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Abstract
This research aims to discuss and control the chaotic behaviour of an autonomous
fractional biological oscillator. Indeed, the concept of fractional calculus is used to
include memory in the modelling formulation. In addition, we take into account a
new auxiliary parameter in order to keep away from dimensional mismatching.
Further, we explore the chaotic attractors of the considered model through its
corresponding phase-portraits. Additionally, the stability and equilibrium point of the
system are studied and investigated. Next, we design a feedback control scheme for
the purpose of chaos control and stabilization. Afterwards, we introduce an efficient
active control method to achieve synchronization between two chaotic fractional
biological oscillators. The efficiency of the proposed stabilizing and synchronizing
controllers is verified via theoretical analysis as well as simulations and numerical
experiments.

Keywords: Fractional model; Biological system; Chaotic attractors; Chaos control;
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1 Introduction
Chaos is one of the most prominent features of complex dynamical systems whose state
variables are highly dependent on their initial conditions. This property may lead to the
divergence of nonlinear chaotic systems; therefore, the analysis of such phenomena is of
great importance from both theoretical and practical points of view [1].

Because of the wide appearance of chaotic systems in different fields of study such as
secure communications, physics, biology and economy, a growing interest has been de-
voted to the control and synchronization of chaotic processes [2]. In [3], a new system-
atic approach within the use of scalar transmitted signal was designed to synchronize
a class of hyperchaotic systems. In [4], a synchronization approach was presented for
chaotic/hyperchaotic systems by formulating a linear feedback control problem. In [5],
two identical hyperchaotic systems were synchronized by using a nonlinear control tech-
nique. In [6], a parameter observer was designed in order to identify unknown parame-
ters in hyperchaotic systems, which was needed for designing a state-feedback controller.
The author in [7] controlled and synchronized chaotic systems using state-dependent
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Riccati equations. In [8], a newly introduced fractional-order hyperchaotic system was
controlled and synchronized by choosing an appropriate Lyapunov function and using a
state-feedback control computation. In [9], Lorenz and Chen systems were considered in
the presence of parameter uncertainty and controlled by using an adaptive dual synchro-
nization controller. In [10], an adaptive terminal sliding mode control was applied to the
chaotic Chen and hyperchaotic Lorenz systems. In [11], considering the stability theory of
Lyapunov, the authors synchronized three nonidentical systems of different dimensions.

Recently, the investigation of chaos in biology has attracted the attention of many sci-
entists due to the unpredictable behaviour of biological processes. In [12], the authors
controlled the chaotic behaviour of tumor cells using a non-feedback loop. In [13], the
author designed an optimal drug delivery schedule for the chaotic behaviour of tumor
cells by minimizing Hamiltonian function; then he controlled the same system consider-
ing uncertainty in the chaotic model. In [14], the author analysed the chaotic behaviour of
Lotka–Voltera biological systems. In [15], the authors synchronized two fractional chaotic
maps by using a feedback control method. In [16], a fuzzy adaptive controller was designed
to achieve a projective synchronization for a class of fractional chaotic systems with input
nonlinearities.

Nowadays, a noticeable number of sensational researches have considered fractional-
order systems due to their memory-oriented features, a fact which makes such systems
more realistic to describe real-world dynamics [17–23]. Thus, it is very practical to in-
vestigate and analyse chaos in fractional-order systems in order to simulate the complex
behaviour of realistic phenomena. In addition, efficient stabilization and synchronization
techniques are needed to be developed in order to overcome the chaotic behaviour of
such fractional processes. Thus, the problem of chaos control and synchronization for
complex fractional-order systems has been of great importance to a wide audience. More
to the point, efficient numerical methods should be extended to deal with controversial
problems in fractional calculus like modelling and control [24–26]. Inspired by the afore-
mentioned argument, this paper introduces a new fractional model for a chaotic biological
oscillator. We study the stability and equilibrium of the new system and analyse its chaotic
behaviour by using phase-portrait responses. Then we propose a state-feedback control
to stabilize the fractional model and apply an active control strategy to synchronize two
identical chaotic oscillators. The applicability of the proposed controllers is also verified
through theoretical analysis as well as some simulation results.

The reminder of this paper is organized as follows. In Sect. 2, some preliminary results
are presented. In Sect. 3, the new mathematical fractional model of a chaotic biological os-
cillator is introduced, and its stability and equilibrium point are investigated. Afterwards,
a state-feedback control is designed to stabilize the new model, and an active controller
is introduced in order to achieve synchronization. Finally, the paper is closed by some
concluding remarks in the last section.

2 Preliminaries
In this section, we recall the basic definition of Caputo fractional derivative and introduce
its corresponding integral operator. The Laplace transform and the antiderivative property
of this definition are also presented in the sequel.
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Definition 2.1 ([27]) Let q ∈ (0, 1) and f be an integrable function. Then the qth-order
Caputo fractional derivative of f is defined by

CDqf (t) =
1

�(1 – q)

∫ t

0
ḟ (τ )(t – τ )–q dτ . (1)

The associated qth-order Riemann–Liouville fractional integral of f is also defined as

I qf (t) =
1

�(q)

∫ t

0
f (τ )(t – τ )q–1 dτ , (2)

whenever the integral exists.

For the qth-order Caputo derivative when q ∈ (0, 1), the Laplace transform is introduced
by

L
[CDqf (t)

]
= sqF(s) – f (0), (3)

where F(s) = L [f (t)]. In addition, the fractional derivative (1), together with the integral
operator (2), satisfies the antiderivative property such that

I q[CDqf (t)
]

= f (t) – f (0). (4)

3 The new fractional model
In the recent study [28], the authors employed an autonomous model to describe the in-
teraction between enzyme and substrate mechanism. In [28], the aforesaid model was
introduced in the form of the following system of ordinary differential equations:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ḟ1 = f2,

ḟ2 = αf3,

ḟ3 = f4,

ḟ4 = –f1 – βf3 + γ f2 – f4 + εf2(1 – f 2
1 + ηf 4

1 – κf 6
1 ),

(5)

where the coefficients α, β , γ , ε, η, κ are real constants. As mentioned in [28], the
model (5) exhibits chaotic attractors when the parameters (α,β ,γ , ε,η,κ) take the val-
ues (5, 24, –0.05, 2.001, 2.55, 1.7), respectively. However, the integer-order model (5) suf-
fers from the lack of memory effect, while hereditary property is the intrinsic feature of
many complex biological systems. To overcome this drawback, the concept of fractional
calculus is used to include memory in the model formulation. To do so, we extend the
model (5) by substituting the integer-order derivatives with fractional Caputo ones de-
fined in (1). Moreover, we take into account the new auxiliary parameter θ in order to
keep away from dimensional mismatching [29]. Thus, we formulate the new fractional
biological oscillator by

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1
θ1–q

CDqf1 = f2,
1

θ1–q
CDqf2 = αf3,

1
θ1–q

CDqf3 = f4,
1

θ1–q
CDqf4 = –f1 – βf3 + γ f2 – f4 + εf2(1 – f 2

1 + ηf 4
1 – κf 6

1 ).

(6)
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Meanwhile, please note that the model (6) is the extension of a generalized Van der Pol
oscillator; hence, this model can describe various biological and bio-physical phenomena.

3.1 Equilibrium point and stability
Considering the certain values of parameters (α,β ,γ , ε,η,κ) = (5, 24, –0.05, 2.001, 2.55,
1.7), we obtain the equilibrium point of the model (6) from

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

f2 = 0,

αf3 = 0,

f4 = 0,

–f1 – βf3 + γ f2 – f4 + εf2(1 – f 2
1 + ηf 4

1 – κf 6
1 ) = 0.

(7)

Solving the system of algebraic equations (7), we find that the system (6) has a unique
equilibrium point f ∗ = (f ∗

1 , f ∗
2 , f ∗

3 , f ∗
4 ) = (0, 0, 0, 0). Then we compute the Jacobian matrix at

the point f ∗

J∗ =

⎡
⎢⎢⎢⎣

0 1 0 0
0 0 5 0
0 0 0 1

–1 1.951 –24 –1

⎤
⎥⎥⎥⎦ , (8)

whose eigenvalues are

λ1,2 = 0.2468 ± 0.4279i, λ3,4 = –0.7468 ± 4.4649i. (9)

Now, we list two well-known lemmas discussing the stability of fractional-order systems.

Lemma 3.1 ([30]) The equilibrium point f ∗ of the fractional-order system (6) is locally
asymptotically stable if the following inequality holds:

∣∣arg(λi)
∣∣ >

π

2
q, i = 1, 2, 3, 4, (10)

where q is the fractional order, and λi is the ith eigenvalue of J∗ at the point f ∗.

Lemma 3.2 ([31]) Let the characteristic equation of the model (6) at f ∗ be in the form

det
(
λI – J∗) = λ4 + a3λ

3 + a2λ
2 + a1λ

1 + a0 = 0. (11)

Then the equilibrium f ∗ is locally asymptotically stable for all q ∈ (0, 1) if the corresponding
Routh–Hurwitz table has elements with the same sign in its first column.

3.2 Simulation results
In the following, we simulate the complex behaviour of the new modified model (6) for
the fractional orders q = 0.9, 0.92, 0.94, 0.96, 0.98, 1. To this end, we consider the initial
conditions as

f (0) =
(
f1(0), f2(0), f3(0), f4(0)

)
= (0.5, 0.5, 0.5, 0.5), (12)
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Figure 1 The phase planes of the fractional chaotic system (6) for q = 0.9

and select the parameters from

(α,β ,γ , ε,η,κ , θ ) = (5, 24, –0.05, 2.001, 2.55, 1.7, 0.99). (13)

Figures 1–6 depict the relevant phase-portraits and verify the existence of complex chaotic
attractors for the considered values of the fractional order q.

Remark 3.1 Concerning the numerical simulation, here we applied the predictor–
corrector method [32] in which an FFT algorithm is employed to evaluate the discrete
convolutions [33]. The accuracy and the convergence of this scheme were studied in [34].
Also, contrary to the classical implementation in which the computational cost is pro-
portional to N2, here we have N log(N2) for the computational cost when the solution is
evaluated at N time-points.
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Figure 2 The phase planes of the fractional chaotic system (6) for q = 0.92

4 Chaos control and synchronization
In this section, designing a state-feedback controller, we compensate the undesirable
chaotic behaviour of the fractional-order biological system (6). Then we introduce an ac-
tive control approach to synchronize two identical fractional chaotic oscillators.

4.1 Chaos control
In order to control the chaotic behaviour of the fractional-order model (6), we consider
the following modified controlled system:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1
θ1–q

CDqf1 = f2 – u1(f1 – f ∗
1 ),

1
θ1–q

CDqf2 = αf3 – u2(f2 – f ∗
2 ),

1
θ1–q

CDqf3 = f4 – u3(f3 – f ∗
3 ),

1
θ1–q

CDqf4 = –f1 – βf3 + γ f2 – f4 + εf2(1 – f 2
1 + ηf 4

1 – κf 6
1 ) – u4(f4 – f ∗

4 ),

(14)
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Figure 3 The phase planes of the fractional chaotic system (6) for q = 0.94

where ui ≥ 0 is the state-feedback control gain. The objective is to design ui in such a way
that the state variables f1, f2, f3, f4 of the controlled system (14) converge to the steady-
state f ∗ = (0, 0, 0, 0) asymptotically. Considering the system parameters (α,β ,γ , ε,η,κ , θ ) =
(5, 24, –0.05, 2.001, 2.55, 1.7, 0.99), we compute the Jacobian matrix J∗ at the point f ∗ =
(f ∗

1 , f ∗
2 , f ∗

3 , f ∗
4 ) = (0, 0, 0, 0) as

J∗ =

⎡
⎢⎢⎢⎣

–u1 1 0 0
0 –u2 5 0
0 0 –u3 1

–1 1.951 –24 –u4 – 1

⎤
⎥⎥⎥⎦ . (15)

Then we derive

λI – J∗ =

⎡
⎢⎢⎢⎣

λ + u1 –1 0 0
0 λ + u2 –5 0
0 0 λ + u3 –1
1 –1.951 24 λ + u4 + 1

⎤
⎥⎥⎥⎦ , (16)
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Figure 4 The phase planes of the fractional chaotic system (6) for q = 0.96

whose determinant is obtained in the form det(λI – J∗) = λ4 + a3λ
3 + a2λ

2 + a1λ
1 + a0 = 0

where

a3 = 1 + u2 + u3 + u4 + u1,

a2 = 24 + u2 + u3 + u1 + u1u2 + u1u3 + u3u4 + u2u4 + u1u4 + u2u3,

a1 = –9.755 + 24u2 + 24u1 + u2u3u4 + u1u2u3 + u1u2u4 + u1u3u4

+ u1u2 + u1u3 + u2u3,

a0 = 5 + 24u1u2 + u1u2u3u4 – 9.755u1 + u1u2u3.

(17)

For the state-feedback gains (u1, u2, u3, u4) = (0.25, 0.25, 0.25, 0.25), we obtain

det
(
λI – J∗) = λ4 + 2λ3 + 25.125λ2 + 2.495λ + 4.08078125 = 0, (18)
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Figure 5 The phase planes of the fractional chaotic system (6) for q = 0.98

and the corresponding Routh–Hurwitz table of stability is given in Table 1. As can be
seen, we get the satisfaction of stability condition in Lemma 3.2, so the equilibrium f ∗

of the controlled system (14) is locally asymptotically stable for all q ∈ (0, 1). We depict
the controlled states in Figs. 7–12 for the fractional orders q = 0.9, 0.92, 0.94, 0.96, 0.98, 1
and the initial conditions f (0) = (0.5, 0.5, 0.5, 0.5). Simulation results confirm the valid-
ity of the proposed approach to overcome the undesirable behaviour of chaotic attrac-
tors.

4.2 Synchronization
In this section, two identical fractional-order chaotic systems are synchronized by an ac-
tive control scheme. To do so, the master and the slave systems are, respectively, consid-
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Figure 6 The phase planes of the fractional chaotic system (6) for q = 1

Table 1 Routh–Hurwitz table of stability

λ4 1 25.12 4.08078125
λ3 2 2.495 0
λ2 23.8725 4.08078125 0
λ1 2.153118651 0 0
λ0 4.08078125 0 0

ered as

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1
θ1–q

CDqf1 = f2,
1

θ1–q
CDqf2 = αf3,

1
θ1–q

CDqf3 = f4,
1

θ1–q
CDqf4 = –f1 – βf3 + γ f2 – f4 + εf2(1 – f 2

1 + ηf 4
1 – κf 6

1 ),

(19)
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Figure 7 The time-domain responses of the controlled system (14) for q = 0.9

Figure 8 The time-domain responses of the controlled system (14) for q = 0.92
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Figure 9 The time-domain responses of the controlled system (14) for q = 0.94

Figure 10 The time-domain responses of the controlled system (14) for q = 0.96
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Figure 11 The time-domain responses of the controlled system (14) for q = 0.98

Figure 12 The time-domain responses of the controlled system (14) for q = 1
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⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1
θ1–q

CDqg1 = g2 + u1,
1

θ1–q
CDqg2 = αg3 + u2,

1
θ1–q

CDqg3 = g4 + u3,
1

θ1–q
CDqg4 = –g1 – βg3 + γ g2 – g4 + εg2(1 – g2

1 + ηg4
1 – κg6

1 ) + u4,

(20)

where fi and gi are the states of the master and the slave systems, respectively, and ui is the
control input. The objective is to design ui in such a way that the synchronization error
goes to zero asymptotically. To reach this aim, we define the error of synchronization by
ei(t) = gi(t) – fi(t). Then the error dynamics will be

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
θ1–q

CDqe1 = e2 + u1,
1

θ1–q
CDqe1e2 = αe3 + u2,

1
θ1–q

CDqe1 = e4 + u3,
C
0 Dρ4

t e4 = –e1 – βe3 + (γ + ε)e2 – e4 – εg2g2
1 + εf2f 2

1 + εηg2g4
1

– εηf2f 4
1 – εκg2g6

1 + εκf2f 6
1 + u4.

(21)

Considering the control variables as

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

u1 = v1,

u2 = v2,

u3 = v3,

u4 = εg2g2
1 – εf2f 2

1 – εηg2g4
1 + εηf2f 4

1 + εκg2g6
1 – εκf2f 6

1 + v4,

(22)

one attains
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1
θ1–q

CDqe1 = e2 + v1,
1

θ1–q
CDqe1e2 = αe3 + v2,

1
θ1–q

CDqe1 = e4 + v3,
C
0 Dρ4

t e4 = –e1 – βe3 + (γ + ε)e2 – e4 + v4,

(23)

where vi represents the active control input. Now, we select

⎡
⎢⎢⎢⎣

v1

v2

v3

v4

⎤
⎥⎥⎥⎦ = A

⎡
⎢⎢⎢⎣

e1

e2

e3

e4

⎤
⎥⎥⎥⎦ , (24)

where A is a constant matrix and selected in order to satisfy the stability condition in
Lemma 3.1 for the error dynamics (23). Note that different choices exist for A; an appro-
priate one can be

A =

⎡
⎢⎢⎢⎣

–1 –1 0 0
0 –1 –α 0
0 0 –1 –1
1 –(γ + ε) β 0

⎤
⎥⎥⎥⎦ . (25)
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Figure 13 The state trajectories of the synchronized systems (19) and (20) for q = 0.9

Figure 14 The state trajectories of the synchronized systems (19) and (20) for q = 0.92
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Figure 15 The state trajectories of the synchronized systems (19) and (20) for q = 0.94

Figure 16 The state trajectories of the synchronized systems (19) and (20) for q = 0.96
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Figure 17 The state trajectories of the synchronized systems (19) and (20) for q = 0.98

Figure 18 The state trajectories of the synchronized systems (19) and (20) for q = 1
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In addition, synchronization speed can be controlled by changing the main diagonal of
matrix A.

Remark 4.1 Synchronization control can be regarded as a special tracking problem. When
the master system is fixed in advance, the future dynamics of the master system are known,
which can be considered as preview information. In this case, the speed of synchronization
can be improved by using the preview control technique discussed in the new study [35].

To verify the theoretical synchronization approach mentioned above, we consider the
initial states as

⎧⎨
⎩

f (0) = (0.5, 0.5, 0.5, 0.5),

g(0) = (2.5, –2, 2.5, 5.5),
(26)

when the parameters and the fractional orders are (α,β ,γ , ε,η,κ , θ ) = (5, 24, –0.05, 2.001,
2.55, 1.7, 0.99) and q = 0.9, 0.92, 0.94, 0.96, 0.98, 1, respectively. Figures 13–18 display the
synchronized state variables verifying the proposed active control scheme.

5 Conclusions
The objective of this paper was to investigate the chaotic behaviour of a fractional bio-
logical system and compensate this undesirable behaviour by an efficient control strategy.
In the first step, we discussed and explored the stability and the equilibrium of the con-
sidered model. Then we sketched the associated chaotic attractors in Figs. 1–6. Next, we
designed a stabilizing state-feedback controller to overcome the undesirable chaotic be-
haviour. Afterwards, we introduced an active control design to synchronize two identical
fractional biological oscillators. The validity of the chaos control and the synchronization
approach was verified theoretically, and this analysis was also confirmed by some simu-
lations in Figs. 7–18. Finally, as the future direction of this manuscript, we will consider
more practical models, which will also be more complicated from the mathematical point
of view.
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