0) for all τ ∈
[

t
2

, t
]

, (18)

∫ t

t
2

1
b(τ )

(

1 + B(t, τ )
)– j

2 –l dτ �
(

1 + B(t, 0)
)1– j

2 –l
log

(

1 + B(t, 0)
)l for j + l = 0, 1.

To use Duhamel’s principle, we need the following results in the proofs of our main
results.

Theorem 3.2 The Sobolev solutions to the Cauchy problem

utt – �u + b(t)ut = 0, u(0, x) = u0(x), ut(0, x) = u1(x)

satisfy the following estimates for t > 0:
For data from the energy space (s = 1),

∥
∥∇ j∂ l

t u(t, ·)∥∥L2 �
(

b(t)
)–l(1 + B(t, 0)

)– n
2 ( 1

m – 1
2 )– j

2 –l∥
∥(u0, u1)

∥
∥
Am,1

,

where j + l = 0, 1;
for high regular data (s > 1),

∥
∥u(t, ·)∥∥L2 �

(

1 + B(t, 0)
)– n

2 ( 1
m – 1

2 )∥
∥(u0, u1)

∥
∥
Am,s

,

∥
∥ut(t, ·)∥∥L2 � b(t)–1(1 + B(t, 0)

)– n
2 ( 1

m – 1
2 )–1∥

∥(u0, u1)
∥
∥
Am,s

,

∥
∥|D|su(t, ·)∥∥L2 �

(

1 + B(t, 0)
)– n

2 ( 1
m – 1

2 )– s
2
∥
∥(u0, u1)

∥
∥
Am,s

,

∥
∥|D|s–1ut(t, ·)∥∥L2 � b(t)–1(1 + B(t, 0)

)– n
2 ( 1

m – 1
2 )– s–1

2 –1∥
∥(u0, u1)

∥
∥
Am,s

.

The proof of this theorem follows from [28] and [29].

Theorem 3.3 The Sobolev solutions to the parameter-dependent family of Cauchy prob-
lems

vtt – �v + b(t)vt = 0, v(τ , x) = 0, vt(τ , x) = v1(x)

satisfy the following estimates for t > τ , τ ≥ 0:
For data from the energy space (s = 1),

∥
∥∇ j∂ l

t v(t, ·)∥∥L2 � b(t)–1b(τ )–l(1 + B(t, τ )
)– n

2 ( 1
m – 1

2 )– j
2 –l‖v1‖L2∩Lm , (19)

where j + l = 0, 1;
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For high regular data (s > 1),

∥
∥v(t, ·)∥∥L2 � b(τ )–1(1 + B(t, τ )

)– n
2 ( 1

m – 1
2 )‖v1‖Hs–1∩Lm ,

∥
∥vt(t, ·)∥∥L2 � b(τ )–1b(t)–1(1 + B(t, τ )

)– n
2 ( 1

m – 1
2 )–1‖v1‖Hs–1∩Lm ,

∥
∥|D|sv(t, ·)∥∥L2 � b(τ )–1(1 + B(t, τ )

)– n
2 ( 1

m – 1
2 )– s

2 ‖v1‖Hs–1∩Lm ,
∥
∥|D|s–1vt(t, ·)∥∥L2 � b(τ )–1b(t)–1(1 + B(t, τ )

)– n
2 ( 1

m – 1
2 )– s–1

2 –1 (20)

× ‖v1‖Hs–1∩Lm .

The proof of this theorem follows from [5] and [19].

3.2 Proofs
We define the norm of the solution space X(t) by

∥
∥(u, v)

∥
∥

X(t) = sup
τ∈[0,t]

{

M1(τ , u) + M2(τ , v)
}

,

where we will choose M1(τ , u) and M2(τ , v) with respect to the goals of each theorem.
Let N be the mapping on X(t) defined by

N : (u, v) ∈ X(t) → N(u, v) =
(

uln + unl, vln + vnl),

where

uln(t, x) := E1,0(t, 0, x) ∗(x) u0(x) + E1,1(t, 0, x) ∗(x) u1(x),

unl(t, x) :=
∫ t

0
E1,1(t, τ , x) ∗(x) f (τ , v) dτ ,

vln(t, x) := E2,0(t, 0, x) ∗(x) v0(x) + E2,1(t, 0, x) ∗(x) v1(x),

vnl(t, x) :=
∫ t

0
E2,1(t, τ , x) ∗(x) g(τ , u) dτ .

We denote by E1,0 = E1,0(t, 0, x) and E1,1 = E1,1(t, 0, x) the fundamental solutions to the
Cauchy problem

utt – �u + b1(t)ut = 0, u(0, x) = u0(x), ut(0, x) = u1(x),

and by E2,0 = E2,0(t, 0, x) and E2,1 = E2,1(t, 0, x) the fundamental solutions to the the Cauchy
problem

vtt – �v + b2(t)vt = 0, v(0, x) = v0(x), vt(0, x) = v1(x).

Our aim is to prove the estimates

∥
∥N(u, v)

∥
∥

X(t)

�
∥
∥(u0, u1)

∥
∥
Am,s1

+
∥
∥(v0, v1)

∥
∥
Am,s2

+
∥
∥(u, v)

∥
∥

p
X(t) +

∥
∥(u, v)

∥
∥

q
X(t),

(21)
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∥
∥N(u, v) – N(ũ, ṽ)

∥
∥

X(t) �
∥
∥(u, v) – (ũ, ṽ)

∥
∥

X(t)

× (∥
∥(u, v)

∥
∥

p–1
X(t) +

∥
∥(ũ, ṽ)

∥
∥

p–1
X(t) +

∥
∥(u, v)

∥
∥

q–1
X(t) +

∥
∥(ũ, ṽ)

∥
∥

q–1
X(t)

)

.
(22)

We can immediately obtain from the introduced norm of the solution space X(t), which
will be fixed for each case, the following inequality:

∥
∥
(

uln, vln)∥∥
X(t) �

∥
∥(u0, u1)

∥
∥
Am,s1

+
∥
∥(v0, v1)

∥
∥
Am,s2

.

We complete the proof of all results separately by showing (22) with the inequality

∥
∥
(

unl, vnl)∥∥
X(t) �

∥
∥(u, v)

∥
∥

p
X(t) +

∥
∥(u, v)

∥
∥

q
X(t), (23)

which leads to (21).

Proof of Theorem 2.1 We choose the space of energy solutions

X(t) =
(

C
(

[0, t], H1) ∩ C1([0, t], L2))2

with the following norms for τ ∈ (0, t]:

M1(τ , u) =
(

1 + B1(τ , 0)
) n

2 ( 1
m – 1

2 )∥
∥u(τ , ·)∥∥L2(Rn)

+
(

1 + B1(τ , 0)
) n

2 ( 1
m – 1

2 )+ 1
2
∥
∥∇u(τ , ·)∥∥L2(Rn)

+ b1(τ )
(

1 + B1(τ , 0)
) n

2 ( 1
m – 1

2 )+1∥
∥ut(τ , ·)∥∥L2(Rn),

M2(τ , v) =
(

1 + B2(τ , 0)
) n

2 ( 1
m – 1

2 )∥
∥v(τ , ·)∥∥L2(Rn)

+
(

1 + B2(τ , 0)
) n

2 ( 1
m – 1

2 )+ 1
2
∥
∥∇v(τ , ·)∥∥L2(Rn)

+ b2(τ )
(

1 + B2(τ , 0)
) n

2 ( 1
m – 1

2 )+1∥
∥vt(τ , ·)∥∥L2(Rn).

To prove (23), we need to estimate all terms appearing in ‖(unl, vnl)‖X(t). Let us begin to
estimate ‖unl

t (t, ·)‖L2 . Using (19) with m = 2 for τ ∈ [ t
2 , t], we get

∥
∥unl

t (t, ·)∥∥L2 �
∫ t

2

0
b1(t)–1b1(τ )–1(1 + B1(t, τ )

)– n
2 ( 1

m – 1
2 )–1∥

∥f (τ , v)
∥
∥

Lm∩L2 dτ

+
∫ t

t
2

b1(t)–1b1(τ )–1(1 + B1(t, τ )
)–1∥

∥f (τ , v)
∥
∥

L2 dτ . (24)

By a fractional version of the Gagliardo–Nirenberg inequality (see Proposition 4.1) and
(5) we obtain

∥
∥f (τ , v)

∥
∥

L2 �
(

1 + B1(τ , 0)
)γ1(1 + B2(τ , 0)

)– n
2m p+ n

4
∥
∥(u, v)

∥
∥

p
X(t), (25)

∥
∥f (τ , v)

∥
∥

Lm �
(

1 + B1(τ , 0)
)γ1(1 + B2(τ , 0)

)– n
2m p+ n

2m
∥
∥(u, v)

∥
∥

p
X(t), (26)
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where we use condition (11). Plugging the last estimates into (24) and using (4), (17), and
(18), we get

∥
∥unl

t (t, ·)∥∥L2 �
∥
∥(u, v)

∥
∥

p
X(t)

∫ t
2

0
b1(t)–1b1(τ )–1(1 + B1(t, τ )

)– n
2 ( 1

m – 1
2 )–1

× (

1 + B1(τ , 0)
)γ1(1 + B2(τ , 0)

)– n
2m p+ n

2m dτ

+
∥
∥(u, v)

∥
∥

p
X(t)

∫ t

t
2

b1(t)–1b1(τ )–1(1 + B1(t, τ )
)–1

× (

1 + B1(τ , 0)
)γ1(1 + B2(τ , 0)

)– n
2m p+ n

4 dτ

�
∥
∥(u, v)

∥
∥

p
X(t)

∫ t
2

0
b1(t)–1b1(τ )–1(1 + B1(t, τ )

)– n
2 ( 1

m – 1
2 )–1

× (

1 + B1(τ , 0)
)(– n

2m p+ n
2m )β+γ1 dτ

+
∥
∥(u, v)

∥
∥

p
X(t)

∫ t

t
2

b1(t)–1b1(τ )–1(1 + B1(t, τ )
)–1

× (

1 + B1(τ , 0)
)(– n

2m p+ n
4 )β+γ1 dτ

�
∥
∥(u, v)

∥
∥

p
X(t)b1(t)–1(1 + B1(t, 0)

)– n
2 ( 1

m – 1
2 )–1

×
∫ t

2

0
b1(τ )–1(1 + B1(τ , 0)

)(– n
2m p+ n

2m )β+γ1 dτ

+
∥
∥(u, v)

∥
∥

p
X(t)b1(t)–1(1 + B1(t, 0)

)(– n
2m p+ n

4 )β+γ1

×
∫ t

t
2

b1(τ )–1(1 + B1(t, τ )
)–1 dτ .

The last integral can be obtained from the definition of B1(t, τ ); indeed,

∫ t

t
2

b1(τ )–1(1 + B1(t, τ )
)–1 dτ � log

(

1 + B1(t, 0)
) ≈ (

1 + B1(t, τ )
)ν ,

where ν sufficiently small.
We distinguish two cases with respect to the value of β . If β ≥ 1, then we get

∥
∥unl

t (t, ·)∥∥L2 �
∥
∥(u, v)

∥
∥

p
X(t)b1(t)–1(1 + B1(t, 0)

)– n
2 ( 1

m – 1
2 )–1

×
∫ t

2

0
b1(τ )–1(1 + B1(τ , 0)

)– n
2m (p̃–1)+γ1 dτ

+
∥
∥(u, v)

∥
∥

p
X(t)b1(t)–1(1 + B1(t, 0)

)– n
2m (p̃–1)– n

2 ( 1
m – 1

2 )β+γ1

×
∫ t

t
2

b1(τ )–1(1 + B1(t, τ )
)–1 dτ .
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We can conclude from – n
2m (p̃ – 1) + γ1 < –1, which is equivalent to p̃ > 2m(γ1+1)

n + 1, that
∫ t

2
0 b1(τ )–1(1 + B1(τ , 0))– n

2m (p̃–1)+γ1 dτ is bounded. Hence

∥
∥unl

t (t, ·)∥∥L2 �
∥
∥(u, v)

∥
∥

p
X(t)b1(t)–1(1 + B1(t, 0)

)– n
2 ( 1

m – 1
2 )–1.

If 0 < β < 1, then we get

∥
∥unl

t (t, ·)∥∥L2 �
∥
∥(u, v)

∥
∥

p
X(t)b1(t)–1(1 + B1(t, 0)

)– n
2 ( 1

m – 1
2 )–1

×
∫ t

2

0
b1(τ )–1(1 + B1(τ , 0)

)– n
2m (p̃–1)– n

2 ( 1
m – 1

2 )(1–β)+γ1 dτ

+
∥
∥(u, v)

∥
∥

p
X(t)b1(t)–1(1 + B1(t, 0)

)– n
2m p̃+ n

4 +γ1

×
∫ t

t
2

b1(τ )–1(1 + B1(t, τ )
)–1 dτ

�
∥
∥(u, v)

∥
∥

p
X(t)b1(t)–1(1 + B1(t, 0)

)– n
2 ( 1

m – 1
2 )–1

for p̃ > 2m(γ1+1)
n + 1. Finally, we obtain

∥
∥unl

t (t, ·)∥∥L2 �
∥
∥(u, v)

∥
∥

p
X(t)b1(t)–1(1 + B1(t, 0)

)– n
2 ( 1

m – 1
2 )–1. (27)

Analogously, we can prove that

∥
∥∇unl(t, ·)∥∥L2 �

(

1 + B1(t, 0)
)– n

2 ( 1
m – 1

2 )– 1
2
∥
∥(u, v)

∥
∥

p
X(t), (28)

∥
∥unl(t, ·)∥∥L2 �

(

1 + B1(t, 0)
)– n

2 ( 1
m – 1

2 )∥
∥(u, v)

∥
∥

p
X(t). (29)

For the second component vnl , using the Gagliardo–Nirenberg inequality, from Proposi-
tion 4.1 we get for τ ∈ (0, t] the following estimates:

∥
∥g(τ , u)

∥
∥

L2 �
(

1 + B2(τ , 0)
)γ2(1 + B1(τ , 0)

)– n
2m q+ n

4
∥
∥(u, v)

∥
∥

q
X(t),

∥
∥g(τ , u)

∥
∥

Lm �
(

1 + B2(τ , 0)
)γ2(1 + B1(τ , 0)

)– n
2m q+ n

2m
∥
∥(u, v)

∥
∥

q
X(t).

Taking into account the last estimates, we can prove, similarly to (27)–(29), the estimates

∥
∥vnl

t (t, ·)∥∥L2 � b2(t)–1(1 + B2(t, 0)
)– n

2 ( 1
m – 1

2 )–1∥
∥(u, v)

∥
∥

q
X(t), (30)

∥
∥∇vnl(t, ·)∥∥L2 �

(

1 + B2(t, 0)
)– n

2 ( 1
m – 1

2 )– 1
2
∥
∥(u, v)

∥
∥

q
X(t), (31)

∥
∥vnl(t, ·)∥∥L2 �

(

1 + B2(t, 0)
)– n

2 ( 1
m – 1

2 )∥
∥(u, v)

∥
∥

q
X(t), (32)

for q̃ > 2m(γ2+1)
n + 1. Finally, (27)–(32) imply (23).

The proof of (22) is completely analogous to that of (21). In this way, we complete the
proof of Theorem 2.1. �
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Proof of Theorem 2.5 We choose the same space of energy solutions X(t) with the norm
M2(τ , v) used in the proof of Theorem 2.5. We modify the norm M1(τ , v) as follows:

M1(τ , u) =
(

1 + B1(τ , 0)
) n

2 ( 1
m – 1

2 )–κ(p̃)∥
∥u(τ , ·)∥∥L2(Rn)

+
(

1 + B1(τ , 0)
) n

2 ( 1
m – 1

2 )+ 1
2 –κ(p̃)∥

∥∇u(τ , ·)∥∥L2(Rn)

+ b1(τ )
(

1 + B1(τ , 0)
) n

2 ( 1
m – 1

2 )+1–κ(p̃)∥
∥ut(τ , ·)∥∥L2(Rn),

where κ(p̃) = γ1 – n
2m (p̃ – 1) + 1. We begin the proof of (23) by estimating the norm

‖unl
t (t, ·)‖L2 . Using (19) with m = 2 for τ ∈ [ t

2 , t] together with the Gagliardo–Nirenberg
inequality and following the same steps of the proof of (27), we get

∥
∥unl

t (t, ·)∥∥L2 �
∥
∥(u, v)

∥
∥

p
X(t)b1(t)–1(1 + B1(t, 0)

)– n
2 ( 1

m – 1
2 )–1

×
∫ t

2

0
b1(τ )–1(1 + B1(τ , 0)

)(– n
2m p+ n

2m )β+γ1 dτ

+
∥
∥(u, v)

∥
∥

p
X(t)b1(t)–1(1 + B1(t, 0)

)(– n
2m p+ n

4 )β+γ1

×
∫ t

t
2

b1(τ )–1(1 + B1(t, τ )
)–1 dτ

�
∥
∥(u, v)

∥
∥

p
X(t)b1(t)–1(1 + B1(t, 0)

)– n
2 ( 1

m – 1
2 )–1+κ(p̃)

for β > 0. Then we have

∥
∥unl

t (t, ·)∥∥L2 �
∥
∥(u, v)

∥
∥

p
X(t)b1(t)–1(1 + B1(t, τ )

)– n
2 ( 1

m – 1
2 )–1+κ(p̃). (33)

In the same way, we can prove

∥
∥∇unl(t, ·)∥∥L2 �

(

1 + B1(t, 0)
)– n

2 ( 1
m – 1

2 )– 1
2 +κ(p̃)∥

∥(u, v)
∥
∥

p
X(t), (34)

∥
∥unl(t, ·)∥∥L2 �

(

1 + B1(t, 0)
)– n

2 ( 1
m – 1

2 )+κ(p̃)∥
∥(u, v)

∥
∥

p
X(t). (35)

Now for vnl , using the Gagliardo–Nirenberg inequality and the definition of the solution
space X(t), we can prove the following estimates:

∥
∥g(τ , u)

∥
∥

L2 �
(

1 + B2(τ , 0)
)γ2(1 + B1(τ , 0)

)– n
2m q+ n

4 +κ(p̃)q∥
∥(u, v)

∥
∥

q
X(t),

∥
∥g(τ , u)

∥
∥

Lm �
(

1 + B2(τ , 0)
)γ2(1 + B1(τ , 0)

)– n
2m q+ n

2m +κ(p̃)q∥
∥(u, v)

∥
∥

q
X(t).

Taking into account the last estimates together with (19), we obtain

∥
∥vnl

t (t, ·)∥∥L2 �
∥
∥(u, v)

∥
∥

q
X(t)b2(t)–1(1 + B2(t, 0)

)– n
2 ( 1

m – 1
2 )–1

×
∫ t

2

0
b2(τ )–1(1 + B2(τ , 0)

)(– n
2m q+ n

2m +κ(p̃)q)α+γ2 dτ

+
∥
∥(u, v)

∥
∥

q
X(t)b2(t)–1(1 + B2(t, 0)

)(– n
2m p+ n

4 +κ(p̃)q)α+γ2
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×
∫ t

t
2

b2(τ )–1(1 + B2(t, τ )
)–1 dτ

� b2(t)–1(1 + B2(t, 0)
)– n

2 ( 1
m – 1

2 )–1∥
∥(u, v)

∥
∥

q
X(t),

where we use the condition

γ2 –
n

2m
(q̃ – 1) + κ(p̃)qα + ε < –1,

which is equivalent to condition (13). Then

∥
∥vnl

t (t, ·)∥∥L2 � b2(t)–1(1 + B2(t, 0)
)– n

2 ( 1
m – 1

2 )–1∥
∥(u, v)

∥
∥

q
X(t). (36)

Analogously, we can prove

∥
∥∇vnl(t, ·)∥∥L2 �

(

1 + B2(t, 0)
)– n

2 ( 1
m – 1

2 )– 1
2
∥
∥(u, v)

∥
∥

q
X(t), (37)

∥
∥vnl(t, ·)∥∥L2 �

(

1 + B2(t, 0)
)– n

2 ( 1
m – 1

2 )∥
∥(u, v)

∥
∥

q
X(t). (38)

Consequently, (33)–(38) imply (23).
To prove (22), we suppose the existence of (u, v) and (ũ, ṽ) belonging to the space of

solution X(t). Then we have

N(u, v) – N(ũ, ṽ) =
(

unl(t, x) – ũnl(t, x), vnl(t, x) – ṽnl(t, x)
)

=
(∫ t

0
E1(t, τ , x) ∗(x)

(

f (τ , v) – f (τ , ṽ)
)

dτ ,

∫ t

0
E1(t, τ , x) ∗(x)

(

g(τ , u) – g(τ , ũ)
)

dτ

)

.

Similarly to (25) and (26), using (5) and (6), we can prove the following estimates:

∥
∥f (τ , v) – f (τ , ṽ)

∥
∥

L2 �
(

1 + B1(τ , 0)
)γ1(1 + B2(τ , 0)

)– n
2m p+ n

4 (39)

× ‖v – ṽ‖X(t)
(‖v‖p–1

X(t) + ‖̃v‖p–1
X(t)

)

,
∥
∥f (τ , v) – f (τ , ṽ)

∥
∥

Lm �
(

1 + B1(τ , 0)
)γ1(1 + B2(τ , 0)

)– n
2m p+ n

2m (40)

× ‖v – ṽ‖X(t)
(‖v‖p–1

X(t) + ‖̃v‖p–1
X(t)

)

,
∥
∥g(τ , u) – f (τ , ũ)

∥
∥

L2 �
(

1 + B2(τ , 0)
)γ2(1 + B1(τ , 0)

)– n
2m q+ n

4 +κ(p̃)q (41)

× ‖u – ũ‖X(t)
(‖u‖q–1

X(t) + ‖̃u‖q–1
X(t)

)

,
∥
∥g(τ , u) – f (τ , ũ)

∥
∥

Lm �
(

1 + B2(τ , 0)
)γ2(1 + B1(τ , 0)

)– n
2m q+ n

2m +κ(p̃)q (42)

× ‖u – ũ‖X(t)
(‖u‖q–1

X(t) + ‖̃u‖q–1
X(t)

)

.

Analogously to (33)–(38), using (39)–(42), we can get

∥
∥
∥
∥
∇ j∂ l

t

∫ t

0
E1(t, τ , x) ∗(x)

(

f (τ , v) – f (τ , ṽ)
)

dτ

∥
∥
∥
∥

L2
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� b(t)–l(1 + B1(τ , 0)
)γ1(1 + B2(t, 0)

)– n
2 ( 1

m – 1
2 )– j

2 –l

× sup
τ∈[0,t]

M2(τ , v – ṽ)
(∥
∥(u, v)

∥
∥

p–1
X(t) +

∥
∥(ũ, ṽ)

∥
∥

p–1
X(t)

)

, (43)

∥
∥
∥
∥
∇ j∂ l

t

∫ t

0
E1(t, τ , x) ∗(x)

(

g(τ , u) – g(τ , ũ)
)

dτ

∥
∥
∥
∥

L2

� b(t)–l(1 + B2(τ , 0)
)γ2(1 + B1(t, 0)

)– n
2 ( 1

m – 1
2 )– j

2 –l+κ(p̃)q

× sup
τ∈[0,t]

M1(τ , u – ũ)
(∥
∥(u, v)

∥
∥

p–1
X(t) +

∥
∥(ũ, ṽ)

∥
∥

p–1
X(t)

)

, (44)

where j + l ≤ 1. The proof is completed. �

Proof of Theorem 2.7 Let us choose the space of energy solutions with suitable regularity

X(t) =
(

C
(

[0, t], Hs1
) ∩ C1([0, t], Hs1–1)) × (

C
(

[0, t], Hs2
) ∩ C1([0, t], Hs2–1))

with the norm

∥
∥(u, v)

∥
∥

X(t) = sup
τ∈[0,t]

{

M1(τ , u) + M2(τ , v)
}

,

where

M1(τ , u) =
(

1 + B1(τ , 0)
) n

2 ( 1
m – 1

2 )∥
∥u(τ , ·)∥∥L2(Rn)

+ b1(τ )
(

1 + B1(τ , 0)
) n

2 ( 1
m – 1

2 )+1∥
∥ut(τ , ·)∥∥L2(Rn)

+ b1(τ )
(

1 + B1(τ , 0)
) n

2 ( 1
m – 1

2 )+ s1–1
2 +1∥

∥|D|s1–1ut(τ , ·)∥∥L2(Rn)

+
(

1 + B1(τ , 0)
) n

2 ( 1
m – 1

2 )+ s1
2
∥
∥|D|s1 u(τ , ·)∥∥L2(Rn)

and

M2(τ , v) =
(

1 + B2(τ , 0)
) n

2 ( 1
m – 1

2 )∥
∥v(τ , ·)∥∥L2(Rn)

+ b2(τ )
(

1 + B2(τ , 0)
) n

2 ( 1
m – 1

2 )+1∥
∥vt(τ , ·)∥∥L2(Rn)

+ b2(τ )
(

1 + B2(τ , 0)
) n

2 ( 1
m – 1

2 )+ s2–1
2 +1∥

∥|D|s2–1vt(τ , ·)∥∥L2(Rn)

+
(

1 + B2(τ , 0)
) n

2 ( 1
m – 1

2 )+ s2
2
∥
∥|D|s2 v(τ , ·)∥∥L2(Rn).

To prove (23), we show how to estimate the norms ‖|D|s1–1unl
t (t, ·)‖L2(Rn) and ‖|D|s2–1 ×

vnl
t (t, ·)‖L2(Rn). From estimate (20) it follows that

∥
∥|D|s1–1unl

t (t, ·)∥∥L2(Rn)

�
∫ t

2

0
b1(τ )–1b1(t)–1(1 + B1(t, τ )

)– n
2 ( 1

m – 1
2 )– s1–1

2 –1

× ∥
∥f (τ , v)

∥
∥

Lm(Rn)∩L2(Rn)∩Ḣs1–1(Rn) dτ
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+
∫ t

t
2

b1(τ )–1b1(t)–1(1 + B1(t, τ )
)– n

2 ( 1
m – 1

2 )– s1–1
2 –1

× ∥
∥f (τ , v)

∥
∥

Lm(Rn)∩L2(Rn)∩Ḣs1–1(Rn) dτ .

Under the assumptions of Theorem 2.7 and the choice of the above introduced norm, for
0 ≤ τ ≤ t, the inequalities (25) and (26) remain true. We calculate the norm

∥
∥f (τ , v)

∥
∥

Ḣs1–1 .

Using (56) and (57), for p > s1 – 1� and 0 ≤ τ ≤ t, we get the following estimate:

∥
∥f (τ , v)

∥
∥

Ḣs1–1 �
(

1 + B1(τ , 0)
)γ1∥∥v(τ , ·)∥∥p–1

Lq1

∥
∥|D|s1–1(τ , ·)∥∥Lq2

�
(

1 + B1(τ , 0)
)γ1∥∥v(τ , ·)∥∥(p–1)(1–θ1)

L2

× ∥
∥|D|s2 v(τ , ·)∥∥(p–1)θ1

L2

∥
∥v(τ , ·)∥∥1–θ2

L2

∥
∥|D|s2 v(τ , ·)∥∥θ2

L2

�
(

1 + B1(τ , 0)
)γ1(1 + B2(τ , 0)

)– n
2m p+ n

4 – s1–1
2

∥
∥(u, v)

∥
∥

p
X(t),

where

p – 1
q1

+
1
q2

=
1
2

, θ1 =
n
s

(
1
2

–
1
q1

)

∈ [0, 1],

θ2 =
n
s2

(
1
2

–
1
q2

)

+
s1 – 1

s2
∈

[
s1 – 1

s2
, 1

]

.

To satisfy the last conditions for the parameters θ1 and θ2, we choose q2 = 2n
n–2 and q1 =

n(p – 1). This choice implies the condition

1 +
2
n

≤ p ≤ 1 +
2

n – 2s2
.

Consequently, for τ ∈ (0, t], we obtain the estimate

∥
∥f (τ , v)|Ḣs1–1 �

(

1 + B2(τ , 0)
)– n

2m p+ n
4 – s2–1

2
∥
∥(u, v)‖p

X(t). (45)

Summarizing all estimates implies

∥
∥|D|s1–1unl

t (t, ·)∥∥L2(Rn) �
∥
∥(u, v)

∥
∥

p
X(t)b1(t)–1(1 + B1(t, 0)

)– n
2 ( 1

m – 1
2 )– s1–1

2 –1

×
∫ t

2

0
b1(τ )–1(1 + B1(τ , 0)

)(– n
2m p+ n

2m )β+γ1 dτ

+
∥
∥(u, v)

∥
∥

p
X(t)b1(t)–1(1 + B1(t, 0)

)(– n
2m p+ n

4 )β+γ1

×
∫ t

t
2

b1(τ )–1(1 + B1(t, τ )
)– s1–1

2 –1 dτ

�
∥
∥(u, v)

∥
∥

p
X(t)b1(t)–1(1 + B1(t, 0)

)– n
2 ( 1

m – 1
2 )– s1–1

2 –1,

where p̃ > 2m
n ( s1+1+2γ1

2 ) + 1.
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Then

∥
∥|D|s1–1unl

t (t, ·)∥∥L2(Rn) � b1(t)–1(1 + B1(t, 0)
)– n

2 ( 1
m – 1

2 )– s1–1
2 –1∥

∥(u, v)
∥
∥

p
X(t). (46)

Under the first condition of (14), in the same way, we can prove the following estimates:

∥
∥unl(t, ·)∥∥L2(Rn) �

(

1 + B1(t, 0)
)– n

2 ( 1
m – 1

2 )∥
∥(u, v)

∥
∥

p
X(t), (47)

∥
∥unl

t (t, ·)∥∥L2(Rn) � b1(t)–1(1 + B1(t, 0)
)– n

2 ( 1
m – 1

2 )–1∥
∥(u, v)

∥
∥

p
X(t), (48)

∥
∥|D|s1 unl(t, ·)∥∥L2(Rn) �

(

1 + B1(t, 0)
)– n

2 ( 1
m – 1

2 )– s1
2
∥
∥(u, v)

∥
∥

p
X(t). (49)

Using the second condition of (14), we get

∥
∥|D|s2–1vnl

t (t, ·)∥∥L2(Rn) � b2(t)–1(1 + B2(t, 0)
)– n

2 ( 1
m – 1

2 )– s2–1
2 –1∥

∥(u, v)
∥
∥

p
X(t), (50)

∥
∥vnl(t, ·)∥∥L2(Rn) �

(

1 + B2(t, 0)
)– n

2 ( 1
m – 1

2 )∥
∥(u, v)

∥
∥

p
X(t), (51)

∥
∥vnl

t (t, ·)∥∥L2(Rn) � b2(t)–1(1 + B2(t, 0)
)– n

2 ( 1
m – 1

2 )–1∥
∥(u, v)

∥
∥

p
X(t), (52)

∥
∥|D|s2 vnl(t, ·)∥∥L2(Rn) �

(

1 + B2(t, 0)
)– n

2 ( 1
m – 1

2 )– s2
2
∥
∥(u, v)

∥
∥

p
X(t). (53)

From (46)–(53) we get (23), which completes the proof of (21).
To prove (22), we use the same steps used in the previous proof. Indeed, from the frac-

tional Leibniz rule (see Proposition 4.2) and the fractional chain rule (see Proposition 4.3)
we may conclude for 0 ≤ τ ≤ t the following estimates:

∥
∥f (τ , v) – f (τ , ṽ)

∥
∥

Ḣs1–1 �
(

1 + B1(τ , 0)
)γ1(1 + B2(τ , 0)

)– n
2m p+ n

4 – s2–1
2 (54)

× sup
τ∈[0,t]

M2(τ , v – ṽ)
(∥
∥(u, v)

∥
∥

p–1
X(t) +

∥
∥(ũ, ṽ)

∥
∥

p–1
X(t)

)

,

and

∥
∥g(τ , u) – g(τ , ũ)

∥
∥

Ḣs2–1 �
(

1 + B2(τ , 0)
)γ2(1 + B1(τ , 0)

)– n
2m q+ n

4 – s1–1
2 (55)

× sup
τ∈[0,t]

M1(τ , u – ũ)
(∥
∥(u, v)

∥
∥

q–1
X(t) +

∥
∥(ũ, ṽ)

∥
∥

q–1
X(t)

)

,

where we use condition (15). From (39)–(42) without loss of decay and (54)–(55) we can
complete the proof. �

Remark 3.4 Theorem 2.8 can be proved by using a similar approach as in the proof of The-
orem 2.7, with modifications in the estimates of some terms. Then using Proposition 4.4,
Corollary 4.5, and Lemma 4.6, we can obtain the estimates

∥
∥f (τ , v)

∥
∥

Ḣs1–1(Rn) �
(

1 + B1(τ , 0)
)γ1(1 + B2(τ , 0)

)– n
2 ( 1

m – 1
2 )p– s1–1

2 – s∗
2 (p–1)∥

∥(u, v)
∥
∥

p
X(t),

∥
∥g(τ , u)

∥
∥

Ḣs̃2–1(Rn) �
(

1 + B2(τ , 0)
)γ2(1 + B1(τ , 0)

)– n
2 ( 1

m – 1
2 )p– s̃2–1

2 – s∗
2 (q–1)∥

∥(u, v)
∥
∥

q
X(t),
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∥
∥f (τ , v) – f (τ , ṽ)

∥
∥

Ḣs1–1(Rn)

�
(

1 + B2(τ , 0)
)– n

2m p+ n
4 (p–1)– s1–1

2 – s∗
2 (p–1)

× (

1 + B1(τ , 0)
)γ1∥∥(u, v) – (ũ, ṽ)

∥
∥

X(t)

(∥
∥(u, v)

∥
∥

p–1
X(t) +

∥
∥(ũ, ṽ)

∥
∥

p–1
X(t)

)

,
∥
∥g(τ , u) – g(τ , ũ)

∥
∥

Ḣs̃2–1(Rn)

�
(

1 + B1(τ , 0)
)– n

2m p+ n
4 (q–1)– s̃2–1

2 – s∗
2 (q–1)

× (

1 + B2(τ , 0)
)γ2∥∥(u, v) – (ũ, ṽ)

∥
∥

X(t)

(∥
∥(u, v)

∥
∥

q–1
X(t) +

∥
∥(ũ, ṽ)

∥
∥

q–1
X(t)

)

.

Using these estimates, provided that condition (16) is satisfied, we can follow steps in the
proof of Theorem 2.7 to complete our proof.

Appendix
Here we state some inequalities, which come into play in our proofs.

Proposition 4.1 Let 1 < p, p0, p1 < ∞, σ > 0, and s ∈ [0,σ ). Then the following fractional
Gagliardo–Nirenberg inequality holds for all u ∈ Lp0 ∩ Ḣσ

p1 :

‖u‖Ḣs
p � ‖u‖1–θ

Lp0 ‖u‖θ

Ḣσ
p1

, (56)

where

θ = θs,σ :=
1

p0
– 1

p + s
n

1
p0

– 1
p1

+ σ
n

and
s
σ

≤ θ ≤ 1.

For the proof, see [11] and [2, 8–10, 14, 15].

Proposition 4.2 Let s > 0, 1 ≤ r ≤ ∞, and 1 < p1, p2, q1, q2 ≤ ∞ satisfy the relation

1
r

=
1
p1

+
1
p2

=
1
q1

+
1
q2

.

Then we have the following fractional Leibniz rule:

∥
∥|D|s(fg)

∥
∥

Lr �
∥
∥|D|sf ∥∥Lp1 ‖g‖Lp2 + ‖f ‖Lq1

∥
∥|D|sg∥

∥
Lq2

for all f ∈ Ḣs
p1 ∩ Lq1 and g ∈ Ḣs

q2 ∩ Lp2 .

For more details concerning fractional Leibniz rule, see [8].

Proposition 4.3 Let us choose s > 0, p > s�, and 1 < r, r1, r2 < ∞ satisfying

1
r

=
p – 1

r1
+

1
r2

.
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Let F(u) be one of the functions |u|p,±|u|p–1u. Then we have the following fractional chain
rule:

∥
∥|D|sF(u)

∥
∥

Lr � ‖u‖p–1
Lr1

∥
∥|D|su∥

∥
Lr2 . (57)

For the proof, see [24].

Proposition 4.4 Let p > 1 and u ∈ Hs
m, where s ∈ ( n

m , p). Then we have the following esti-
mates:

∥
∥|u|p∥∥Hs

m
� ‖u‖Hs

m‖u‖p–1
L∞ ,

∥
∥u|u|p–1∥∥

Hs
m
� ‖u‖Hs

m‖u‖p–1
L∞ .

For the proof, see [26].
From Proposition 4.4 we can derive the following corollary.

Corollary 4.5 Under the assumptions of Proposition 4.4, we have

∥
∥|u|p∥∥Ḣs

m
� ‖u‖Ḣs

m‖u‖p–1
L∞ ,

∥
∥u|u|p–1∥∥

Ḣs
m
� ‖u‖Ḣs

m‖u‖p–1
L∞ .

For the proof, see [6] and [25].

Lemma 4.6 Let 0 < 2s∗ < n < 2s. Then for any function f ∈ Ḣs∗ ∩ Ḣs, we have the estimate

‖f ‖L∞ ≤ ‖f ‖Ḣs∗ + ‖f ‖Ḣs .

For the proof, see [4].
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