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Abstract
A newly proposed p-Laplacian nonperiodic boundary value problem is studied in this
research paper in the form of generalized Caputo fractional derivatives. The existence
and uniqueness of solutions are fully investigated for this problem using some fixed
point theorems such as Banach and Schauder. This work is supported with an
example to apply all obtained new results and validate their applicability.
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1 Introduction
The fractional calculus theory has recently become an interesting topic of research for
mathematicians, scientists, and engineers due to the appearance of this theory in several
applications in natural science and engineering and the ability to model many systems
and phenomena that have memory effects. For more resources about this theory, we sug-
gest [1–12]. Several new fractional derivatives’ definitions have been proposed in the last
decade, and the most common ones are Caputo, Riemann–Liouville, and Hadamard frac-
tional derivatives. Therefore, fractional-order differential equations can be formulated in
the form of various fractional differential operators. As a result, several generalized for-
mulations of fractional differential operators have been introduced to effectively combine
other operators to avoid the confusion when working with various existing fractional dif-
ferential operators [13, 14].

Studying the fractional boundary value problems (FcBVPrs) has attracted a special inter-
est of many mathematicians due to the various applications of fractional differential equa-
tions in several engineering and scientific fields. Some recent research studies have been
conducted on proving the existence and uniqueness of FcBVPrs [15–35]. While there are
some studies that have applied various methods depending on the proposed fractional for-
mulation and the selected initial/boundary conditions, some other studies have discussed
the FcBVPrs involving p-Laplacian operator such as the investigation of the turbulent flow
in a porous medium (refer to [36–41]).
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Both Katugampola and Almeida defined and developed new nonlocal notions of frac-
tional derivatives, known as the generalized Caputo fractional (GCpFr) derivative (see
[42, 43]). One of the main advantages of the GCpFr derivative is the ability to combine
all traditional fractional derivatives, and it satisfies the semigroup property, hence, GCpFr
derivative is considered a generalized form of fractional derivatives. There are a number
of research studies that have been done in the form of GCpFr derivative [43–45]. How-
ever, according to the authors’ knowledge, there are no existing research studies on GCpFr
involving p-Laplacian operator.

The authors in [40] proved the solutions’ existence for the following fractional differen-
tial equation:

D
βϕp

(
D

αu(t)
)

= q
(
t, u(t),Dγ u(t)

)
, 0 ≤ t ≤ 1,

subject to the following p-Laplacian operator and integral boundary conditions:

⎧
⎪⎪⎨

⎪⎪⎩

u(0) + ε1u(1) = λ1
∫ 1

0 g(s, u(s)) ds,

u′(0) + ε2u′(1) = λ2
∫ 1

0 h(s, u(s)) ds,

Dαx(0) = 0, Dαu(1) = ζDαu(ζ ),

(1)

where q, g , and h are continuous functions. Dα , Dβ are the Caputo fractional derivatives
of orders α, β such that α,β ∈ (1, 2]. ζ , εj, λj (j = 1, 2) are nonnegative parameters.

The following is the integral boundary value problem involving a fractional p-Laplacian
equation in the form of mixed fractional derivatives [39]:

⎧
⎪⎪⎨

⎪⎪⎩

D
β

0+ϕp(Dα
0+ u(t)) = q(t, u(t),Dγ u(t)), 0 ≤ t ≤ 1,

u(0) = ε
∫ 1

0 u(s) ds + νu(ξ ),

Dα
0+ u(0) = jDα

0+ u(ζ ),

(2)

where q ∈ C([0, 1] ×R
2,R) is a nonlinear function, Dβ

0+ and Dα
0+ are the Caputo fractional

(CapFr) derivatives of orders α, β such that α,β ∈ (0, 1], ϕp is the p-Laplacian operator,
p > 1, ε, ν , j ∈R, ξ , ζ ∈ [0, 1].

We study the following fractional differential equation as we got motivated by the above
studies:

⎧
⎨

⎩

d
dt (ϕp(CD

α,ρu(t))) = q(t, u(t), CD
γ ,ρu(t)) (0 ≤ t ≤ 1),

u(0) + μu(1) = θ (u(0), u(1)), u′(1) = ν(u(0), u(1)),
(3)

where CD
α,ρ and CD

γ ,ρu(t), α ∈ (1, 2), γ ∈ (0, 1), ρ > 1, are GCpFr derivatives, ϕp, p > 1 is
a p-Laplacian operator, μ �= –1, and the nonlinear functions q : [0, 1] × R × R → R and
θ ,ν : R×R→R are given continuous functions. The main goal of this research paper is to
prove the existence and uniqueness of equation (3) solutions by applying the Banach and
Schauder fixed point theorems. Then, we apply our results by introducing an applicable
example to validate all our obtained results. One may observe that the results of this paper
are presented in a form which is essentially of high degree of generality. For particular
values of ρ , equation (3) can be reduced to (1) and (2). One can find mathematical models
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of different physical phenomena in the world as simple cases of equation (3), such as blow-
up. One can find distinct applications of mathematical models in the literature (see, for
example, [46–48]).

2 Basic preliminaries
The following is a review of some important definitions and properties in the theory
of fractional differential equations involving the GCpFr derivatives. Note that we have
adapted some notations from [3, 49].

Definition 1 (Generalized Caputo fractional integral (GCpFrI)) Assume that α ∈ (m –
1, m), m ∈ N, and ρ > 0. The GCpFrI of order α for a given function q : [0, 1] → R with
respect to parameter ρ can be written in the following form:

Iα,ρq(t) =
ρ1–α

(α)

∫ t

0

(
tρ – sρ

)α–1sρ–1q(s) ds, (4)

provided that the integral exists.

The GCpFrI is linear and satisfies the following semigroup/ index property:
(I) Iα,ρ(c1q(t) + c2g(t)) = c1Iα,ρq(t) + c2Iα,ρg(t), c1, c2 ∈R,

(II) Iα,ρ(Iβ ,ρq(t)) = Iα+β ,ρq(t), α,β > 0.
In addition, if we assume the existence of the first derivative of Iα,ρ f (t), we have the

following:

d
dt

Iα,ρq(t) = tρ–1Iα–1,ρq(t). (5)

Definition 2 Assume that q : [0, 1] → R, where q ∈ Cm[0, 1]. The GCpFr derivative of
order α ∈ (m – 1, m) is written as follows:

C
D

α,ρq(t) = Im–α,ρ((s1–ρq
)(m))(t)

=
ρ1–m+α

(m – α)

∫ t

0

(
tρ – sρ

)m–α–1(s1–ρq
)(m)(s) ds. (6)

Remark 1 Both of the GCpFr derivative and GCpFrI formulated in (4) and (6) general-
ize the traditional fractional derivative. GCpFr derivative and GCpFrI are forms of the
Caputo–Katugampola fractional derivative and integral, respectively. For example, if we
assume ρ = 1, then the GCpFr derivative and GCpFrI can be reduced to the CapFr deriva-
tive and Riemann–Liouville fractional (RIFr) integral, respectively, as follows:

C
D

αq(t) := C
D

α,1q(t) = Im–αq(m)(t) =
1

(m – α)

∫ t

0
(t – s)m–α–1q(m)(s) ds

and

Iαq(t) := Iα,1q(t) =
1

(α)

∫ t

0
(t – s)α–1q(s) ds, α > 0.

On the contrary, if we let ρ → 0+, the GCpFr derivative and GCpFrI can be reduced
to the Caputo–Hadamard derivative and Hadamard fractional integral, respectively, as
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follows:

H
D

αq(t) = HIm–αq(m)(t)

and

HIαq(t) =
1

(α)

∫ t

0

(
ln

t
s

)α–1 q(s)
s

ds.

As a result, we can keep the traditional forms of fractional derivatives by selecting par-
ticular parameters for the GCpFr derivative.

Lemma 3 The following relations are valid:
(i) Let 0 < γ < α, q ∈ C[0, 1], then

C
D

γ ,ρIα,ρq(t) = Iα–γ ,ρq(t). (7)

(ii) Let 0 < α < β , then

C
D

α,ρ
(

tρ

ρ

)β–1

=
(β)

(β – α)

(
tρ

ρ

)β–α–1

. (8)

In Figs. 1 and 2, the dynamical behavior of the GCpFr derivative can be observed on
four given functions u(t) = t4

4 , u(t) = t6

8 , u(t) = t6

9 , and u(t) = t9

27 for ρ = 2 and ρ = 3, respec-
tively.

We discuss the following result due to its importance in finding a solution for the frac-
tional differential equation formulated in the form of GCpFr derivative.

Lemma 4 Assume that α ∈ (m – 1, m), ρ > 0, and f ∈ Cm[0, 1]. Then

Iα,ρC
D

α,ρq(t) = q(t) + c0 + c1

(
tρ

ρ

)
+ c2

(
tρ

ρ

)2

+ · · · + cm–1

(
tρ

ρ

)m–1

and CDα,ρIα,ρq(t) = q(t) for ck ∈R and k = 0, 1, . . . , m – 1.

The following is a review of some important properties of the p-Laplacian operator that
will be applied in this research paper in the next sections. For more information about
those properties, we refer to [38, 39].

Definition 5 The following p-Laplacian operator is formulated:

ϕp(u) = |u|p–2u = up–1, u ≥ 0, p > 1,

such that ϕp
–1 = ϕr , where 1

p + 1
r = 1.
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Figure 1 The GCpFr derivative of u(t) = t4
4 ,

t6
8 for ρ = 2

Lemma 6 Assume that ϕp(u), p ≥ 2, is a p-Laplacian operator and |u|, |m| ≤ M. Then we
have the following:

∣∣ϕp(u) – ϕp(m)
∣∣ ≤ (p – 1)Mp–2|u – m|.

Our results in this research paper will be based on applying the following Banach and
Schauder fixed point theorems.

Theorem 7 (Banach’s fixed point [50]) Assume that T∗ is a contraction mapping from a
closed subset K of a Banach space X into itself. Then there exists unique z ∈ K such that
T

∗(z) = z.

Theorem 8 (Schauder’s fixed point [50]) Assume that D is a nonempty closed convex sub-
set of a Banach space U . If T∗ : D →D is a compact operator, then T

∗ has at least one fixed
point in D.
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Figure 2 The GCpFr derivative of u(t) = t6
9 ,

t9
27 for ρ = 3

3 Main results
By using the fixed point theorems, we study here the existence and uniqueness of solutions
for system (3). Let us consider the following linear equation:

⎧
⎨

⎩

d
dt (ϕp(CD

α,ρu(t))) = w(t) (t ∈ [0, 1]),

u(0) + μu(1) = θ , u′(1) = ν.
(9)

Lemma 9 ([29]) Suppose that w ∈ C[0, 1], α ∈ (1, 2), ρ > 1, and μ �= –1. Then the boundary
value problem (BoVaPr) (9) has a solution expressed as follows:

u(t) =
θ

μ + 1
–

μν

ρ(μ + 1)
+

ν

ρ
tρ

+
ρ1–α

(α)

∫ t

0

(
tρ – τρ

)α–1
τρ–1ϕr

(∫ τ

0
w(s) ds

)
dτ
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–
ρ1–αtρ

(α – 1)

∫ 1

0

(
1 – τρ

)α–2
τρ–1ϕr

(∫ τ

0
w(s) ds

)
dτ

–
μρ1–α

(μ + 1)(α)

∫ 1

0

(
1 – τρ

)α–1
τρ–1ϕr

(∫ τ

0
w(s) ds

)
dτ

+
μρ1–α

(μ + 1)(α – 1)

∫ 1

0

(
1 – τρ

)α–2
τρ–1ϕr

(∫ τ

0
w(s) ds

)
dτ . (10)

Proof By integrating the fractional differential equation in (9), we obtain

ϕp
(C
D

α,ρu(t)
)

= ϕp
(C
D

α,ρu(0)
)

+
∫ t

0
w(s) ds.

The definition of generalized Caputo derivative implies that CD
α,ρu(0) = 0, and by using

the properties of Laplacian operators, we have

C
D

α,ρu(t) = ϕr

(∫ t

0
w(s) ds

)
.

By applying the generalized Caputo integral Iα,ρ to both sides, we deduce the following:

u(t) = Iα,ρϕr

(∫ t

0
w(s) ds

)
+ a0 + a1tρ (11)

for some constants a0 and a1. Accordingly, by using (5), we obtain

u′(t) =
ρ2–α

(α – 1)

∫ t

0

(
tρ – τρ

)α–2(tτ )ρ–1ϕr

(∫ τ

0
w(s) ds

)
dτ + a1ρtρ–1.

Then we have

u(1) =
ρ1–α

(α)

∫ 1

0

(
1 – τρ

)α–1
τρ–1ϕr

(∫ τ

0
w(s) ds

)
dτ + a0 + a1

and

u′(1) =
ρ2–α

(α – 1)

∫ 1

0

(
1 – τρ

)α–2
τρ–1ϕr

(∫ τ

0
w(s) ds

)
dτ + a1ρ.

It is obvious that u(0) = a0. Hence, by the boundary conditions, we deduce the follow-
ing:

a1 =
ν

ρ
–

ρ1–α

(α – 1)

∫ 1

0

(
1 – τρ

)α–2
τρ–1ϕr

(∫ τ

0
w(s) ds

)
dτ

and

a0 =
θ

μ + 1
–

μν

ρ(μ + 1)

–
μρ1–α

(μ + 1)(α)

∫ 1

0

(
1 – τρ

)α–1
τρ–1ϕr

(∫ τ

0
h(s) ds

)
dτ
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+
μρ1–α

(μ + 1)(α – 1)

∫ 1

0

(
1 – τρ

)α–2
τρ–1ϕr

(∫ τ

0
h(s) ds

)
dτ .

Substituting a0 and a1 in (11), we get solution (10). This completes the proof. �

Assume that C := C([0, 1],R) is the Banach space of all continuous real-valued functions
defined on [0, 1] endowed with the usual supremum norm defined by ‖u‖ = supt∈[0,1] |u(t)|.

Let U = {u : u ∈ C, CD
γ ,ρu ∈ C}, then U is a Banach space endowed with the norm

‖u‖U = ‖u‖ +
∥
∥C

D
γ ,ρu

∥
∥.

By virtue of Lemma 9, we deduce that the solution of equation (3) is expressed as follows:

u(t) =
θ (u(0), u(1))

μ + 1
–

μν(u(0), u(1))
ρ(μ + 1)

+
ν(u(0), u(1))

ρ
tρ

+
ρ1–α

(α)

∫ t

0

(
tρ – τρ

)α–1
τρ–1ϕr

(∫ τ

0
q
(
s, u(s), C

D
γ ,ρu(s)

)
ds

)
dτ

–
ρ2–αtρ

(α – 1)

∫ 1

0

(
1 – τρ

)α–2
τρ–1ϕr

(∫ τ

0
q
(
s, u(s), C

D
γ ,ρu(s)

)
ds

)
dτ

–
μρ1–α

(μ + 1)(α)

∫ 1

0

(
1 – τρ

)α–1
τρ–1ϕr

(∫ τ

0
q
(
s, u(s), C

D
γ ,ρu(s)

)
ds

)
dτ

+
μρ2–α

(μ + 1)(α – 1)

∫ 1

0

(
1 – τρ

)α–2
τρ–1ϕr

(∫ τ

0
q
(
s, u(s), C

D
γ ,ρu(s)

)
ds

)
dτ .

Let us now pose the following conditions to prove our next result:
(H1) The function q : [0, 1] ×R×R →R is jointly continuous, and there exists a

constant Lq > 0 such that, for ui, mi ∈R (i = 1, 2),

∣∣q(t, u1, m1) – q(t, u2, m2)
∣∣ ≤ Lq

(|u1 – u2| + |m1 – m2|
) (

t ∈ [0, 1]
)
.

(H2) The functionals θ ,ν : R×R →R have the respective upper bounds Mθ and Mν .
(H3) There exists a finite solution l > 0 of the following inequality:

l ≥ Mθ

|μ + 1| +
|μ|Mν

ρ|μ + 1| +
Mν

ρ
+

Mν

ρ1–γ (2 – γ )

+
(αρ + 1)(2|μ| + 1)Mr–1

ρα|μ + 1|(α + 1)
+

Mr–1

ρα–γ (α – γ + 1)
+

Mr–1

ρα–γ –1(2 – γ )(α)
,

where M := Lql + q∗ and q∗ := supt∈[0,1] |q(t, 0, 0)|.
For the sake of abbreviation, we set

�1 :=
(r – 1)Mr–2Lq(2|μ| + 1)(1 + (αρ + 1))B(α, 1

ρ
+ 1)

ρα|μ + 1|(α)
,

�2 :=
(r – 1)Mr–2Lq

ρα–γ

[B(α – γ , 1
ρ

+ 1)
(α – γ )

+
ρB(α – 1, 1

ρ
+ 1)

(2 – γ )(α – 1)

]
,
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where B(·, ·) denotes the well-known beta function defined by

B(m, n) =
(m)(n)
(m + n)

=
∫ 1

0
(1 – s)m–1sn–1 ds (m > 0, n > 0).

An operator, denoted by � : U → U, can be defined as follows:

�u(t) =
θ (u(0), u(1))

μ + 1
–

μν(u(0), u(1))
ρ(μ + 1)

+
ν(u(0), u(1))

ρ
tρ

+
ρ1–α

(α)

∫ t

0

(
tρ – τρ

)α–1
τρ–1ϕr

(∫ τ

0
q
(
s, u(s), C

D
γ ,ρu(s)

)
ds

)
dτ

–
ρ2–αtρ

(α – 1)

∫ 1

0

(
1 – τρ

)α–2
τρ–1ϕr

(∫ τ

0
q
(
s, u(s), C

D
γ ,ρu(s)

)
ds

)
dτ

–
μρ1–α

(μ + 1)(α)

∫ 1

0

(
1 – τρ

)α–1
τρ–1ϕr

(∫ τ

0
q
(
s, u(s), C

D
γ ,ρu(s)

)
ds

)
dτ

+
μρ2–α

(μ + 1)(α – 1)

∫ 1

0

(
1 – τρ

)α–2
τρ–1ϕr

(∫ τ

0
q
(
s, u(s), C

D
γ ,ρu(s)

)
ds

)
dτ .

By virtue of Lemma 3, we deduce

C
D

γ ,ρ
�u(t)

=
ν(u(0), u(1))
ρ1–γ (2 – γ )

tρ(1–γ )

+
ρ1–α+γ

(α – γ )

∫ t

0

(
tρ – τρ

)α–γ –1
τρ–1 × ϕr

(∫ τ

0
q
(
s, u(s), C

D
γ ,ρu(s)

)
ds

)
dτ

–
ρ2–α+γ tρ(1–γ )

(2 – γ )(α – 1)

∫ 1

0

(
1 – τρ

)α–2
τρ–1ϕr

(∫ τ

0
q
(
s, u(s), C

D
γ ,ρu(s)

)
ds

)
dτ .

The next result depends on the Banach fixed point theorem.

Theorem 10 Suppose that (H1)–(H3) are valid. If �1 + �2 < 1, then the BoVaPr in (3) has
a unique solution.

Proof We consider the set Bl = {u ∈ U : ‖u‖U ≤ l}.
For each t ∈ [0, 1], u ∈ Bl , we have the following estimation:

∣
∣∣
∣

∫ τ

0
q
(
s, u(s), C

D
γ ,ρu(s)

)
dτ

∣
∣∣
∣ ≤

∫ τ

0

∣∣q
(
s, x(s), C

D
γ ,ρu(s)

)
– q(s, 0, 0) + q(s, 0, 0)

∣∣ds

≤
∫ τ

0

(
Lq

(∣∣u(s)
∣
∣ +

∣
∣C
D

γ ,ρu(s)
∣
∣) +

∣
∣q(s, 0, 0)

∣
∣)ds

≤
∫ 1

0

(
Lq

(‖u‖ +
∥∥C

D
γ ,ρu

∥∥)
+ q∗)ds

≤ Lql + q∗ = M.

By Definition 5, we get ϕr(M) = Mr–1, M > 0.
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We shall show that �Bl ⊂ Bl . For each t ∈ [0, 1], x ∈ Bl , and r ≥ 2, we have

∣∣�u(t)
∣∣ ≤ |θ (u(0), u(1))|

|μ + 1| +
|μ||ν(u(0), u(1))|

ρ|μ + 1| +
|ν(u(0), u(1))|

ρ
tρ

+
∣
∣∣∣
ρ1–α

(α)

∫ t

0

(
tρ – τρ

)α–1
τρ–1ϕr

(∫ τ

0
q
(
s, u(s), C

D
γ ,ρu(s)

)
ds

)
dτ

∣
∣∣∣

+
∣∣
∣∣

ρ2–αtρ

(α – 1)

∫ 1

0

(
1 – τρ

)α–2
τρ–1ϕr

(∫ τ

0
q
(
s, u(s), C

D
γ ,ρu(s)

)
ds

)
dτ

∣∣
∣∣

+
∣
∣∣
∣

μρ1–α

(μ + 1)(α)

∫ 1

0

(
1 – τρ

)α–1
τρ–1ϕr

(∫ τ

0
q
(
s, u(s), C

D
γ ,ρu(s)

)
ds

)
dτ

∣
∣∣
∣

+
∣∣
∣∣

μρ2–α

(μ + 1)(α – 1)

∫ 1

0

(
1 – τρ

)α–2
τρ–1ϕr

(∫ τ

0
q
(
s, u(s), C

D
γ ,ρu(s)

)
ds

)
dτ

∣∣
∣∣

≤ |θ (u(0), u(1))|
|μ + 1| +

|μ||ν(u(0), u(1))|
ρ|μ + 1| +

|ν(u(0), u(1))|
ρ

tρ

+
Mr–1tρα

ρα(α + 1)
+

Mr–1tρ

ρα–1(α)
+

Mr–1|μ|
ρα|μ + 1|(α + 1)

+
Mr–1|μ|

ρα–1|μ + 1|(α)

≤ Mθ

|μ + 1| +
|μ|Mν

ρ|μ + 1| +
Mν

ρ
+

(αρ + 1)|(2|μ| + 1)Mr–1

ρα|μ + 1|(α + 1)
.

Moreover, we have

∣∣C
D

γ ,ρ
�u(t)

∣∣ ≤ |ν(u(0), u(1))|
ρ1–γ (2 – γ )

+
Mr–1ρ1–α+γ

(α – γ )

∫ t

0

(
tρ – τρ

)α–γ –1
τρ–1 dτ

+
Mr–1ρ2–α+γ tρ(1–γ )

(2 – γ )(α – 1)

∫ 1

0

(
1 – τρ

)α–2
τρ–1 dτ

≤ Mν

ρ1–γ (2 – γ )
+

Mr–1

ρα–γ (α – γ + 1)
+

Mr–1

ρα–γ –1(2 – γ )(α)
.

Thus, we get ‖�u‖U ≤ l, which implies that �Bl ⊂ Bl . Now, for each t ∈ [0, 1], u, m ∈ Bl ,
and r ≥ 2, we have

∣
∣�u(t) – �m(t)

∣
∣

≤ ρ1–α

(α)

∫ t

0

(
tρ – τρ

)α–1
τρ–1

×
∣
∣∣
∣ϕr

(∫ τ

0
q
(
s, u(s), C

D
γ ,ρu(s)

)
ds

)
– ϕr

(∫ τ

0
q
(
s, m(s), C

D
γ ,ρm(s)

)
ds

)∣
∣∣
∣dτ

+
ρ2–αtρ

(α – 1)

∫ 1

0

(
1 – τρ

)α–2
τρ–1

×
∣
∣∣∣ϕr

(∫ τ

0
q
(
s, u(s), C

D
γ ,ρu(s)

)
ds

)
– ϕr

(∫ τ

0
q
(
s, m(s), C

D
γ ,ρm(s)

)
ds

)∣
∣∣∣dτ

+
|μ|ρ1–α

|μ + 1|(α)

∫ 1

0

(
1 – τρ

)α–1
τρ–1

×
∣∣
∣∣ϕr

(∫ τ

0
q
(
s, u(s), C

D
γ ,ρu(s)

)
ds

)
– ϕr

(∫ τ

0
q
(
s, m(s), C

D
γ ,ρm(s)

)
ds

)∣∣
∣∣dτ



Matar et al. Advances in Difference Equations         (2021) 2021:68 Page 11 of 18

+
|μ|ρ2–α

|μ + 1|(α – 1)

∫ 1

0

(
1 – τρ

)α–2
τρ–1

×
∣
∣∣
∣ϕr

(∫ τ

0
q
(
s, u(s), C

D
γ ,ρu(s)

)
ds

)
– ϕr

(∫ τ

0
q
(
s, m(s), C

D
γ ,ρm(s)

)
ds

)∣
∣∣
∣dτ

≤ (r – 1)Mr–2Lqρ
1–α

(α)

∫ t

0

(
tρ – τρ

)α–1
τρ–1

×
∫ τ

0

(∣∣u(s) – m(s)
∣
∣ +

∣
∣C
D

γ ,ρu(s) – C
D

γ ,ρm(s)
∣
∣)ds dτ

+
(r – 1)Mr–2Lqρ

2–αtρ

(α – 1)

∫ 1

0

(
1 – τρ

)α–2
τρ–1

×
∫ τ

0

(∣∣u(s) – m(s)
∣∣ +

∣∣C
D

γ ,ρu(s) – C
D

γ ,ρm(s)
∣∣)ds dτ

+
(r – 1)Mr–2Lq|μ|ρ1–α

|μ + 1|(α)

∫ 1

0

(
1 – τρ

)α–1
τρ–1

×
∫ τ

0

(∣∣u(s) – m(s)
∣∣ +

∣∣C
D

γ ,ρu(s) – C
D

γ ,ρm(s)
∣∣)ds dτ

+
(r – 1)Mr–2Lq|μ|ρ2–α

|μ + 1|(α – 1)

∫ 1

0

(
1 – τρ

)α–2
τρ–1

×
∫ τ

0

(∣∣u(s) – m(s)
∣
∣ +

∣
∣C
D

γ ,ρu(s) – C
D

γ ,ρm(s)
∣
∣)ds dτ

≤ (r – 1)Mr–2Lq

ρα

[B(α, 1
ρ

+ 1)
(α)

+
ρB(α – 1, 1

ρ
+ 1)

(α – 1)

+
|μ|B(α, 1

ρ
+ 1)

|μ + 1|(α)
+

ρ|μ|B(α – 1, 1
ρ

+ 1)
|μ + 1|(α – 1)

]

× (‖u – m‖ +
∥∥C

D
γ ,ρu – C

D
γ ,ρm

∥∥)
= �1‖u – m‖U.

Similarly, we have

∥
∥C

D
γ ,ρu(t) – C

D
γ ,ρm(t)

∥
∥ ≤ (r – 1)Mr–2ρ1–α+γ

(α – γ )

∫ t

0

(
tρ – τρ

)α–γ –1
τρ–1

×
∫ τ

0

∣
∣q

(
s, u(s), C

D
γ ,ρu(s)

)
– q

(
s, m(s), C

D
γ ,ρm(s)

)∣∣ds dτ

+
(r – 1)Mr–2ρ2–α+γ tρ(1–γ )

(2 – γ )(α – 1)

∫ 1

0

(
1 – τρ

)α–2
τρ–1

×
∫ τ

0

∣
∣q

(
s, u(s), C

D
γ ,ρu(s)

)
– q

(
s, m(s), C

D
γ ,ρm(s)

)∣∣ds dτ

≤ (r – 1)Mr–2Lqρ
1–α+γ

(α – γ )

∫ t

0

(
tρ – τρ

)α–γ –1
τρ–1

×
∫ τ

0

(∣∣u(s) – m(s)
∣
∣ +

∣
∣C
D

γ ,ρu(s) – C
D

γ ,ρm(s)
∣
∣)ds dτ

+
(r – 1)Mr–2Lqρ

2–α+γ tρ(1–γ )

(2 – γ )(α – 1)

∫ 1

0

(
1 – τρ

)α–2
τρ–1

×
∫ τ

0

(∣∣u(s) – m(s)
∣
∣ +

∣
∣C
D

γ ,ρu(s) – C
D

γ ,ρm(s)
∣
∣)ds dτ
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≤ (r – 1)Mr–2Lq

ρα–γ

[B(α – γ , 1
ρ

+ 1)
(α – γ )

+
ρB(α – 1, 1

ρ
+ 1)

(2 – γ )(α – 1)

]

× (‖u – m‖ +
∥
∥C

D
γ ,ρu – C

D
γ ,ρm

∥
∥)

= �2‖u – m‖U.

Therefore, we get

‖�u – �m‖U ≤ (�1 + �2)‖u – m‖U.

Since �1 + �2 < 1 by the given assumption, then the operator � is a contraction. From the
Banach fixed point theorem (Theorem 7), there exists a unique solution for the BoVaPr in
(3). This completes the proof. �

We now work on Schauder’s fixed point by assuming the following:
(H4) There exist a function ω ∈ C([0, 1],R+) and a nondecreasing function

ϒ : R+ →R
+, ϒ(0) = 0, such that:

∣
∣q(t, u, m)

∣
∣ ≤ ω(t)ϒ

(|u| + |m|), ∀t ∈ [0, 1], u, m ∈R.

(H5) There exists a finite solution l′ > 0 of the following inequality:

l′ ≥ Mθ

|μ + 1| +
|μ|Mν

ρ|μ + 1| +
Mν

ρ
+

Mν

ρ1–γ (2 – γ )
+

(‖ω‖ϒ(l′))r–1

ρα–γ (α – γ + 1)

+
(2|μ| + 1)(αρ + 1)(‖ω‖ϒ(l′))r–1

ρα|μ + 1|(α + 1)
+

(‖ω‖ϒ(l′))r–1

ρα–γ –1(2 – γ )(α)
. (12)

Theorem 11 Assume that (H2), (H4), and (H5) are satisfied. Then the BoVaPr in (3) has
at least one solution.

Proof We transform the BoVaPr in (3) into a fixed point problem. Let us consider the
operator � : U → U defined by (H3), and let Bl′ = {u ∈ U : ‖u‖U ≤ l′}. Clearly, Bl′ is a
bounded closed convex set in U. Next we shall show that � satisfies everything that is
assumed in Theorem 8. Thus, � has a fixed point which is a solution of the BoVaPr in (3).
The proof will be given step-by-step.

Step 1. � maps bounded sets into bounded sets in U.
For each t ∈ [0, 1], u ∈ Bl′ , we obtain

∣
∣∣
∣

∫ τ

0
q
(
s, u(s), C

D
γ ,ρu(s)

)
ds

∣
∣∣
∣ ≤

∫ τ

0

∣∣q
(
s, u(s), C

D
γ ,ρu(s)

)∣∣ds

≤
∫ τ

0
ω(s)ϒ

(∣∣u(s)
∣
∣ +

∣
∣C
D

γ ,ρu(s)
∣
∣)ds

≤
∫ 1

0
‖ω‖ϒ(‖u‖ +

∥∥C
D

γ ,ρu
∥∥)

ds

≤ ‖ω‖ϒ(
l′
)
.
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By using Definition 5, we obtain the following estimate:

∣∣
∣∣ϕr

(∫ τ

0
q
(
s, u(s), C

D
γ ,ρu(s)

)
ds

)∣∣
∣∣ =

∣∣
∣∣

∫ τ

0
q
(
s, u(s), C

D
γ ,ρu(s)

)
ds

∣∣
∣∣

r–1

≤ (‖ω‖ϒ(
l′
))r–1.

Therefore, we have

∣
∣�u(t)

∣
∣ ≤ |θ (u(0), u(1))|

|μ + 1| +
|μ||ν(u(0), u(1))|

ρ|μ + 1| +
|ν(u(0), u(1))|

ρ

+
(‖ω‖ϒ(l′))r–1ρ1–α

(α)

∫ t

0

(
tρ – τρ

)α–1
τρ–1 dτ

+
(‖ω‖ϒ(l′))r–1ρ2–αtρ

(α – 1)

∫ 1

0

(
1 – τρ

)α–2
τρ–1 dτ

+
|μ|(‖ω‖ϒ(l′))r–1ρ1–α

|μ + 1|(α)

∫ 1

0

(
1 – τρ

)α–1
τρ–1 dτ

+
|μ|(‖ω‖ϒ(l′))r–1ρ2–α

|μ + 1|(α – 1)

∫ 1

0

(
1 – τρ

)α–2
τρ–1 dτ

≤ Mθ

|μ + 1| +
|μ|Mν

ρ|μ + 1| +
Mν

ρ
+

(2|μ| + 1)(αρ + 1)(‖ω‖ϒ(l′))r–1

ρα|μ + 1|(α + 1)
.

Moreover, we have

∣
∣C
D

γ ,ρ
�u(t)

∣
∣ ≤ |ν(u(0), u(1))|

ρ1–γ (2 – γ )
+

(‖ω‖ϒ(l′))r–1ρ1–α+γ

(α – γ )

∫ t

0

(
tρ – τρ

)α–γ –1
τρ–1 dτ

+
(‖ω‖ϒ(l′))r–1ρ2–α+γ tρ(1–γ )

(2 – γ )(α – 1)

∫ 1

0

(
1 – τρ

)α–2
τρ–1 dτ

≤ Mν

ρ1–γ (2 – γ )
+

(‖ω‖ϒ(l′))r–1

ρα–γ (α – γ + 1)
+

(‖ω‖ϒ(l′))r–1

ρα–γ –1(2 – γ )(α)
.

Hence, we get

‖�u‖U ≤ Mθ

|μ + 1| +
|μ|Mν

ρ|μ + 1| +
Mν

ρ
+

Mν

ρ1–γ (2 – γ )
+

(‖ω‖ϒ(l′))r–1

ρα–γ (α – γ + 1)

+
(2|μ| + 1)(αρ + 1)(‖ω‖ϒ(l′))r–1

ρα|μ + 1|(α + 1)
+

(‖ω‖ϒ(l′))r–1

ρα–γ –1(2 – γ )(α)
.

In view of (H4), we deduce that �(Bl′ ) ⊂ Bl′ .
Step 2. � is continuous.
Assume that {um} is a sequence where um → u in U. We have

∣∣�um(t) – �u(t)
∣∣

≤ ρ1–α

(α)

∫ t

0

(
tρ – τρ

)α–1
τρ–1

×
∣∣
∣∣ϕr

(∫ τ

0
q
(
s, un(s), C

D
γ ,ρum(s)

)
ds

)
– ϕr

(∫ τ

0
q
(
s, u(s), C

D
γ ,ρu(s)

)
ds

)∣∣
∣∣dτ
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+
ρ2–α

(α – 1)

∫ 1

0

(
1 – τρ

)α–2
τρ–1

×
∣
∣∣
∣ϕr

(∫ τ

0
q
(
s, um(s), C

D
γ ,ρum(s)

)
ds

)
– ϕr

(∫ τ

0
q
(
s, u(s), C

D
γ ,ρu(s)

)
ds

)∣
∣∣
∣dτ

+
|μ|ρ1–α

|μ + 1|(α)

∫ 1

0

(
1 – τρ

)α–1
τρ–1

×
∣∣
∣∣ϕr

(∫ τ

0
q
(
s, um(s), C

D
γ ,ρum(s)

)
ds

)
– ϕr

(∫ τ

0
q
(
s, u(s), C

D
γ ,ρu(s)

)
ds

)∣∣
∣∣dτ

+
|μ|ρ2–α

|μ + 1|(α – 1)

∫ 1

0

(
1 – τρ

)α–2
τρ–1

×
∣
∣∣
∣ϕr

(∫ τ

0
q
(
s, um(s), C

D
γ ,ρum(s)

)
ds

)
– ϕr

(∫ τ

0
q
(
s, u(s), C

D
γ ,ρu(s)

)
ds

)∣
∣∣
∣dτ .

Then, by the dominated convergence theorem, for all t ∈ [0, 1], we have |�um(t) –
�u(t)| → 0. Further, we have

∣
∣C
D

γ ,ρum(t) – C
D

γ ,ρu(t)
∣
∣

≤ ρ1–α+γ

(α – γ )

∫ t

0

(
tρ – τρ

)α–γ –1
τρ–1

×
∣
∣∣
∣ϕr

(∫ τ

0
q
(
s, um(s), C

D
γ ,ρum(s)

)
ds

)
– ϕr

(∫ τ

0
q
(
s, u(s), C

D
γ ,ρu(s)

)
ds

)∣
∣∣
∣dτ

+
ρ2–α+γ

(2 – γ )(α – 1)

∫ 1

0

(
1 – τρ

)α–2
τρ–1

×
∣∣
∣∣ϕr

(∫ τ

0
q
(
s, um(s), C

D
γ ,ρum(s)

)
ds

)
– ϕr

(∫ τ

0
q
(
s, u(s), C

D
γ ,ρu(s)

)
ds

)∣∣
∣∣dτ .

In view of the dominated convergence theorem, we deduce that |CDγ ,ρum(t) –
CD

γ ,ρu(t)| → 0. Hence, we conclude that ‖�um – �u‖U → 0 in U. Hence, � is con-
tinuous.

Step 3. {(�u), u ∈ Bl′ } and {CD
γ ,ρ(�u), u ∈ Bl′ } are equicontinuous.

For t1 < t2 with t1, t2 ∈ [0, 1], we have

∣
∣(�u)(t2) – (�u)(t1)

∣
∣

≤
∣∣
∣∣
ν(u(0), u(1))

ρ

(
tρ
2 – tρ

1
)
∣∣
∣∣

+
∣∣
∣∣
ρ1–α

(α)

∫ t2

t1

(
tρ
2 – τρ

)α–1
τρ–1ϕr

(∫ τ

0
q
(
s, u(s), C

D
γ ,ρu(s)

)
ds

)
dτ

∣∣
∣∣

+
∣
∣∣
∣
ρ1–α

(α)

∫ t1

0

[(
tρ
2 – τρ

)α–1 –
(
tρ
1 – τρ

)α–1]
τρ–1ϕr

×
(∫ τ

0
q
(
s, u(s), C

D
γ ,ρu(s)

)
ds

)∣∣∣
∣dτ

+
∣
∣∣∣
ρ2–α(tρ

2 – tρ
1 )

(α – 1)

∫ 1

0

(
1 – τρ

)α–2
τρ–1ϕr

(∫ τ

0
q
(
s, u(s), C

D
γ ,ρu(s)

)
ds

)
dτ

∣
∣∣∣

≤ Mυ

ρ

(
tρ
2 – tρ

1
)

+
(‖ω‖ϒ(l′))r–1ρ1–α

(α)

∫ t2

t1

(
tρ
2 – τρ

)α–1
τρ–1 dτ
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+
(‖ω‖ϒ(l′))r–1ρ1–α

(α)

∫ t1

0

∣
∣(tρ

2 – τρ
)α–1 –

(
tρ
1 – τρ

)α–1∣∣τρ–1 dτ

+
(‖ω‖ϒ(l′))r–1ρ1–α(tρ

2 – tρ
1 )

(α – 1)

∫ 1

0

(
1 – τρ

)α–2
τρ–1 dτ

≤ Mυ

ρ

(
tρ
2 – tρ

1
)

+
(‖ω‖ϒ(l′))r–1

ρα(α + 1)
[
2
(
tρ
2 – tρ

1
)α + tρα

2 – tρα
1

]

+
(‖ω‖ϒ(l′))r–1

ρα(α)
(
tρ
2 – tρ

1
)
.

Thus, |(�u)(t2) – (�u)(t1)| → 0 as t2 → t1. In addition, we have the following:

∣∣C
D

γ ,ρ(�u)(t2) – C
D

γ ,ρ(�u)(t1)
∣∣

≤ Mν

ρ1–γ (2 – γ )
(
tρ(1–γ )
2 – tρ(1–γ )

1
)

+
(‖ω‖ϒ(l′))r–1ρ1–α+γ

(α – γ )

∫ t2

t1

(
tρ
2 – τρ

)α–γ –1
τρ–1 dτ

+
(‖ω‖ϒ(l′))r–1ρ1–α+γ

(α – γ )

∫ t1

0

∣
∣(tρ

2 – τρ
)α–γ –1 –

(
tρ
1 – τρ

)α–γ –1∣∣τρ–1 dτ

+
(‖ω‖ϒ(l′))r–1ρ2–α+γ (tρ(1–γ )

2 – tρ(1–γ )
1 )

(2 – γ )(α – 1)

∫ 1

0

(
1 – τρ

)α–2
τρ–1 dτ

≤ Mν

ρ1–γ (2 – γ )
(
tρ(1–γ )
2 – tρ(1–γ )

1
)

+
(‖ω‖ϒ(l′))r–1

ρα–γ (α – γ + 1)
[
2
(
tρ
2 – tρ

1
)α–γ + tρ(α–γ )

2 – tρ(α–γ )
1

]

+
(‖ω‖ϒ(l′))r–1

ρα–γ –1(2 – γ )(α)
(
tρ(1–γ )
2 – tρ(1–γ )

1
)
.

Thus, |CDγ ,ρ(�u)(t2) – CD
γ ,ρ(�u)(t1)| → 0 as t2 → t1. Hence, {(�u), u ∈ Bl′ } and

{CD
γ ,ρ(�u), u ∈ Bl′ } are equicontinuous and relatively compact according to the Arzelà–

Ascoli theorem. Thus, �(Bl′ ) is a relatively compact subset of U, and the operator � is
compact. From Schauder’s fixed point (see Theorem 8), � has a fixed point x which is a
solution of the BoVaPr in (3). The proof is completed. �

4 Application
By choosing particular parameters, the following example is provided in this section to
apply and validate all obtained results from the previous sections.

We construct an example with specific parameters to expose the applicability of the
proposed theoretical results.

Example 1 Consider the following BoVaPr:

⎧
⎪⎨

⎪⎩

d
dt (ϕ2(CD

3
2 ,2u(t))) = arctan(t)

1+ 1
5 |u(t)|+ 1

5 |CD
1
2 ,2u(t)|

(t ∈ [0, 1]),

u(0) + u(1) = sin u(0) cos u(1), u′(1) = cos u(0) sin u(1).
(13)
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Here, α = 3
2 , γ = 1

2 , ρ = 2, p = q = 2, μ = Mν = Mθ = 1, and q is expressed as

q
(
t, u(t), C

D
γ ,ρu(t)

)
=

arctan(t)

1 + 1
5 |u(t)| + 1

5 |CD 1
2 ,2u(t)|

(
t ∈ [0, 1]

)
.

Clearly, q : [0, 1] ×R×R →R is a continuous function, and we have

∣∣q(t, u1, m1) – q(t, u2, m2)
∣∣ =

∣∣∣
∣

arctan(t)
1 + 1

5 |u1| + 1
5 |m1| –

arctan(t)
1 + 1

5 |u2| + 1
5 |m2|

∣∣∣
∣

≤ π

20
(|u1 – u2| + |m1 – m2|

)
.

Thus, assumption (H1) is satisfied with Lq = π
20 . Also, we have

q∗ = sup
t∈[0,1]

∣∣q(t, 0, 0)
∣∣ =

π

4

and

�1 + �2 = 0.2091745071 + 0.235619449 = 0.4447939561 < 1.

As a result, all of the assumptions we made in Theorem 10 are satisfied. Hence, the BoVaPr
in (13) has a unique solution on [0, 1].

Unfortunately, the functions ω(t) = arctan(t) and ϒ(s) = 1
1+ 1

5 s
do not satisfy assumption

(H4). Alternatively, the function

q(t, u, m) = arctan(t)
|u(t)| + |m(t)|

1 + |u(t)| + |m(t)|
(
t ∈ [0, 1]

)
,

with ω(t) = arctan(t) and ϒ(s) = s
s+1 satisfies condition (H4). Moreover, estimate (12) can

be simplified as

l′ ≥ 2.0479 +
2.6454l′

l′ + 1
.

Hence, any real number l′ > 4.2 satisfies assumption (H5). Therefore, everything assumed
in Theorem 11 is satisfied, and then there exists a solution of problem (13).

5 Conclusion
The existence and uniqueness of solutions for the proposed p-Laplacian nonperiodic
boundary value problem in the sense of generalized Caputo fractional derivative have been
successfully investigated in this research paper using the Banach and Schauder fixed point
theorems. All the obtained results are supported by an applicable example to apply and
validate them. Therefore, this research study sheds the light on this interesting topic of re-
search and motivates all other researchers to work on further investigation of p-Laplacian
nonperiodic boundary value problem defined in other fractional derivatives.
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