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1 Introduction
Soliton equations with self-consistent sources (SESCSs) are integrable coupled general-
izations of the soliton equations. These coupled systems are usually relevant to problems
in certain areas of physics, such as hydrodynamics, solid-state physics, and plasma physics
[1–4]. This branch has attracted considerable attention in recent years [5–11]. In [10] the
authors proposed a method, termed the source generation procedure (SGP), to construct
SESCSs, which has been applied to study different kinds of SESCSs [7, 8, 12–14]. Further-
more, new types of SESCSs have also been studied, including the AKP-type and BKP-type
equations [1, 11, 15–17]. In this study, we consider the 2 + 1-dimensional KP equation

–4ut + uxxx + 6uux + 3
∫ x

uyy dx = 0 (1)

as an example. Through the dependent-variable transformation

u = 2(ln τ )xx,

the KP Eq. (1) can be represented in the bilinear form as

(
D4

x – 4DxDt + 3D2
y
)
τ · τ = 0, (2)
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where D is Hirota’s bilinear operator [18] given by

Dl
tD

m
y a · b =

(
∂

∂t
–

∂

∂t′

)l(
∂

∂y
–

∂

∂y′

)m

a(t, y)b
(
t′, y′)∣∣∣∣

t′=t,y′=y
.

The application of the SGP is closely related to the bilinear form of the soliton equation.
For example, applying the SGP to the operator Dt in (2) produces the first type of KPESCS
[2, 5, 10], whereas a new type of KPESCS [1, 11] is obtained by applying the SGP method to
the operator Dy in (2). In terms of the bilinear form, the operator Dt is of the first order, and
Dy is of the second order, which results in different types of SESCSs. Therefore it is natural
to determine if there are any other SESCSs of this new type, especially in differential–
difference equations.

However, the following lattice equation was proposed by Blaszak and Szum [19] as an
application of the “central extension procedure and operand formalism”:

∂un

∂t
= unH–1pn–1, (3)

∂vn

∂t
= un+1 – un + (E + 1)–1 ∂pn

∂y
, (4)

∂pn

∂t
= vn+1 – vn – pnH–1pn, (5)

where E is the shift operator, that is, Eun = un+1, and H = (E + 1)/(E – 1). By setting wn =
(E + 1)–1pn Eqs. (3)–(5) can be rewritten as [20]

∂un

∂t
= un(wn – wn–1), (6)

∂vn

∂t
= un+1 – un +

∂wn

∂y
, (7)

∂wn+1

∂t
+

∂wn

∂t
= vn+1 – vn – w2

n+1 + w2
n. (8)

Through the dependent-variable transformations

un =
τn+1τn–1

τ 2
n

, vn =
D2

t τn · τn+1

τnτn+1
, wn =

(
ln

τn+1

τn

)
t
,

and by introducing the auxiliary variable z, Eqs. (6)–(8) can be transformed into the bilin-
ear forms as

(
Dze

1
2 Dn – D2

t e
1
2 Dn

)
τn · τn = 0, (9)

(
DtDz – DtDy – 4 sinh2

(
1
2

Dn

))
τn · τn = 0, (10)

where the difference operator eδDn is defined as [18]

eδDn a · b = a(n + δ)b(n – δ).
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We can see that Dt in Eq. (9) is a second-order operator. It is important that Dt acts on
different functions τn+1 and τn, which is different from that for operator Dy in the bilinear
KP Eq. (2). The purpose of this study is to construct and solve a new type of special lattice
ESCS. The remainder of this paper is organized as follows. In Sect. 2, we propose a new
type of special lattice ESCS using the SGP, and obtain its Grammian determinant solution.
In Sect. 3, we derive the Casorati determinant solution. In Sect. 4, we describe the one-
soliton and two-soliton solutions of the coupled system. Finally, we present conclusions
in Sect. 5.

2 New type of special lattice ESCS and Grammian determinant solution
The Grammian determinant solutions of bilinear Eqs. (9)–(10) have the following forms
[21]:

τn = det

∣∣∣∣cij +
∫ t

ϕi(n)ψj(–n) dt
∣∣∣∣
1≤i,j≤N

, (11)

where each cij is an arbitrary constant, and the functions ϕi(n) and ψj(–n) satisfy the fol-
lowing differential equations:

∂ϕi(n)
∂t

= ϕi(n + 1),
∂ϕi(n)

∂y
= ϕi(n + 2) + ϕi(n – 1), (12)

∂ϕi(n)
∂z

= ϕi(n + 2),
∂ψj(–n)

∂y
= –ψj(–n + 2) – ψj(–n – 1), (13)

∂ψi(–n)
∂t

= –ψi(–n + 1),
∂ψj(–n)

∂z
= –ψj(–n + 2). (14)

Now we construct the special lattice ESCS by applying the SGP. First, the Grammian
determinant function (11) is changed into the following form:

fn = det

∣∣∣∣Cij(t) +
∫ t

ϕi(n)ψj(–n) dt
∣∣∣∣
1≤i,j≤N

, (15)

wherein Cij(t) are functions satisfying

Cij(t) =

⎧⎨
⎩

Ci(t), i = j, 1 ≤ i ≤ M ≤ N , M ∈ Z+,

cij otherwise, 1 ≤ i, j ≤ N .

Here each Ci(t) is a differentiable function with respect to t, cij are arbitrary constants, and
the functions ϕi(n) and ψi(–n) satisfy the dispersion relations (12)–(14). For calculation,
the function fn can be rewritten in the Pfaffian form as follows:

fn =
(
1, 2, . . . , N , N∗, . . . , 2∗, 1∗)

n ≡ (◦)n, (16)

where the Pfaffian elements are defined as

(
i, j∗

)
n = Cij(t) +

∫ t
ϕi(n)ψj(–n) dt, (i, j)n =

(
i∗, j∗

)
n = 0, 1 ≤ i, j ≤ N .
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We introduce other new functions expressed as

gi,n =
√

Ċi(t)
(
d∗

–1, 1, 2, . . . , N , N∗, . . . , î∗, . . . , 1∗)
n

�
√

Ċi(t)
(
d∗

–1,�1
)

n, i = 1, 2, . . . , M,
(17)

hi,n =
√

Ċi(t)
(
d–1, 1, . . . , î, . . . , N , N∗, . . . , 2∗, 1∗)

n

�
√

Ċi(t)(d–1,�2)n, i = 1, 2, . . . , M,
(18)

where the dot and hat symbols above a variable respectively denote the derivative with
respect to the variable t and the deletion of the letter under it. Here the above Pfaffian
entries refer to

(
d∗

m, i
)

n = ϕi(n + m),
(
dm, j∗

)
n = ψj(–n + m),

(
dm, d∗

l
)

n = (dm, i)n =
(
d∗

l , i∗
)

n = 0, m, l ∈ Z.

In this condition, we introduce another set of auxiliary functions in the following expres-
sion:

ki,n = Ċi(t)
(
1, . . . , î, . . . , N , N∗, . . . , î∗, . . . , 1∗)

n, (19)

Pi,n =
C̈i(t)

2
√

Ċi(t)

(
d∗

–1, 1, 2, . . . , N , N∗, . . . , î∗, . . . , 1∗)
n

+
√

Ċi(t)

[ j �=i∑
1≤j≤N

(
d∗

–1, 1, . . . , ĵ, . . . , N , N∗, . . . , î∗, . . . , ĵ∗, . . . , 1∗)
n

]
,

(20)

Qi,n =
C̈i(t)

2
√

Ċi(t)

(
d–1, 1, . . . , î, . . . , N , N∗, . . . , 2∗, 1∗)

n

+
√

Ċi(t)

[ j �=i∑
1≤j≤N

(
d–1, 1, . . . , î, . . . , ĵ, . . . , N , N∗, . . . , ĵ∗, . . . , 1∗)

n

]
,

(21)

where i = 1, 2, . . . , M. Thus the new functions in Eqs. (16)–(18) and auxiliary functions in
Eqs. (19)–(21) satisfy the following bilinear expressions:

(
Dz – D2

t
)
e

Dn
2 fn · fn = –

M∑
i=1

Dt
(
e

Dn
2 + e– Dn

2
)
ki,n · fn +

M∑
i=1

Dte
Dn
2 gi,n · hi,n

+
M∑
i=1

e
Dn
2 (gi,n · Qi,n + Pi,n · hi,n),

(22)

(
DtDz – DtDy – 4 sinh2

(
1
2

Dn

))
fn · fn = –2

M∑
i=1

gi,n · hi,n, (23)

(
e

1
2 Dn – e– 1

2 Dn
)
ki,n · fn = –e

1
2 Dn gi,n · hi,n, i = 1, 2, . . . , M, (24)

(
Dt + e–Dn

)
fn · gi,n =

( M∑
j=1

kj,n

)
gi,n – fnPi,n, i = 1, 2, . . . , M, (25)
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(
Dt + e–Dn

)
hi,n · fn = –hi,n

( M∑
j=1

kj,n

)
+ fnQi,n, i = 1, 2, . . . , M, (26)

(Dz – Dy)e– 1
2 Dn fn · gi,n = e

1
2 Dn fn · gi,n, i = 1, 2, . . . , M, (27)

(Dz – Dy)e– 1
2 Dn hi,n · fn = e

1
2 Dn hi,n · fn, i = 1, 2, . . . , M. (28)

In the following section, we consider Eqs. (22), (23), and (25) as examples for verification.
The key to the proof is in the derivatives of functions fn, fn+1, gi,n, and hi,n. According to
Eqs. (16)–(21), we have the following differential formulas concerning fn and fn+1:

fn+1 = fn +
(
d–1, d∗

0,◦)
n, fn–1 = fn –

(
d0, d∗

–1,◦)
n, (29)

∂fn

∂z
=

(
d0, d∗

1,◦)
n +

(
d1, d∗

0 ,◦)
n, (30)

∂fn

∂y
=

(
d0, d∗

1,◦)
n +

(
d1, d∗

0 ,◦)
n –

(
d–1, d∗

–1,◦)
n, (31)

∂fn

∂t
=

M∑
i=1

ki,n +
(
d0, d∗

0 ,◦)
n, (32)

∂2fn

∂t2 =
M∑
i=1

∂ki,n

∂t
+

(
d0, d∗

1,◦)
n –

(
d1, d∗

0,◦)
n

+
M∑
i=1

Ċi(t)
(
d0, d∗

0, 1, . . . , î, . . . , N , N∗, . . . , î∗, . . . , 1∗)
n,

(33)

∂2fn

∂t∂y
=

M∑
i=1

Ċi(t)
[(

d0, d∗
1, 1, . . . , î, . . . , N , N∗, . . . , î∗, . . . , 1∗)

n

+
(
d1, d∗

0 , 1, . . . , î, . . . , N , N∗, . . . , î∗, . . . , 1∗)
n

–
(
d–1, d∗

–1, 1, . . . , î, . . . , N , N∗, . . . , î∗, . . . , 1∗)
n

]

+
(
d0, d∗

2 ,◦)
n +

(
d0, d∗

–1,◦)
n –

(
d2, d∗

0 ,◦)
n –

(
d–1, d∗

0 ,◦)
n

–
(
d–1, d∗

–1, d0, d∗
0,◦)

n,

(34)

∂2fn

∂t∂z
=

M∑
i=1

Ċi(t)[
(
d0, d∗

1, 1, . . . , î, . . . , N , N∗, . . . , î∗, . . . , 1∗)
n

+
(
d1, d∗

0, 1, . . . , î, . . . , N , N∗, . . . , î∗, . . . , 1∗)
n

+
(
d0, d∗

2,◦)
n –

(
d2, d∗

0,◦)
n,

(35)

∂fn+1

∂t
=

M∑
i=1

ki,n+1 +
(
d–1, d∗

1 ,◦)
n, (36)

∂2fn+1

∂t2 =
M∑
i=1

∂ki,n+1

∂t
+

(
d–1, d∗

1 , 1, . . . , î, . . . , N , N∗, . . . , î∗, . . . , 1∗)
n

+
(
d–1, d∗

2 ,◦)
n –

(
d0, d∗

1,◦)
n +

(
d0, d∗

0, d–1, d∗
1 ,◦)

n.

(37)
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In addition, the derivatives of gi,n and hi,n are given as follows:

gi,n+1 =
√

Ċi(t)
(
d∗

0,�1
)

n, (38)

∂gi,n+1

∂t
=

√
Ċi(t)

(
d∗

1,�1
)

n + Pi,n+1, (39)

∂gi,n+1

∂z
=

√
Ċi(t)

[(
d∗

2 ,�1
)

n +
(
d∗

0 , d0, d∗
1 ,�1

)
n

]
, (40)

∂gi,n+1

∂y
=

√
Ċi(t)

[(
d∗

2 ,�1
)

n +
(
d∗

–1,�1
)

n +
(
d∗

0, d0, d∗
1,�1

)
n –

(
d∗

0, d–1, d∗
–1,�1

)
n

]
, (41)

hi,n–1 =
√

Ċi(t)(d0,�2)n, (42)

∂hi,n

∂t
=

√
Ċi(t)

[
–(d0,�2)n +

(
d–1, d0, d∗

0 ,�2
)

n

]
+ Qi,n, (43)

∂hi,n–1

∂z
=

√
Ċi(t)

[
–(d2,�2)n +

(
d0, d1, d∗

0,�2
)

n

]
, (44)

∂hi,n–1

∂y
=

√
Ċi(t)

[(
d0, d1, d∗

0,�2
)

n – (d2,�2)n – (d–1,�2)n –
(
d0, d–1, d∗

–1,�2
)

n

]
, (45)

where i = 1, 2, . . . , M. Substituting expressions (29)–(33), (34)–(35), and (39) into Eq. (22),
we obtain the Jacobi identities of the determinants

2
[(

d–1, d∗
1,◦)

n

(
d0, d∗

0,◦)
n –

(
d–1, d∗

0,◦)
n

(
d0, d∗

1 ,◦)
n +

(
d–1, d∗

0, d0, d∗
1,◦)

n(◦)n
]

+
M∑
i=1

Ċi(t)
[(

d–1, d∗
1, 1, . . . , î, . . . , N , N∗, . . . , î∗, . . . , 1∗)

n(◦)n

–
(
1, . . . , î, . . . , N , N∗, . . . , î∗, . . . , 1∗)

n

(
d–1, d∗

1,◦)
n +

(
d∗

1 ,�1
)

n(d–1,�2)n
]

+
M∑
i=1

Ċi(t)
[(

d0, d∗
0, 1, . . . , î, . . . , N , N∗, . . . , î∗, . . . , 1∗)

n(◦)n

–
(
1, . . . , î, . . . , N , N∗, . . . , î∗, . . . , 1∗)

n

(
d0, d∗

0,◦)
n +

(
d∗

0,�1
)

n(d0,�2)n
]

+
M∑
i=1

Ċi(t)
[(

d–1, d∗
0, 1, . . . , î, . . . , N , N∗, . . . , î∗, . . . , 1∗)

n

(
d0, d∗

0 ,◦)
n

–
(
d0, d∗

0 , 1, . . . , î, . . . , N , N∗, . . . , î∗, . . . , 1∗)
n

(
d–1, d∗

0,◦)
n

+
(
d∗

0,�1
)

n

(
d–1, d0, d∗

0 ,�2
)

n

] ≡ 0,

thereby indicating that Eq. (22) holds. Similarly, substitution of expressions (17)–(18) and
(29)–(35) into Eq. (23) yields the following determinant identities:

2
[(

d–1, d∗
0,◦)

n

(
d0, d∗

–1,◦)
n –

(
d0, d∗

0,◦)
n

(
d–1, d∗

–1,◦)
n +

(
d–1, d∗

–1, d0, d∗
0,◦)

n(◦)n
]

+ 2
M∑
i=1

Ċi(t)
[(

d–1, d∗
–1, 1, . . . , î, . . . , N , N∗, . . . , î∗, . . . , 1∗)

n(◦)n

–
(
1, . . . , î, . . . , N , N∗, . . . , î∗, . . . , 1∗)

n

(
d–1, d∗

–1,◦)
n

+
(
d∗

–1,�1
)

n(d–1,�2)n
] ≡ 0.
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Finally, we substitute Eqs. (16)–(17), (20), (32), and (38)–(39) into Eq. (25) to derive the
following determinant identity:

M∑
i=1

Ċi(t)
[(

d∗
0 ,�1

)
n

(
d–1, d∗

–1,◦)
n –

(
d∗

–1,�1
)

n

(
d–1, d∗

0 ,◦)
n

+
(
d∗

0, d–1, d∗
–1,�1

)
n(◦)n

] ≡ 0.

The above results indicate that Eqs. (23) and (25) are true. In the same manner, we can
prove the other bilinear equations in (22)–(28). Therefore the bilinear Eqs. (22)–(28) con-
stitute the bilinear forms of the two-dimensional special lattice ESCS, and the functions
in Eqs. (16)–(21) are the Grammian determinant solutions of the coupled system.

By the dependent-variable transformations

un =
fn+1fn–1

f 2
n

, wn =
(

ln
fn+1

fn

)
t
, vn =

(
ln

fn+1

fn

)
z
, (46)

�i,n =
gi,n

f
, 	i,n =

hi,n

f
, (47)

and auxiliary transformations

λi,n =
ki,n

f
, φi,n =

Pi,n

f
, θi,n =

Qi,n

f
, (48)

the bilinear system (22)–(28) can be transformed into the following differential–difference
system:

∂wn+1

∂t
+

∂wn

∂t
– vn+1 + vn + w2

n+1 – w2
n +

M∑
i=1

(�i,n+2	i,n+1 + �i,n+1	i,n)t

=
M∑
i=1

(	2un�i,n+1	i,n–1 – 2	wn�i,n+1	i,n
)

– 	
( M∑

i=1

�i,n+1	i,n

)2

,

(49)

∂vn

∂t
–

∂wn

∂y
– un+1 + un = –

M∑
i=1

	(�i,n	i,n), (50)

∂�i,n

∂y
–

∂�i,n

∂z
= vn–1�i,n + �i,n–1 – �i,n

∫ t ∂wn

∂y
dt, i = 1, 2, . . . , M, (51)

∂	i,n

∂y
–

∂	i,n

∂z
= –vn�i,n – 	i,n+1 + 	i,n

∫ t ∂wn

∂y
dt, i = 1, 2, . . . , M, (52)

where the operator 	 is defined by 	un = un+1 – un.

3 Casoratian determinant solution to the bilinear SESCS (22)–(28)
The authors in [21] derived the Casoratian determinant solution for the bilinear two-
dimensional special lattice equation. Herein we present the Casoratian determinant so-
lution to the bilinear special lattice ESCS in Eqs. (22)–(28), which can be expressed in the
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following Pfaffian form:

fn = det
∣∣φi(n + j – 1)

∣∣
1≤i,j≤N

� (d0, d1, . . . , dN–1, N , . . . , 2, 1)n, (53)

gi,n =
√

Ċi(t)(d–1, d0, . . . , dN–1, N , . . . , 2, 1, bi)n, (54)

hi,n =
√

Ċi(t)(d1, . . . , dN–1, N , . . . , î, . . . , 2, 1)n. (55)

Here the functions φi(n) are given by the expression

φi(n) = ϕi1(n) + (–1)i–1ϕi2(n), 1 ≤ i ≤ N ,

where ϕi1(n) and ϕi2(n) satisfy the dispersion relations of Eqs. (12)–(13), and the functions
Ci(t) have the form

Ci(t) =

⎧⎨
⎩

Ci(t), 1 ≤ i ≤ M ≤ N ,

constant, otherwise.

At the same time the Pfaffian entries are defined by

(dm, i)n = φi(n + m), (dm, dl)n = (i, j)n = 0, m ∈ Z,

(dm, bi)n = ϕi2(n + m), (bi, bj)n = (bi, j)n = 0.

Moreover, the other solutions ki, Pi,n, and Qi,n have the forms

ki,n = Ċi(t)(d0, d1, . . . , dN–1, N , . . . , î, . . . , 1, bi)n, (56)

Pi,n =
C̈i(t)

2
√

Ċi(t)
(d–1, d0, . . . , dN–1, N , . . . , 2, 1, bi)n

+
√

Ċi(t)

[ j �=i∑
1≤j≤N

(d–1, d0, . . . , dN–1, N , . . . , ĵ, . . . , 1, bj, bi)n

]
,

(57)

Qi,n =
C̈i(t)

2
√

Ċi(t)
(d1, . . . , dN–1, N , . . . , î, . . . , 1)n

+
√

Ċi(t)

[ j �=i∑
1≤j≤N

(d1, . . . , dN–1, N , . . . , ĵ, . . . , î, . . . , 1, bj)n

]
,

(58)

where i = 1, 2, . . . , M.
Herein we only provide the proof of Eqs. (22), (24), and (25). We use the following no-

tation for the functions fn, gi,n, and hi,n:

fn = (d0, d1, . . . , dN–1,•)n, (59)

gi,n =
√

Ċi(t)(d–1, d0, . . . , dN–1,•, bi)n, (60)
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hi,n =
√

Ċi(t)(d1, . . . , dN–1,�)n. (61)

Then we have the following formulas:

∂fn

∂t
=

M∑
i=1

ki,n + (d0, . . . , dN–2, dN ,•)n, (62)

∂2fn

∂t2 =
M∑
i=1

∂ki,n

∂t
+

M∑
i=1

Ċi(t)(d0, . . . , dN–2, dN ,�, bi)n

+ (d0, . . . , dN–3, dN–1, dN ,•)n + (d0, . . . , dN–2, dN+1,•)n,

(63)

∂2fn

∂t∂z
=

M∑
i=1

Ċi(t)
[
(d0, . . . , dN–2, dN+1,�, bi)n

– (d0, . . . , dN–3, dN–1, dN ,�, bi)n
]

+ (d0, . . . , dN–2, dN+2, dN ,•)n

– (d0, . . . , dN–4, dN–2, dN–1, dN ,•)n.

(64)

Further, we obtain the formulas for functions ki,n, gi,n, and hi,n by

ki,n+1 = Ċi(t)(d0, d1, . . . , dN–1,�, bi)n, (65)

gi,n+1 =
√

Ċi(t)(d0, d1, . . . , dN ,•, bi)n, (66)

∂gi,n+1

∂t
= Pi,n+1 +

√
Ċi(t)(d0, . . . , dN–1, dN+1,•, bi)n, (67)

∂hi,n

∂t
= Qi,n +

√
Ċi(t)(d1, . . . , dN–2, dN ,�)n. (68)

Now substituting Eqs. (62)–(68) into Eq. (22) yields

Ċi(t)
[
(d1, d2, . . . , dN ,�, bi)n(d0, d1, . . . , dN–2, dN ,•)n

– (d0, d1, . . . , dN–2, dN ,�, bi)n(d1, d2, . . . , dN ,•)n

+ (d0, d1, . . . , dN ,•, bi)n(d1, . . . , dN–2, dN ,�)n
]

+ Ċi(t)
[
(d0, d1, . . . , dN–1,�, bi)n(d1, d2, . . . , dN–1, dN+1,•)n

– (d1, d2, . . . , dN–1, dN+1,�, bi)n(d0, d1, . . . , dN–1,•)n

– (d1, d2, . . . , dN–1, dN+1,�)n(d0, d1, . . . , dN–1,•, bi)n
]

= 0,

which is the sum of the Plücker identities of the determinants. Then substituting Eqs. (60)–
(61) and (65)–(66) into Eq. (24) yields

(d1, d2, . . . , dN ,�, bi)n(d0, d1, . . . , dN–1,•)n

– (d0, d1, . . . , dN–1,�, bi)n(d1, d2, . . . , dN ,•)n

+ (d0, d1, . . . , dN ,•, bi)n(d1, . . . , dN–2, dN ,�)n = 0,
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which are again the Plücker identities of the determinants. Finally, substituting fn, ki,n, gi,n,
and Pi,n into Eq. (25) gives the following determinant identity:

(d–1, d0, . . . , dN–1,•, bi)n(d0, d1, . . . , dN–2, dN ,•)n

– (d–1, d0, . . . , dN–2, dN ,•, bi)n(d0, d1, . . . , dN–1,•)n

+ (d0, d1, . . . , dN ,•, bi)n(d–1, d0, . . . , dN–2,•)n = 0.

These expressions show that Eqs. (22), (24), and (25) are valid. The other Eqs. (22)–(28)
can be proved similarly. Therefore functions in (53)–(58) constitute the Casoratian deter-
minant solutions of the bilinear ESCS in Eqs. (22)–(28).

4 One- and two-soliton solutions of the SESCS in (49)–(52)
Starting from the Grammian determinant solutions of Eqs. (15)–(18) and the transforma-
tions of Eqs. (46)–(47), we can obtain explicit solutions of the two-dimensional special
lattice ESCS Eqs. (49)–(52). In this section, we take M = 1, and the coupled system is read
as

∂wn+1

∂t
+

∂wn

∂t
– vn+1 + vn + w2

n+1 – w2
n + (�n+2	n+1 + �n+1	n)t

= 	2(un�n+1	n–1) – 2	(wn�n+1	n) – 	(�n+1	n)2,
(69)

∂vn

∂t
–

∂wn

∂y
– un+1 + un = –	(�n	n), (70)

∂�n

∂y
–

∂�n

∂z
= vn–1�n + �n–1 – �n

∫ t ∂wn

∂y
dt, (71)

∂	n

∂y
–

∂	n

∂z
= –vn�n – 	n+1 + 	n

∫ t ∂wn

∂y
dt, (72)

which is the special lattice equation with one self-consistent source. Now we derive the
one-soliton and two-soliton solutions of this system.

Example 1 We choose the parameter N = 1 in Eqs. (15)–(18). Then the functions ϕ(n),
ψ(–n), and fn can be expressed in the following form:

ϕ(n) = pneξ , ξ =
(
p2 + p–1)y + pt + p2z,

ψ(–n) = q–neη, η = –
(
q2 + q–1)y – qt – q2z,

fn = C1(t) +
1

p – q

(
p
q

)n

eξ+η, C1(t) = e2a(t)/(p – q), (73)

where p and q are arbitrary constants, and a(t) is a differentiable function of t. According
to expressions (46)–(47), the explicit forms un, wn, �n, and 	n are as follows:

un =
[1 + ( p

q )n+1eξ+η–2a(t)] · [1 + ( p
q )n–1eξ+η–2a(t)]

[1 + ( p
q )neξ+η–2a(t)]2 , (74)

wn =
(p – q – 2ȧ(t))( p–q

q )( p
q )neξ+η–2a(t)

[1 + ( p
q )n+1eξ+η–2a(t)] · [1 + ( p

q )neξ+η–2a(t)]
, (75)
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Figure 1 One soliton of un , wn , �n , and 	n

�n =
√

2(p – q)ȧ(t)pn–1eξ–a(t)

1 + ( p
q )neξ+η–2a(t) , (76)

	n =
√

2(p – q)ȧ(t)q–n–1eη–a(t)

1 + ( p
q )neξ+η–2a(t) . (77)

If we set a(t) = t, p = 3, q = 1/5, t = 1, and n = 2, then the profiles of these solutions are as
shown in Fig. 1.

Example 2 We set N = 2 in expressions (15)–(18), and the functions ϕi(n) and ψi(–n)
possess the following structures:

ϕi(n) = pn
i e(p2

i +p–1
i )y+pit+p2

i z � pn
i eξi , i = 1, 2,

ψi(–n) = q–n
i e–(q2

i +q–1
i )y–qit–q2

i z � q–n
i eηi , i = 1, 2,

where pi and qi are real constants. In this case the function fn is a second-order deter-
minant, and C1(t) included in fn is chosen as e2β(t)/(p1 – q1). Through computations we
obtain the following form:

fn =
e2β(t)

(p1 – q1)(p2 – q2)
· f̃n, (78)

wherein the function f̃n is defined by

f̃n = 1 +
(

p1

q1

)n

eξ1+η1–2β(t) +
(

p2

q2

)n

eξ2+η2 + A
(

p1p2

q1q2

)n

eξ1+η1+ξ2+η2–2β(t), (79)
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Figure 2 Interactions of two solitons in (a) and (b) with the sources �n and 	n as in (c) and (d)

and A = (p1–p2)(q1–q2)
(p1–q2)(q1–p2) . Subsequently, we obtain the expressions for the solutions un and wn

as

un =
f̃n+1 f̃n–1

f̃ 2
n

, wn =
(

ln
f̃n+1

f̃n

)
t
. (80)

Contrarily, the functions gn and hn in Eqs. (16)–(17) have the Pfaffian forms

gn =
√

Ċ1(t)
(
d∗

–1, 1, 2, 2∗)
n and hn =

√
Ċ1(t)

(
d–1, 2, 2∗, 1∗)

n (81)

and can be rewritten as

gn =

√
2β̇(t)

p1–q1

p2 – q2

[
pn–1

1 eξ1+β(t) +
(p1 – p2)
(p1 – q2)

(
p1p2

q2

)n–1

eξ1+ξ2+η2+β(t)
]

, (82)

hn =

√
2β̇(t)

p1–q1

p2 – q2

[
q–n–1

1 eη1+β(t) +
(q1 – q2)
(q1 – p2)

(
p2

q1q2

)n+1

eξ2+η1+η2+β(t)
]

. (83)

Finally, the solutions �n and 	n have the following forms:

�n = γ (t) · pn–1
1 eξ1–β(t) + (p1–p2)

(p1–q2) ( p1p2
q2

)n–1eξ1+ξ2+η2–β(t)

f̃n
, (84)

	n = γ (t) · q–n–1
1 eη1–β(t) + (q1–q2)

(q1–p2) ( p2
q1q2

)n+1eξ2+η1+η2–β(t)

f̃n
, (85)
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where γ (t) =
√

2(p1 – q1)β̇(t). If we choose β(t) = t, p1 = 1.5, p2 = 0.25, q1 = 1, q2 = 0.5,
t = 1, and n = –2, then the profiles of the above solutions are as shown in Fig. 2.

5 Discussion and conclusion
In this study, we applied SGP to the bilinear form of the two-dimensional special lattice
equation and presented a new type of special lattice ESCS given by Eqs. (49)–(52). Ad-
ditionally, we obtained the Grammian and Casoratian determinant solutions to the cou-
pled system. According to the Grammian determinant solution, we considered the spe-
cial lattice with one self-consistent source as an example to examine its one-soliton and
two-soliton solutions. For further study of the integrability of the coupled system, we can
examine the commutativity of the SGP and bilinear Bäcklund transformation, which will
enable deriving the bilinear Bäcklund transformation for the coupled system.
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