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Abstract
In this paper, we obtain sufficient conditions for the existence and uniqueness results
of the pantograph fractional differential equations (FDEs) with nonlocal conditions
involving Atangana–Baleanu–Caputo (ABC) derivative operator with fractional orders.
Our approach is based on the reduction of FDEs to fractional integral equations and
on some fixed point theorems such as Banach’s contraction principle and the fixed
point theorem of Krasnoselskii. Further, Gronwall’s inequality in the frame of the
Atangana–Baleanu fractional integral operator is applied to develop adequate results
for different kinds of Ulam–Hyers stabilities. Lastly, the paper includes an example to
substantiate the validity of the results.
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1 Introduction
Fractional calculus (FC) has been growing quicker during the most recent few years, and
numerous phenomena having the power-law impact have been described precisely with
fractional models [1–9]. Numerous outstanding results of the fractional models have been
acquired in different fields of science and engineering. One of the specificities of the FC
is that we have numerous fractional derivatives (FDs) that offer the authors the chance
to pick the specific FD which coincides better with a given real-world problem. The de-
scription of phenomena with memory effect is as yet a major test for the specialists. Along
these lines, new tools and methods ought to be made to have the option to show a bet-
ter improvement description of real-world phenomena and the existing models. In this
regard, it appears that there is a need for new FDs with the nonsingular kernel. For the
nonlocal FDs with the nonsingular exponential kernel, we allude to [10, 11], and for other
local approaches of the FDs, we allude to the recent works [12, 13]. Probably the best com-
petitor among the current kernels is the one dependent on Mittag-Leffler functions (MLF)
[14]. In view of this, very lately a novel FD [14] (ABC fractional operators) was structured
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and applied to sundry real-world problems [15, 16]. Then, in [17, 18], the authors de-
liberated the discrete versions of those new operators. For the modeling and important
applications in the frame of ABC fractional operator, see [19–26]. Recent investigations
of the existence and uniqueness of solutions for fractional differential equations (FDEs) of
the impulsive, evolution, and functional problems with initial or boundary conditions can
be found within the following research series [27–30] and the references therein. Recent
contributions on FDEs involving ABC-FDs can be found in the articles [13, 31–38].

On the other hand, the pantograph is an apparatus employed in electric trains to collect
electric currents from the overload lines. This type of equation was designed by Ockendon
and Tayler [39]. Pantograph equations play a pivotal role in pure and applied mathematics
and physics. Motivated by their significance, a ton of scientists generalized these equations
into different types and presented the solvability aspect of such problems both numerically
and theoretically; for additional subtleties, see [40–46] and the references therein. Besides,
some authors applied various kinds of fractional derivatives and studied the existence and
stability of Ulam–Hyers, which can be found in [47–51]. However, not many works have
been proposed for pantograph FDEs, especially those involving ABC fractional operator
and nonlocal conditions.

Motivated by the above argumentations, the intent of this work is to investigate the ABC-
type pantograph FDEs with nonlocal conditions described by

⎧
⎨

⎩

ABC
D

ϑ
a+ς (r) = f (r,ς (r),ς (γ r)), r ∈ [a, T], 0 < ϑ ≤ 1,

ς (a) =
∑m

k=1 ckς (rk), rk ∈ (a, T),
(1.1)

where 0 < γ < 1, ABC
D

ϑ
a+ is the AB-Caputo FD of order ϑ , f : [a, T] × R × R → R is a

continuous function with f (a,ς (a),ς (γ a)) = 0, and the constant ck satisfies the condition
∑m

k=1 ck �= 1. Note that, if γ = 1, then our problem reduces to

⎧
⎨

⎩

ABC
D

ϑ
a+ς (r) = f (r,ς (r)), r ∈ [a, T], 0 < ϑ ≤ 1,

ς (a) =
∑m

k=1 ckς (rk), rk ∈ (a, T).
(1.2)

Therefore, if γ = 1, the results acquired in the present paper are also true for ABC-type
pantograph FDEs (1.2).

Some fixed point theorems are applied to establish the existence and uniqueness of so-
lution. The Ulam–Hyers stabilities are proved via Gronwall’s inequality in the frame of
AB fractional integral operator. The proposed problems are more generalized, also the
obtained results are recent studies and an extension of the development of FDEs involv-
ing this new operator. Moreover, the analysis of the results was limited to the minimum
assumptions.

This paper is formatted as follows. Section 2 provides the background materials and pre-
liminaries required for our analysis. Section 3 is devoted to obtaining a formula of solution
to the ABC type pantograph FDEs (1.1). In Sect. 4, we prove the existence and uniqueness
of solution to problems at hand by means of some techniques of FPTs. In Sect. 5, the
Ulam–Hyers and generalized Ulam–Hyers stability of the pantograph ABC-FDEs (1.1) is
discussed via Gronwall’s inequality in the frame of AB fractional integral operator. Finally,
an illustrative example is offered in Sect. 6.
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2 Background materials and preliminaries
Here, we recollect some requisite definitions and preliminary concepts related to our
work.

Let Z = [a, T], Z′ = (a, T) ⊂ R, and D = C(Z,R) be the space of continuous functions
ς : Z→R with the norm

‖ς‖ = max
{∣
∣ς (r)

∣
∣ : r ∈ Z

}
.

Clearly, D is a Banach space with the norm ‖ς‖.

Definition 2.1 ([14]) Let ϑ ∈ (0, 1] and p ∈ H1(Z). Then the AB-Caputo and AB-
Riemann–Liouville FDs of order ϑ for a function p are described by

ABC
D

ϑ
a+p(r) =

N(ϑ)
1 – ϑ

∫ r

a
Eϑ

(
–ϑ

ϑ – 1
(r – s)ϑ

)

p
′(s) ds, r > a,

and

ABR
D

ϑ
a+p(r) =

N(ϑ)
1 – ϑ

d
dr

∫ r

a
Eϑ

(
–ϑ

ϑ – 1
(r – s)ϑ

)

p(s) ds, r > a,

respectively, where N(ϑ) > 0 is a normalization function complying with N(0) = N(1) = 1,
and Eϑ is called the Mittag-Leffler function described by

Eϑ (p) =
∞∑

k=0

pk

�(kϑ + 1)
, Re(ϑ) > 0,p ∈ C.

The associated AB fractional integral is specified by

AB
I
ϑ
a+p(r) =

1 – ϑ

N(ϑ)
p(r) +

ϑ

N(ϑ)
Iϑ

a+p(r),

where

Iϑ
a+p(r) =

1
�(ϑ)

∫ r

a
(r – s)ϑ–1

p(s) ds.

Lemma 2.1 ([17]) Let ϑ ∈ (0, 1] and p ∈ H1(Z), if AB-Caputo FD exists, then we have

AB
I
ϑ
a+

ABC
D

ϑ
a+p(r) = p(r) – p(a).

Definition 2.2 ([31]) The relation between the AB-Riemann–Liouville and AB-Caputo
FDs is given by

ABC
D

ϑ
a+p(r) = ABR

D
ϑ
a+p(r) –

N(ϑ)
1 – ϑ

p(a)Eϑ

(
–ϑ

ϑ – 1
(r – a)ϑ

)

. (2.1)

Remark 2.1 Replacing p(r) with AB
I
ϑ
a+p(r) in Definition 2.2 and using Lemma 2.1, it can be

shown that

ABC
D

ϑ
a+

AB
I
ϑ
a+p(r) = p(r) – p(a)Eϑ

(
–ϑ

ϑ – 1
(r – a)ϑ

)

.
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Hence, under the condition that p(a) = 0, we get the identity

ABC
D

ϑ
a+

AB
I
ϑ
a+p(r) = p(r).

Lemma 2.2 ([14]) Let ϑ > 0. Then AB
I
ϑ
a+ is bounded from D into D.

Lemma 2.3 ([13, 17]) Let ϑ ∈ (0, 1] and � ∈ D with � (a) = 0. Then the solution of the
following problem

ABCDϑ
a+p(r) = � (r), r ∈ Z,

p(a) = pa,

is given by

p(r) = pa +
1 – ϑ

N(ϑ)
� (r) +

ϑ

N(ϑ)
1

�(ϑ)

∫ r

a
(r – s)ϑ–1� (s) ds.

Theorem 2.1 ([52], Banach’s contraction principle) Let J be a Banach space, and K be
a nonempty closed subset of J . If B : K −→ K is a contraction, then there exists a unique
fixed point of B.

Theorem 2.2 ([52], Krasnoselskii’s fixed point theorem) Let K be a nonempty, closed, con-
vex subset of a Banach space J . Let B1, B2 be two operators such that (i) B1u + B2v ∈ K,
∀u, v ∈ K; (ii) B1 is compact and continuous; (iii) B2 is a contraction mapping. Then there
exists w ∈ K such that B1w + B2w = w.

Theorem 2.3 ([13], Generalized Gronwall’s inequality) Suppose that 0 < ϑ ≤ 1, a(r)(1 –
1–ϑ
N(ϑ) b(r))–1 is a nonnegative, nondecreasing, and locally integrable function on [c, d),
ϑb(t)
N(ϑ) (1 – 1–ϑ

N(ϑ) b(r))–1 is nonnegative and bounded on [c, d), and σ (r) is nonnegative and
locally integrable on [c, d) with

σ (r) ≤ a(r) + b(r)
(AB

I
ϑ
a+σ

)
(r).

Then

σ (r) ≤ a(r)N(ϑ)
N(ϑ) – (1 – ϑ)b(r)

Eϑ

(
ϑb(r)(r – a)ϑ

N(ϑ) – (1 – ϑ)b(r)

)

.

3 Formulas of solution
This section is devoted to obtaining formulas of solution to linear problems corresponding
to (1.1).

Theorem 3.1 Let 0 < ϑ ≤ 1,
∑m

k=1 ck �= 1, and let � ∈ D with � (a) = 0. A function ς ∈ D

is a solution of the fractional integral equation (FIE)

ς (r) =
1

1 –
∑m

k=1 ck

(
1 – ϑ

N(ϑ)

m∑

k=1

ck� (rk) +
ϑ

N(ϑ)

m∑

k=1

ckIϑ
a+� (rk)

)

+
1 – ϑ

N(ϑ)
� (r) +

ϑ

N(ϑ)
Iϑ

a+� (r) (3.1)
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if and only if ς is a solution of the ABC-problem

ABC
D

ϑ
a+ς (r) = � (r), r ∈ Z,

ς (a) =
m∑

k=1

ckς (rk), rk ∈ Z
′.

(3.2)

Proof Assume that ς satisfies the first equation of (3.2). From Lemma 2.3, we have

ς (r) = ς (a) +
1 – ϑ

N(ϑ)
� (r) +

ϑ

N(ϑ)
1

�(ϑ)

∫ r

a
(r – s)ϑ–1� (s) ds. (3.3)

Now, if we replace r = rk and multiply both sides by ck in (3.3), we get

ckς (rk) = ckς (a) +
1 – ϑ

N(ϑ)
ck� (rk) +

ϑck

N(ϑ)
1

�(ϑ)

∫ rk

a
(rk – s)ϑ–1� (s)ds. (3.4)

From the nonlocal condition, we get

ς (a) =
m∑

k=1

ckς (rk)

=
m∑

k=1

ckς (a) +
1 – ϑ

N(ϑ)

m∑

k=1

ck� (rk) +
ϑ

N(ϑ)

m∑

k=1

ckIϑ
a+� (rk),

which implies

ς (a) =
1

1 –
∑m

k=1 ck

(
1 – ϑ

N(ϑ)

m∑

k=1

ck� (rk) +
ϑ

N(ϑ)

m∑

k=1

ckIϑ
a+� (rk)

)

. (3.5)

By matching the two equations (3.3) and (3.5), we get

ς (r) =
1

1 –
∑m

k=1 ck

(
1 – ϑ

N(ϑ)

m∑

k=1

ck� (rk) +
ϑ

N(ϑ)

m∑

k=1

ckIϑ
a+� (rk)

)

+
1 – ϑ

N(ϑ)
� (r) +

ϑ

N(ϑ)
Iϑ

a+� (r).

Thus (3.1) is satisfied.
Conversely, suppose that ς satisfies equation (3.1). Applying ABC

D
ϑ
a+ on both sides of

(3.1), then using Remark 2.1, and from the fact ABC
D

ϑ
a+ (k) = 0, for k = constant, we find

that

ABC
D

ϑ
a+ς (r) = ABC

D
ϑ
a+

[
1

1 –
∑m

k=1 ck

(
1 – ϑ

N(ϑ)

m∑

k=1

ck� (rk) +
ϑ

N(ϑ)

m∑

k=1

ckIϑ
a+� (rk)

)]

+ ABC
D

ϑ
a+

[
1 – ϑ

N(ϑ)
� (r) +

ϑ

N(ϑ)
Iϑ

a+� (r)
]

= ABC
D

ϑ
a+

AB
I
ϑ
a+� (r)

= � (r).
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On the other hand, by taking r → a on both sides of (3.1), then using the fact that � (a) =
0 and limr→a Iϑ

a+� (r) = Iϑ
a+� (a) = 0, we get

ς (a) =
1

1 –
∑m

k=1 ck

(
1 – ϑ

N(ϑ)

m∑

k=1

ck� (rk) +
ϑ

N(ϑ)

m∑

k=1

ckIϑ
a+� (rk)

)

+
1 – ϑ

N(ϑ)
� (a) +

ϑ

N(ϑ)
Iϑ

a+� (a)

=
1

1 –
∑m

k=1 ck

(
1 – ϑ

N(ϑ)

m∑

k=1

ck� (rk) +
ϑ

N(ϑ)

m∑

k=1

ckIϑ
a+� (rk)

)

. (3.6)

Substitute r = rk and multiply by ck in (3.1). Then we derive

m∑

k=1

ckς (rk) =

( ∑m
k=1 ck

1 –
∑m

k=1 ck

(
1 – ϑ

N(ϑ)

m∑

k=1

ck� (rk) +
ϑ

N(ϑ)

m∑

k=1

ckIϑ
a+� (rk)

))

+
1 – ϑ

N(ϑ)

m∑

k=1

ck� (rk) +
ϑ

N(ϑ)

m∑

k=1

ckIϑ
a+ ck� (rk)

=
( ∑m

k=1 ck

1 –
∑m

k=1 ck
+ 1

)(
1 – ϑ

N(ϑ)

m∑

k=1

ck� (rk) +
ϑ

N(ϑ)

m∑

k=1

ckIϑ
a+� (rk)

)

=
1

1 –
∑m

k=1 ck

(
1 – ϑ

N(ϑ)

m∑

k=1

ck� (rk) +
ϑ

N(ϑ)

m∑

k=1

ckIϑ
a+� (rk)

)

. (3.7)

It follows from (3.6) and (3.7) that

ς (a) =
m∑

k=1

ckς (rk). �

As a result of Theorem 3.1, we have the subsequent theorem.

Theorem 3.2 Let 0 < ϑ ≤ 1,
∑m

k=1 ck �= 1, and f : Z×R×R →R be a continuous function
along with f (a,ς (a),ς (γ a)) = 0, ς ∈ D. Then the ABC- type pantograph FDEs (1.1) are
equivalent to the following FIE:

ς (r) =
1

1 –
∑m

k=1 ck

(
1 – ϑ

N(ϑ)

m∑

k=1

ckf
(
rk ,ς (rk),ς

(
γ (rk)

))

+
ϑ

N(ϑ)

m∑

k=1

ckIϑ
a+ f

(
rk ,ς (rk),ς

(
γ (rk)

))
)

+
1 – ϑ

N(ϑ)
f
(
r,ς (r),ς (γ r)

)
+

ϑ

N(ϑ)
Iϑ

a+ f
(
r,ς (r),ς (γ r)

)
, r ∈ Z.

4 Existence and uniqueness theorems
This section is devoted to proving the existence and uniqueness theorems for the ABC-
type pantograph FDEs (1.1). Before proceeding with the main findings, we are obligated
to provide the following assumption:
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(A1) The function f : Z×R×R →R is continuous, and there exists Lf > 0 such that

∣
∣f (r, u, u) – f (r, v, v)

∣
∣ ≤ Lf

(|u – v| + |u – v|), r ∈ Z, and u, v, u, v ∈R.

Theorem 4.1 Suppose that hypothesis (A1) holds. Then the ABC-type pantograph FDEs
(1.1) have a unique solution, provided that

P1 :=

(
(1 – ϑ)

1 –
∑m

k=1 ck
+

1
�(ϑ)

[
1

(1 –
∑m

k=1 ck)

m∑

k=1

ck(rk – a)ϑ + (T – a)ϑ
])

2Lf

N(ϑ)

< 1. (4.1)

Proof Define the operator T : D →D by Tς = ς , ς ∈D, i.e.,

(Tς )(r) =
1

1 –
∑m

k=1 ck

(
1 – ϑ

N(ϑ)

m∑

k=1

ckf
(
rk ,ς (rk),ς

(
γ (rk)

))

+
ϑ

N(ϑ)

m∑

k=1

ckIϑ
a+ f

(
rk ,ς (rk),ς

(
γ (rk)

))
)

+
1 – ϑ

N(ϑ)
f
(
r,ς (r),ς (γ r)

)
+

ϑ

N(ϑ)
Iϑ

a+ f
(
r,ς (r),ς (γ r)

)
.

The operator T is well defined, that is, T(D) ⊆ D. Indeed, for any ς ∈ D, f (·,ς (·),ς (γ (·)))
is continuous. Besides, by Lemma 2.2, Tς ∈ D. Also, by Lemma 2.1 with Remark 2.1, we
end up at

ABC
D

ϑ
a+ (Tς )(r) = ABC

D
ϑ
a+ς (a) + ABC

D
ϑ
a+

AB
I
ϑ
a+ f

(
r,ς (r),ς (γ r)

)

= f
(
r,ς (r),ς (γ r)

)
.

Since f (r, ·, ·) is continuous on [a, T], then ABC
D

ϑ
a+ (Tς )(r) ∈D.

Now, we need to prove that T is a condensing map. Let ς ,ς ∈D and r ∈ Z. Then

∣
∣(Tς )(r) – (Tς )(r)

∣
∣

≤ 1
1 –

∑m
k=1 ck

(
1 – ϑ

N(ϑ)

m∑

k=1

ck
∣
∣f

(
rk ,ς (rk),ς (γ rk)

)
– f

(
rk ,ς (rk),ς (γ rk)

)∣
∣

+
ϑ

N(ϑ)

m∑

k=1

ckIϑ
a+

∣
∣f

(
rk ,ς (rk),ς (γ rk)

)
– f

(
rk ,ς (rk),ς (γ rk)

)∣
∣

)

+
1 – ϑ

N(ϑ)
∣
∣f

(
r,ς (r),ς (γ r)

)
– f (r,ς (r),ς (γ r)

∣
∣

+
ϑ

N(ϑ)
Iϑ

a+
∣
∣f

(
r,ς (r),ς (γ r)

)
– f

(
r,ς (r),ς (γ r)

)∣
∣.

By assumption (A1), we obtain

Iϑ
a+

∣
∣f

(
rk ,ς (rk),ς

(
γ (rk)

))
– f

(
rk ,ς (rk),ς

(
γ (rk)

))∣
∣

≤ 1
�(ϑ)

∫ rk

a
(rk – s)ϑ–1∣∣f

(
s,ς (s),ς

(
γ (s)

))
– f

(
s,ς (s),ς

(
γ (s)

))∣
∣ds
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=
1

�(ϑ)

∫ rk

a
(rk – s)ϑ–1Lf

(∣
∣ς (s) – ς (s)

∣
∣ +

∣
∣ς

(
γ (s)

)
– ς

(
γ (s)

)∣
∣
)

ds

≤ 2Lf (rk – a)ϑ

�(ϑ + 1)
‖ς – ς‖.

Similarly,

Iϑ
a+

∣
∣f

(
r,ς (r),ς (γ r)

)
– f

(
r,ς (r),ς (γ r)

)∣
∣

≤ 2Lf (T – a)ϑ

�(ϑ + 1)
‖ς – ς‖.

Therefore,

∥
∥(Tς ) – (Tς )

∥
∥

= max
r∈Z

∣
∣(Tς )(r) – (Tς )(r)

∣
∣

≤ 1
1 –

∑m
k=1 ck

(
2Lf (1 – ϑ)

N(ϑ)

m∑

k=1

ck +
2Lf

N(ϑ)�(ϑ)

m∑

k=1

ck(rk – a)ϑ
)

‖ς – ς‖

+
(

2Lf (1 – ϑ)
N(ϑ)

+
2Lf (T – a)ϑ

N(ϑ)�(ϑ)

)

‖ς – ς‖

=

(
4(1 – ϑ)

∑m
k=1 ck

1 –
∑m

k=1 ck
+

2
�(ϑ)

[
1

1 –
∑m

k=1 ck

m∑

k=1

ck(rk – a)ϑ + (T – a)ϑ
])

× Lf

N(ϑ)
‖ς – ς‖

= P1‖ς – ς‖.

Condition (4.1) shows that T is a condensing operator. Hence, by Theorem 2.1, T has a
unique fixed point. �

Theorem 4.2 Suppose that hypothesis (A1) holds. Then there exists at least one solution
of the ABC-type pantograph FDEs (1.1), provided that condition (4.1) is satisfied.

Proof Consider the operator T : D →D defined by

(Tς )(r) = (T1ς )(r) + (T2ς )(r), ς ∈D, r ∈ Z,

where

(T1ς )(r) =
1

1 –
∑m

k=1 ck

(
1 – ϑ

N(ϑ)

m∑

k=1

ckf
(
rk ,ς (rk),ς (γ rk)

)

+
ϑ

N(ϑ)

m∑

k=1

ckIϑ
a+ f

(
rk ,ς (rk),ς (γ rk)

)
)

(4.2)

and

(T2ς )(r) =
1 – ϑ

N(ϑ)
f
(
r,ς (r),ς (γ r)

)
+

ϑ

N(ϑ)
Iϑ

a+ f
(
r,ς (r),ς (γ r)

)
. (4.3)
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Since f : Z×R×R →R is continuous, μf := max{|f (r, 0, 0)| : r ∈ Z} exists. Let

Bξ =
{
ς ∈ D : ‖ς‖ ≤ ξ

}
(4.4)

with the radius

ξ ≥ P2

1 – P1
, (4.5)

where

P2 :=

(
1 – ϑ

1 –
∑m

k=1 ck
+

1
�(ϑ)

[
1

(1 –
∑m

k=1 ck)

m∑

k=1

ck(rk – a)ϑ + (T – a)ϑ
])

μf

N(ϑ)
. (4.6)

We will complete the proof in the following several steps.
Step1: We show that T1ς + T2υ ∈ Bξ for all ς ,υ ∈ Bξ .
By (4.2), we have

∣
∣(T1ς )(r)

∣
∣ ≤ 1

1 –
∑m

k=1 ck

(
1 – ϑ

N(ϑ)

m∑

k=1

ck
∣
∣f

(
rk ,ς (rk),ς (γ rk)

)∣
∣

+
ϑ

N(ϑ)

m∑

k=1

ckIϑ
a+

∣
∣f

(
rk ,ς (rk),ς (γ rk)

)∣
∣

)

. (4.7)

Using hypothesis (A1), for ς ∈ Bξ and for any r ∈ Z, we have

∣
∣f

(
r,ς (r),ς (γ r)

)∣
∣ ≤ ∣

∣f
(
r,ς (r),ς (γ r)

)
– f (r, 0, 0)

∣
∣ +

∣
∣f (r, 0, 0)

∣
∣

≤ Lf
∣
∣ς (r)

∣
∣ + Lf

∣
∣ς (γ r)

∣
∣ + μf

≤ 2Lf ξ + μf . (4.8)

Further, by using (4.8), for any r ∈ Z, we have

Iϑ
a+

∣
∣f

(
r,ς (r),ς (γ r)

)∣
∣ ≤ Iϑ

a+ (2Lf ξ + μf )

= (2Lf ξ + μf )
(r – a)ϑ

�(ϑ + 1)
. (4.9)

Using inequalities (4.8) and (4.9) into inequality (4.7), we obtain

∥
∥(T1ς )

∥
∥ = max

r∈Z
∣
∣(T1ς )(r)

∣
∣

≤ (2Lf ξ + μf )
N(ϑ)(1 –

∑m
k=1 ck)

(

(1 – ϑ)
m∑

k=1

ck +
1

�(ϑ)

m∑

k=1

ck(rk – a)ϑ
)

=

(

(1 – ϑ)
∑m

k=1 ck

1 –
∑m

k=1 ck
+

1
�(ϑ)(1 –

∑m
k=1 ck)

m∑

k=1

ck(rk – a)ϑ
)

2Lf

N(ϑ)
ξ

+

(

(1 – ϑ)
∑m

k=1 ck

1 –
∑m

k=1 ck
+

1
�(ϑ)(1 –

∑m
k=1 ck)

m∑

k=1

ck(rk – a)ϑ
)

μf

N(ϑ)
. (4.10)
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Also, for υ ∈ Bξ ,

∥
∥(T2υ)

∥
∥ = max

r∈Z
∣
∣(T2υ)(r)

∣
∣

≤ max
r∈Z

(
1 – ϑ

N(ϑ)
∣
∣f

(
r,υ(r),υ(γ r)

)∣
∣ +

ϑ

N(ϑ)
Iϑ

a+
∣
∣f

(
r,υ(r),υ(γ r)

)∣
∣

)

≤ (1 – ϑ)
N(ϑ)

(2Lf ξ + μf ) +
(2Lf ξ + μf )

N(ϑ)
(T – a)ϑ

�(ϑ)

=
(

(1 – ϑ) +
(T – a)ϑ

�(ϑ)

)
2Lf

N(ϑ)
ξ

+
(

(1 – ϑ) +
(T – a)ϑ

�(ϑ)

)
μf

N(ϑ)
. (4.11)

Inequalities (4.10) and (4.11) give

∥
∥(T1ς ) + (T2υ)

∥
∥

≤ ∥
∥(T1ς )

∥
∥ +

∥
∥(T2υ)

∥
∥

≤
(

1 – ϑ

1 –
∑m

k=1 ck
+

1
�(ϑ)

[
1

(1 –
∑m

k=1 ck)

m∑

k=1

ck(rk – a)ϑ + (T – a)ϑ
])

2Lf

N(ϑ)
ξ

+

(
1 – ϑ

1 –
∑m

k=1 ck
+

1
�(ϑ)

[
1

(1 –
∑m

k=1 ck)

m∑

k=1

ck(rk – a)ϑ + (T – a)ϑ
])

μf

N(ϑ)

= P1ξ + P2.

Using (4.1) and (4.5), we get

‖T1ς + T2υ‖ ≤ ξ .

Thus, T1ς + T2υ ∈ Bξ for all ς ,υ ∈ Bξ .
Step 2. T1 is a condensing map. This is evident due to T is a contraction map.
Step 3: T2 is continuous and compact.
T2 : Bξ → Bξ is continuous due to f is continuous. Indeed, let ςn be a sequence such that

ςn → ς in D. Then, for all r ∈ Z, one has

∣
∣
(
T2ςn(r)

)
–

(
T2ς (r)

)∣
∣ ≤ 1 – ϑ

N(ϑ)
∣
∣f

(
r,ςn(r),ςn(γ r)

)
– f

(
r,ς (r),ς (γ r)

)∣
∣

+
ϑ

N(ϑ)
Iϑ

a+
∣
∣f

(
r,ςn(r),ςn(γ r)

)
– f

(
r,ς (r),ς (γ r)

)∣
∣

≤ 1 – ϑ

N(ϑ)
∥
∥f

(·,ςn(·),ςn
(
γ (·))) – f

(·,ς (·),ς(
γ (·)))∥∥

+
(T – a)ϑ

N(ϑ)�(ϑ)
∥
∥f

(·,ςn(·),ςn
(
γ (·))) – f

(·,ς (·),ς(
γ (·)))∥∥.

Since f is continuous, the operator T2 is also continuous. Thus, we have

∥
∥(T2ςn) – (T2ς )

∥
∥ → 0 as n → ∞.
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Next, T2 is uniformly bounded on Bξ . For any ς ∈ Bξ and r ∈ Z, we have

∣
∣(T2ς )

∣
∣ = max

r∈Z
∣
∣(T2ς )(r)

∣
∣

≤ max
r∈Z

(
1 – ϑ

N(ϑ)
∣
∣f

(
r,ς (r),ς (γ r)

)∣
∣ +

ϑ

N(ϑ)
Iϑ

a+
∣
∣f

(
r,ς (r),ς (γ r)

)∣
∣

)

≤ max
r∈Z

(
(1 – ϑ)
N(ϑ)

(2Lf ξ + μf ) +
(2Lf ξ + μf )

N(ϑ)
(r – a)ϑ

�(ϑ)

)

≤ 2Lf ξ + μf

N(ϑ)

(

(1 – ϑ) +
(T – a)ϑ

�(ϑ)

)

.

This leads to T2 is uniformly bounded on Bξ .
Now, we show that T2(Bξ ) is equicontinuous. For that, let ς ∈ Bξ and a ≤ r1 < r2 ≤ T .

Then, by using (4.8), we have

∣
∣(T2ς )(r2) – (T2ς )(r1)

∣
∣

=
1 – ϑ

N(ϑ)
∣
∣f

(
r2,ς (r2),ς

(
γ (r2)

))
– f

(
r1,ς (r1),ς

(
γ (r1)

))∣
∣

+
∣
∣
∣
∣

ϑ

N(ϑ)
1

�(ϑ)

∫ r2

a
(r2 – s)ϑ–1f

(
s,ς (s),ς

(
γ (s)

))
ds

–
ϑ

N(ϑ)
1

�(ϑ)

∫ r1

a
(r1 – s)ϑ–1f

(
s,ς (s),ς

(
γ (s)

))
ds

∣
∣
∣
∣

≤ 1 – ϑ

N(ϑ)
∣
∣f

(
r2,ς (r2),ς

(
γ (r2)

))
– f

(
r1,ς (r1),ς

(
γ (r1)

))∣
∣

+
ϑ

N(ϑ)
1

�(ϑ)

∫ r1

a

∣
∣(r1 – s)ϑ–1 – (r2 – s)ϑ–1∣∣

∣
∣f

(
s,ς (s),ς

(
γ (s)

))∣
∣ds

+
ϑ

N(ϑ)
1

�(ϑ)

∫ r2

r1

(r2 – s)ϑ–1∣∣f
(
s,ς (s),ς

(
γ (s)

))∣
∣ds

≤ 1 – ϑ

N(ϑ)
∣
∣f

(
r2,ς (r2),ς

(
γ (r2)

))
– f

(
r1,ς (r1),ς

(
γ (r1)

))∣
∣

+
2(2Lf ξ + μf )
N(ϑ)�(ϑ)

(r2 – r1)ϑ .

Since f (·,ς (·),ς (γ (·))) is continuous, |(T2ς )(r2) – (T2ς )(r1)| → 0 as r2 → r1. In light of
the former steps with Arzela–Ascoli theorem, we derive that (T2Bξ ) is relatively compact,
and hence T2 is completely continuous. So, Theorem 2.2 shows that (1.1) has at least one
solution. �

5 Ulam–Hyers stability
In this section, we discuss two types of stability for (1.1), namely Ulam–Hyers and gener-
alized Ulam–Hyers stabilities. For ε > 0, we consider the following inequations:

∣
∣ABC

D
ϑ
a+ ς̃ (r) – f

(
r, ς̃ (r), ς̃ (γ r)

)∣
∣ ≤ ε, r ∈ Z. (5.1)

Definition 5.1 The pantograph ABC-FDEs (1.1) are Ulam–Hyers stable if there exists a
real number Cf > 0 such that, for each ε > 0 and for each solution ς̃ ∈D of inequality (5.1),
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there exists a unique solution ς ∈ D of (1.1) with

∣
∣ς̃ (r) – ς (r)

∣
∣ ≤ Cf ε, r ∈ Z.

And the pantograph ABC-FDEs (1.1) are generalized Ulam–Hyers stable if we can find
φf : R+ →R

+ with φf (0) = 0 such that

∣
∣ς̃ (r) – ς (r)

∣
∣ ≤ φf (ε), r ∈ Z.

Remark 5.1 Let ς̃ ∈ D be the solution of inequality (5.1) if and only if we have a function
h ∈D which depends on ς̃ such that

i) |h(r)| ≤ ε for all r ∈ Z,
ii) ABC

D
ϑ
a+ ς̃ (r) = f (r, ς̃ (r), ς̃ (γ r)) + h(r), r ∈ Z.

Lemma 5.1 If ς̃ ∈ D is a solution of inequality (5.1), then ς̃ is a solution of the following
inequality:

∣
∣ς̃ (r) – Rς̃ – AB

I
ϑ
a+ f

(
r, ς̃ (r), ς̃ (γ r)

)∣
∣ ≤ �ε, (5.2)

where

Rς̃ :=
1

1 –
∑m

k=1 ck

m∑

k=1

ck
AB
I
ϑ
a+ f

(
rk , ς̃ (rk), ς̃ (γ rk)

)

and

� :=

(
1 – ϑ

1 –
∑m

k=1 ck
+

1
�(ϑ)

(
1

1 –
∑m

k=1 ck

m∑

k=1

ck(rk – a)

)ϑ

+ (T – a)

)ϑ
1

N(ϑ)
.

Proof In view of Remark 5.1, we have

ABC
D

ϑ
a+ ς̃ (r) = f

(
r, ς̃ (r), ς̃ (γ r)

)
+ h(r), r ∈ Z,

ς̃ (a) =
m∑

k=1

ck ς̃ (rk), rk ∈ Z
′.

Then, by Theorem 3.1, we get

ς̃ (r) =
1

1 –
∑m

k=1 ck

m∑

k=1

ck
AB
I
ϑ
a+

(
f
(
rk , ς̃ (rk), ς̃ (γ rk)

)
+ h(rk)

)

+ AB
I
ϑ
a+

(
f
(
r, ς̃ (r), ς̃ (γ r)

)
+ h(r)

)

= Rς̃ +
1

1 –
∑m

k=1 ck

m∑

k=1

ck
AB
I
ϑ
a+ h(rk) + AB

I
ϑ
a+

(
f
(
r, ς̃ (r), ς̃ (γ r)

)
+ h(r)

)
.
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From this it follows that

∣
∣ς̃ (r) – Rς̃ – AB

I
ϑ
a+ f

(
r, ς̃ (r), ς̃ (γ r)

)∣
∣

≤ 1
1 –

∑m
k=1 ck

m∑

k=1

ck
AB
I
ϑ
a+

∣
∣h(rk)

∣
∣ + AB

I
ϑ
a+

∣
∣h(r)

∣
∣

=
1

1 –
∑m

k=1 ck

m∑

k=1

ck

(
1 – ϑ

N(ϑ)
∣
∣h(rk)

∣
∣ +

ϑ

N(ϑ)
Iϑ

a+
∣
∣h(rk)

∣
∣

)

+
1 – ϑ

N(ϑ)
∣
∣h(r)

∣
∣ +

ϑ

N(ϑ)
Iϑ

a+
∣
∣h(r)

∣
∣

≤
(

1 – ϑ

1 –
∑m

k=1 ck
+

1
�(ϑ)

(
1

1 –
∑m

k=1 ck

m∑

k=1

ck(rk – a)

)ϑ

+ (T – a)

)ϑ
ε

N(ϑ)

= �ε. �

Theorem 5.1 Suppose that hypothesis (A1) holds. If N(ϑ) – (1 – ϑ)2Lf < 1, then the pan-
tograph ABC-FDEs (1.1) are Ulam–Hyers stable.

Proof Let ε > 0 and ς̃ ∈ D be a function which satisfies inequality (5.1), and let ς ∈ D be
the unique solution of the following problem:

⎧
⎨

⎩

ABC
D

ϑ
a+ς (r) = f (r,ς (r),ς (γ r)), r ∈ Z,

ς (a) =
∑m

k=1 ckς (rk) =
∑m

k=1 ck ς̃ (rk) = ς̃ (a), rk ∈ Z′.
(5.3)

Using Theorem 3.1, we obtain

ς (r) = Rς + AB
I
ϑ
a+ f

(
r,ς (r),ς (γ r)

)
,

where

Rς :=
1

1 –
∑m

k=1 ck

m∑

k=1

ck
AB
I
ϑ
a+ f

(
rk ,ς (rk),ς (γ rk)

)
.

Since ς (a) = ς̃ (a) and
∑m

k=1 ckς (rk) =
∑m

k=1 ck ς̃ (rk), then Rς = Rς̃ . Hence

ς (r) = Rς̃ + AB
I
ϑ
a+ f

(
r,ς (r),ς (γ r)

)
.

It follows from Lemma 5.1 and (A1) that

∣
∣ς̃ (r) – ς (r)

∣
∣

≤ ∣
∣ς̃ (r) – Rς̃ – AB

I
ϑ
a+ f

(
r, ς̃ (r), ς̃ (γ r)

)∣
∣

+
∣
∣AB

I
ϑ
a+ f

(
r, ς̃ (r), ς̃ (γ r)

)
– AB

I
ϑ
a+ f

(
r,ς (r),ς (γ r)

)∣
∣

≤ �ε + AB
I
ϑ
a+

∣
∣f

(
r, ς̃ (r), ς̃ (γ r)

)
– f

(
r,ς (r),ς (γ r)

)∣
∣

≤ �ε + 2Lf
AB
I
ϑ
a+

∣
∣ς̃ (r) – ς (r)

∣
∣.
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Using Theorem 2.3 with σ (r) = |ς̃ (t) – ς (t)|, a(r) = �ε, and b(r) = 2Lf , we get

∣
∣ς̃ (r) – ς (r)

∣
∣ ≤ �εN(ϑ)

N(ϑ) – (1 – ϑ)2Lf
Eϑ

(
2ϑLf (r – a)ϑ

N(ϑ) – 2(1 – ϑ)Lf

)

≤ Cf ε,

where

Cf :=
�N(ϑ)

N(ϑ) – (1 – ϑ)2Lf
Eϑ

(
2ϑLf (T – a)ϑ

N(ϑ) – 2(1 – ϑ)Lf

)

. �

Corollary 5.1 Under the hypotheses of Theorem 5.1, if there exists φf : R+ → R
+ with

φf (0) = 0, then the pantograph ABC problem (1.1) has generalized Ulam–Hyers stability.

Proof Choosing φf (ε) = Cf ε and φf (0) = 0, from Theorem 5.1 we obtain |ς̃ (r) – ς (r)| ≤
φf (ε). �

6 Examples
In this section, we justify the validity of Theorems 4.1, 4.2, and 5.1 through an example.

Example 6.1 For ϑ ∈ (0, 1], we consider the following ABC fractional problem:

⎧
⎨

⎩

ABC
D

1
2
0+ς (r) = r2

10 (e–r + |ς (r)|
10(1+|ς (r)|) + |ς ( r2 )|

10(1+|ς ( r2 )|) ), r ∈ [0, 1],

ς (0) = 1
4ς ( 1

3 ),
(6.1)

where ϑ = 1
2 , c1 = 1

4 , r1 = 1
3 (m = 1), f (r,ς (r),ς (γ r)) = r2

10 (e–r + |ς (r)|
10(1+|ς (r)|) + |ς ( r2 )|

10(1+|ς ( r2 )|) ), and
γ = 1

2 .

Clearly, f (0,ς (0),ς (0)) = 0. Moreover,

μf = max
r∈[0,1]

∣
∣f (r, 0, 0)

∣
∣ = max

r∈[0,1]

r2

10
e–r =

1
10e

.

Let r ∈ [0, 1] and ς ,υ ∈R. Then

∣
∣
∣
∣f (r,ς (r),ς

(
1
2
r

)

– f (r,υ(r),υ
(

1
2
r

)∣
∣
∣
∣

≤
∣
∣
∣
∣
r2

10

(

e–r +
|ς (r)|

10(1 + |ς (r)|) +
|ς ( r2 )|

10(1 + |ς ( r2 )|)
)

–
r2

10

(

e–r +
|υ(r)|

10(1 + |υ(r)|) +
|υ( r2 )|

10(1 + |υ( r2 )|)
)∣

∣
∣
∣

≤ 1
10

(
10|ς (r) – υ(r)|

100(1 + |ς (r)|)(1 + |υ(r)|) +
10|ς ( r2 ) – υ( r2 )|

100(1 + |ς ( r2 )|)(1 + |υ( r2 )|)
)

≤ 1
10

(
∣
∣ς (r) – υ(r)

∣
∣ +

∣
∣
∣
∣ς

(
r

2

)

– υ

(
r

2

)∣
∣
∣
∣

)

.
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Therefore, hypothesis (A1) holds with Lf = 1
10 . We shall examine that condition (4.1) is

satisfied with N(ϑ) = 1 and m = 1. Hence, by some simple calculations, we find that

P1 =
(

1
15

+
9 +

√
3

45
√

π

)

≈ 0.2 < 1.

Thus Theorems 4.1 and 4.2 guarantee the existence and uniqueness of solution on [0, 1]
problem (6.1).

Finally, since N(ϑ) – (1 – ϑ)2Lf = 9
10 < 1, problem (6.1) is Ulam–Hyers and generalized

Ulam–Hyers stable with

Cf =
10
9

�E 1
2

(
1
9

)

and � =
(

1
3

+
9 +

√
3

9
√

π

)

.

Remark 6.1
(1) If γ = 1, then our problem (1.1) reduces to problem (1.2). Therefore, all the results

mentioned in this work are also valid for problem (1.2).
(2) If we replace the nonlocal condition ς (a) =

∑m
k=1 ckς (rk) with the initial condition

ς (0) = ς0 (a = 0) and use CF
D

ϑ
a+ (Caputo–Fabrizio FD) instead of ABC

D
ϑ
a+ (ABC

derivative), then our problem (1.1) reduces to the following problem:

⎧
⎨

⎩

CF
D

ϑ
0+ς (r) = f (r,ς (r),ς (γ r)), r ∈ [a, T], 0 < ϑ ≤ 1,

ς (0) = ς0.

7 Conclusions
The theory of fractional operators including nonsingular kernels is novel and of significant
recent interest, thus there is a need to study the qualitative properties of FDEs involving
such operators. In this paper, we have obtained the existence and uniqueness of solutions
for the pantograph FDEs with nonlocal conditions involving ABC fractional derivative.
Our approach is based on the reduction of ABC-type pantograph FDEs into FIE and some
fixed point theorems of Banach and Krasnoselskii. Further, we have applied Gronwall’s in-
equality in the frame of AB fractional integral operator to develop adequate results for var-
ious types of Ulam–Hyers stability. Pertinent examples are provided to justify the results.
The problems scrutinized are also valid for some special cases, in other words, they are
reduced to the corresponding problems that contain Caputo–Fabrizio fractional deriva-
tive operator. Besides, the analysis of the obtained results was restricted to a minimum of
assumptions.
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