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Abstract
Under the new concept of s-(α,m)-convex functions, we obtain some new
Hermite–Hadamard inequalities with an s-(α,m)-convex function. We use these
inequalities to estimate Riemann–Liouville fractional integrals with second-order
differentiable convex functions to enrich the Hermite–Hadamard-type inequalities.
We give some applications to special means.
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1 Introduction
Convex functions are a kind of important functions widely used in mathematical pro-
gramming. They are not only closely related to continuity and differentiability, but also
play important roles in inequalities. Therefore convex functions has been widely used in
many research fields such as life and management science, optimization [1, 2], and so on.
In optimization inequalities, generalized classical convexity is often used together with
convexity theory and inequality theory, in which Hermite–Hadamard integral inequal-
ities containing convex functions are valued by many mathematicians because of their
pertinence and ease of use. The classical Hermite–Hadamard-type integral inequality is
the following [3]:

Let g : I ⊆ R → R be a convex function on the interval I of real numbers, and let c, d ∈ I
with c < d. Then

g
(

c + d
2

)
≤ 1

d – c

∫ d

c
g(t) dt ≤ g(c) + f (d)

2
. (1)

In recent years, with the development of convex function inequalities, the Hermite–
Hadamard integral inequality has attracted interest of many researchers. Dragomir and
Agarwal [4] and Hwang et al. [5] provided the Hermite–Hadamard inequalities of integer
orders of general concave and convex functions, applied them to the error terms in special
mean values, and estimated the trapezoid formulas: Let g : I0 ⊆ R → R be a differentiable
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function on I0, and let a, b ∈ I0 with a < b. If |g ′| is convex on [a, b], then we have the
following inequality:

∣∣∣∣g(c) + g(d)
2

–
1

d – c

∫ d

c
g(t) dt

∣∣∣∣ ≤ (d – c)(|g ′(c)| + |g ′(d)|)
8

. (2)

Let g : I0 ⊆ R → R be a differentiable function on I0, let a, b ∈ I0 with a < b, and let p > 1.
If the function |g ′|p/p–1 is convex on [a, b], then we have the following inequality:

∣∣∣∣g(c) + g(d)
2

–
1

d – c

∫ d

c
g(t) dt

∣∣∣∣
≤ (d – c)

2(p + 1)1/p

[ |g ′(c)|p/p–1 + |g ′(d)|p/p–1

2

](p–1)/p

. (3)

If q ≥ 1 and the function |g ′|q is convex on [c, d], then

∣∣∣∣(A – a)g(a) + (b – B)g(b) + (B – A)g(c) –
∫ b

a
g(x) dx

∣∣∣∣

≤
⎧⎨
⎩

M(A, B, c; p, q) · N(A, B, c; p, q), q > 1, 0 ≤ p ≤ q,

N(A, B, c; p, q), p = q = 1.
(4)

Khaled and Agarwal [6] extended the interval [a, b] and made new estimates of the
Hermite–Hadamard inequality on the interval [ 3a–b

2 , 3b–a
2 ]:

Let g : I ⊆ R → R be a differentiable function on I , let a, b ∈ I with a < b, and let its
derivative g ′ : [ 3a–b

2 , 3b–a
2 ] → R be a continuous function on [ 3a–b

2 , 3b–a
2 ]. Let q ≥ 1. If |g ′|q

is a convex function on [ 3a–b
2 , 3b–a

2 ], then we have the following inequality:

∣∣∣∣ 1
b – a

∫ b

a
g(x) dx – g

(
a + b

2

)∣∣∣∣
≤ b – a

8

(∣∣∣∣g ′
(

3a – b
2

)∣∣∣∣
q

+
∣∣∣∣g ′

(
3b – a

2

)∣∣∣∣
q)1/q

. (5)

Özcan and Íscan [7] generalized the Hermite–Hadamard inequality for s-convex func-
tions. Let g : I ⊆ R → R be a differentiable function on I , and let a, b ∈ I with a < b. If
g ′ ∈ L[a, b], then we have the following inequality:

∣∣∣∣g(a) + g(b)
2

–
1

b – a

∫ b

a
g(x) dx

∣∣∣∣ ≤ b – a

2(p + 1)
1
p

( |g ′(a)|q + |g ′(b)|q
s + 1

) 1
q

. (6)

All these different estimates of integral inequalities of integer order hold under the con-
vexity of |g ′|.

With the in-depth study of integer-order Hermite–Hadamard inequality, more and
more scholars have also done a lot of research and extensions of fractional Hermite–
Hadamard integral inequality, among which there are many papers related to the
Riemann–Liouville fractional integral. Sarikaya et al. [8] studied the Hermite–Hadamard
integral inequality to estimate arithmetic means and Riemann–Liouville fractional inte-
grals using a convex function |g ′|:



Liu and Xu Advances in Difference Equations        (2021) 2021:168 Page 3 of 16

Let g : [a, b] → R be a positive function with 0 ≤ a < b such that g ′ ∈ L1[a, b]. If g is a
convex function on [a, b], then we have the following inequalities for fractional integrals:

g
(

a + b
2

)
≤ �(α + 1)

2(b – a)α
[
Jα
a+ g(b) + Jα

b– g(a)
] ≤ g(a) + g(b)

2
. (7)

Let g : [a, b] → R be a differentiable function on (a, b) with a < b. If |g ′| is convex on [a, b],
then we have the following inequalities for fractional integrals:

∣∣∣∣g(a) + g(b)
2

–
�(α + 1)
2(b – a)α

[
Jα
a+ g(b) + Jα

b– g(a)
]∣∣∣∣

≤ b – a
2(α + 1)

(
1 –

1
2α

)[∣∣g ′(a)
∣∣ +

∣∣g ′(b)
∣∣]. (8)

Chun et al. [9] studied the Hermite–Hadamard integral inequality to estimate geometric
means and Riemann–Liouville fractional integrals using a convex function |g ′|:

Let g : [a, b] → R be a differentiable function on (a, b) with a < b. If |g ′| is convex on [a, b],
then we have the following inequalities for fractional integrals:

∣∣∣∣ �(α + 1)
2(b – a)α

[
Jα
a+ g(b) + Jα

b– g(a)
]

– g
(

a + b
2

)∣∣∣∣
≤ b – a

4(α + 1)

(
α + 3 –

1
2α–1

)[∣∣g ′(a)
∣∣ +

∣∣g ′(b)
∣∣]. (9)

Li Xiaoling and Shahid [10] studied the Hermite–Hadamard inequality of s-(α, m)-
convex functions with parameter Riemann–Liouville fractional integral:

Let g : [c, d] → R be a differentiable function on [c, d] with c < d such that g ′ is s-(α, m)-
convex on [a, b]. Then we have the following inequality for Riemann–Liouville fractional
integrals with 0 < α ≤ 1:

∣∣∣∣
(

1 –
2

2αλ

)
g ′

(
a + b

2

)
+ λ

g(a) + g(b)
2α

–
�(α + 1)
2(b – a)α

[
Jα
a+ g(b) + Jα

b– g(a)
]∣∣∣∣

≤ (b – a)
2α+1

{[
M1

∣∣g ′(a)
∣∣ + 2m(M2 – M1)

∣∣∣∣g ′
(

a + b
2

)∣∣∣∣ + M1
∣∣g ′(b)

∣∣]

+
[

M3
∣∣g ′(a)

∣∣ + m(M4 – M3)
∣∣∣∣f ′

(
a + b

2

)∣∣∣∣ + M3
∣∣g ′(b)

∣∣]}
. (10)

There are many other Hermite–Hadamard integral inequalities for convex functions;
we refer the interested readers to [11–22].

In [10] the author studies the inequalities of first-order differentiable convex functions
on the right side of the Hermite–Hadamard inequality. In this paper, using s-(α, m)-convex
functions and Riemann–Liouville fractional integrals, we study some Hermite–Hadamard
inequalities of second-order differentiable convex functions on the right side of the in-
equality and apply them to special means.

The arrangement of this paper is as follows. In Sect. 2, we introduce the classes of con-
vex functions to prepare the work; In Sect. 3, we prove new Hermite–Hadamard integral
inequalities using new concepts and the Riemann–Liouville fractional integral; In Sect. 4,
we apply the results to special mean values.
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2 Preliminaries
In this section, we recall some important definitions and results.

The general classical convexity is defined as follows.

Definition 2.1 Let R be the set of real numbers. A function g : I ⊆ R → R is said to be
convex on an interval I if

g
(
tc + (1 – t)d

) ≤ tg(c) + (1 – t)g(d) (11)

for all c, d ∈ I and t ∈ [0, 1].

Muddassar [23] presented the class of s-(α, m)-convex functions as follows.

Definition 2.2 A function g : [0, +∞) → [0, +∞) is said to be s-(α, m)-convex in the first
sense or to belong to the class Kα,s

m,1 if for all c, d ∈ [0, +∞) and t ∈ [0, 1], we have the fol-
lowing inequality:

g
(
tc + m(1 – t)d

) ≤ tαsg(c) + m
(
1 – tαs)g(d), (12)

where (α, m) ∈ [0, 1]2 and s ∈ (0, 1].

Definition 2.3 A function g : [0, +∞) → [0, +∞) is said to be s-(α, m)-convex in the sec-
ond sense or to belong to the class Kα,s

m,2 if for all c, d ∈ [0, +∞) and t ∈ [0, 1], we have the
following inequality:

g
(
tc + m(1 – t)d

) ≤ (
tα

)sg(c) + m
(
1 – tα

)sg(d), (13)

where (α, m) ∈ [0, 1]2 and s ∈ (0, 1].

Definition 2.4 ([24]) Let g ∈ L1[a, b]. The left-sided and right-sided Riemann–Liouville
fractional integrals of order α > 0, with a ≥ 0, are defined by

Jα
a+ g(x) =

1
�(α)

∫ x

a
(x – t)α–1g(t) dt (x > a) (14)

and

Jα
b– g(x) =

1
�(α)

∫ b

x
(t – x)α–1g(t) dt (x < b), (15)

where �(α) =
∫ ∞

0 e–uuα–1 du. In the case α = 1, the fractional integral reduces to the clas-
sical integral. Properties relating to this operator can be found in [25].

Lemma 2.1 ([3], Lemma 4) Let g : I ⊆ R → R be a twice differentiable function on I0 such
that g ′′ is integrable on [a, b] ⊆ I0 with a < b. Then we have the identity

g(a) + g(b)
2

–
1

b – a

∫ b

a
g(x) dx =

(b – a)2

2

∫ 1

0
t(1 – t)g ′′(ta + (1 – t)b

)
dt. (16)
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3 Main result and proof
In [10], all the Hermite–Hadamard integral inequalities were based on the s-(α, m)-
convexity of |g ′|. If we do not know the convexity of |g ′|, but |g ′′| is convex, then we will get
new Hermite–Hadamard inequalities. Next, we will study fractional Hermite–Hadamard
integral inequalities based on the convexity of |g ′′|, where the s-(α, m)-convexity is in the
first sense.

First, we give a lemma, which will be used in later important conclusions.

Lemma 3.1 Let g, g ′ : [c, d] → R be differentiable functions on [c, d], and suppose g ′′ is inte-
grable. Then we have the following equation for the Riemann–Liouville fractional integral
with 0 < α ≤ 1, 0 ≤ λ ≤ 1:

λ

2α
(d – c)

[
g ′(c) + g ′(d)

]
+

(
2 –

2
2α

λ

)
(d – c)g ′

(
c + d

2

)

+ (α + 1)
[
g(c) – g(d)

]
–

�(α + 2)
(d – c)α

[
Jα
c+ g(d) + Jα

d– g(c)
]

=
(d – c)2

2α+2 (M1 + M2 + M3 + M4), (17)

where

M1 =
∫ 1

0

[
(1 – t)α+1 – λ

]
g ′′

(
tc + (1 – t)

c + d
2

)
dt,

M2 =
∫ 1

0

[
λ – (1 – t)α+1]g ′′

(
td + (1 – t)

c + d
2

)
dt,

M3 =
∫ 1

0

[
2α+1 – (2 – t)α+1 – λ

]
g ′′

(
t

c + d
2

+ (1 – t)c
)

dt,

M4 =
∫ 1

0

[
λ – 2α+1 + (2 – t)α+1]g ′′

(
t

c + d
2

+ (1 – t)d
)

dt.

Proof The proof is obtained by integration by parts based on equation (16). We have

M1 =
∫ 1

0

[
(1 – t)α+1 – λ

]
g ′′

(
tc + (1 – t)

c + d
2

)
dt

=
2

c – d
[
(1 – t)α+1 – λ

]
g ′

(
tc + (1 – t)

c + d
2

)∣∣∣∣
1

0

+
2

c – d

∫ 1

0
(α + 1)(1 – t)αg ′

(
tc + (1 – t)

c + d
2

)
dt

=
–2λ

c – d
g ′(c) –

2(1 – λ)
c – d

g ′
(

c + d
2

)
+

4(α + 1)
(c – d)2 (1 – t)αg

(
tc + (1 – t)

c + d
2

)∣∣∣∣
1

0

+
4

(c – d)2

∫ 1

0
(α + 1)α(1 – t)α–1g

(
tc + (1 – t)

c + d
2

)
.

Let u = tc + (1 – t) c+d
2 . Then

M1 =
–2λ

c – d
g ′(c) –

2(1 – λ)
c – d

g ′
(

c + d
c

)
–

4(α + 1)
(c – d)2 g

(
c + d

2

)
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+
4(α + 1)α
(c – d)2

∫ c

c+d
2

(
2

c – d

)α

(c – u)α–1g(u) du

=
2λ

d – c
g ′(c) +

2(1 – λ)
d – c

g ′
(

c + d
c

)
–

4(α + 1)
(d – c)2 g

(
c + d

2

)

–
2α+2(α + 1)α

(d – c)α+2

∫ c+d
2

c
(u – c)α–1g(u) du.

Using the same algorithm, we get:

M2 =
∫ 1

0

[
λ – (1 – t)α+1]g ′′

(
td + (1 – t)

c + d
2

)
dt

=
2λ

d – c
g ′(d) +

2(1 – λ)
d – c

g ′
(

c + d
c

)
+

4(α + 1)
(d – c)2 g

(
c + d

2

)

–
2α+2(α + 1)α

(d – c)α+2

∫ d

c+d
2

(d – u)α–1g(u) du,

M3 =
∫ 1

0

[
2α+1 – (2 – t)α+1 – λ

]
g ′′

(
t

c + d
2

+ (1 – t)c
)

dt

=
2λ

d – c
g ′(c) +

2α+2 + 2(1 – λ)
d – c

g ′
(

c + d
c

)
–

4(α + 1)
(d – c)2 g

(
c + d

2

)
+

2α+2(α + 1)
(d – c)2 g(c)

–
2α+2(α + 1)α

(d – c)α+2

∫ c

c+d
2

(d – u)α–1g(u) du,

M4 =
∫ 1

0

[
2α+1 – (2 – t)α+1 – λ

]
g ′′

(
t

c + d
2

+ (1 – t)d
)

dt

=
2λ

d – c
g ′(d) +

2α+2 + 2(1 – λ)
d – c

g ′
(

c + d
c

)
+

4(α + 1)
(d – c)2 g

(
c + d

2

)
–

2α+2(α + 1)
(d – c)2 g(d)

–
2α+2(α + 1)α

(d – c)α+2

∫ c+d
2

d
(u – c)α–1g(u) du,

M1 + M2 + M3 + M4

=
4λ

d – c
[
g ′(c) + g ′(d)

]
+

2α+3 – 8λ

d – c
g ′

(
c + d

2

)
+

2α+2(α + 1)
(d – c)2

[
g(c) – g(d)

]

–
2α+2�(α + 2)

(d – c)α+2

[
Jα
c+ g(d) + Jα

d– g(c)
]
.

Multiplying both sides by (d–c)2

2α+2 , we get (17). This completes the proof. �

Theorem 3.1 Let g, g ′ : [c, d] → R be differentiable functions on [c, d], and suppose g ′′

is integrable. If |g ′′| is s-(α, m)-convex on [c, d], then we have the following inequality for
Riemann–Liouville fractional integrals with 0 < α ≤ 1, 0 ≤ λ ≤ 1:

∣∣∣∣ λ

2α
(d – c)

[
g ′(c) + g ′(d)

]
+

(
2 –

2
2αλ

)
(d – c)g ′

(
c + d

2

)

+ (α + 1)
[
g(c) – g(d)

]
–

�(α + 2)
(d – c)α

[
Jα
c+ g(d) + Jα

d– g(c)
]∣∣∣∣
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≤ (d – c)2

2α+2

{[
N1

∣∣g ′′(c)
∣∣ + 2m(N2 – N1)

∣∣∣∣g ′′
(

c + d
2

)∣∣∣∣ + N1
∣∣g ′′(d)

∣∣]

+
[

2N3

∣∣∣∣g ′′
(

c + d
2

)∣∣∣∣ + m(N4 – N3)
(∣∣g ′′(c)

∣∣ +
∣∣g ′′(d)

∣∣)]}
, (18)

where

N1 =
∫ 1

0

∣∣(1 – t)α+1 – λ
∣∣tαs dt, N2 =

∫ 1

0

∣∣(1 – t)α+1 – λ
∣∣dt,

N3 =
∫ 1

0

∣∣2α+1 – (2 – t)α+1 – λ
∣∣tαs dt, N4 =

∫ 1

0

∣∣2α+1 – (2 – t)α+1 – λ
∣∣dt.

Proof If |g ′′| is s-(α, m)-convex on [c,d], then for all t ∈ [0, 1], by Lemma 3.1 we obtain:

|M1| ≤
∫ 1

0

∣∣(1 – t)α+1 – λ
∣∣
∣∣∣∣g ′′

(
tc + (1 – t)

c + d
2

)∣∣∣∣dt

≤
∫ 1

0

∣∣(1 – t)α+1 – λ
∣∣
∣∣∣∣tαsg ′′(c) + m

(
1 – tαs)g ′′

(
c + d

2

)∣∣∣∣dt

≤
∫ 1

0

∣∣(1 – t)α+1 – λ
∣∣[tαs∣∣g ′′(c)

∣∣ + m
(
1 – tαs)∣∣∣∣g ′′

(
c + d

2

)∣∣∣∣
]

dt

= N1
∣∣g ′′(c)

∣∣ + m(N2 – N1)
∣∣∣∣g ′′

(
c + d

2

)∣∣∣∣,

|M2| ≤
∫ 1

0

∣∣λ – (1 – t)α+1∣∣
∣∣∣∣g ′′

(
td + (1 – t)

c + d
2

)∣∣∣∣dt

≤
∫ 1

0

∣∣(1 – t)α+1 – λ
∣∣
∣∣∣∣tαsg ′′(d) + m

(
1 – tαs)g ′′

(
c + d

2

)∣∣∣∣dt

≤
∫ 1

0

∣∣(1 – t)α+1 – λ
∣∣[tαs∣∣g ′′(c)

∣∣ + m
(
1 – tαs)∣∣∣∣g ′′

(
c + d

2

)∣∣∣∣
]

dt

= N1
∣∣g ′′(d)

∣∣ + m(N2 – N1)
∣∣∣∣g ′′

(
c + d

2

)∣∣∣∣,

|M3| ≤
∫ 1

0

∣∣2α+1 – (2 – t)α+1 – λ
∣∣∣∣∣∣g ′′

(
t

c + d
2

+ (1 – t)c
)∣∣∣∣dt

≤
∫ 1

0

∣∣2α+1 – (2 – t)α+1 – λ
∣∣
∣∣∣∣tαsg ′′

(
c + d

2

)
+ m

(
1 – tαs)g ′′(c)

∣∣∣∣dt

≤
∫ 1

0

∣∣2α+1 – (2 – t)α+1 – λ
∣∣[tαs

∣∣∣∣g ′′
(

c + d
2

)∣∣∣∣ + m
(
1 – tαs)∣∣g ′′(c)

∣∣]dt

= N3

∣∣∣∣g ′′
(

c + d
2

)∣∣∣∣ + m(N4 – N3)
∣∣g ′′(c)

∣∣,

|M4| ≤
∫ 1

0

∣∣λ – 2α+1 + (2 – t)α+1∣∣∣∣∣∣g ′′
(

t
c + d

2
+ (1 – t)d

)∣∣∣∣dt

≤
∫ 1

0

∣∣2α+1 – (2 – t)α+1 – λ
∣∣
∣∣∣∣tαsg ′′

(
c + d

2

)
+ m

(
1 – tαs)g ′′(d)

∣∣∣∣dt

≤
∫ 1

0

∣∣2α+1 – (2 – t)α+1 – λ
∣∣[tαs

∣∣∣∣g ′′
(

c + d
2

)∣∣∣∣ + m
(
1 – tαs)∣∣g ′′(d)

∣∣]dt
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= N3

∣∣∣∣g ′′
(

c + d
2

)∣∣∣∣ + m(N4 – N3)
∣∣g ′′(d)

∣∣.

Summing the four terms on the right-hand side of the inequality, we get (18). This com-
pletes the proof. �

Let α = s = m = 1 in Theorem 3.1. Then (18) reduces to an integer-order inequality of
general convexity.

Corollary 3.1 Let g, g ′ be defined as in Theorem 3.1. If |g ′′| is convex on [c, d], then

∣∣∣∣λ2 (d – c)
[
g ′(c) + g ′(d)

]
+ (2 – λ)(d – c)g ′

(
c + d

2

)
+ 2

[
g(c) – g(d)

]
–

4
d – c

∫ d

c
g(x) dx

∣∣∣∣
≤ (d – c)2

8

[(
4
3
λ(4 – λ)

1
2 +

4
3
λ

3
2 – 5λ –

16
3

(4 – λ)
1
2 +

34
3

)(∣∣g ′′(c)
∣∣ +

∣∣g ′′(d)
∣∣)

+
(

–
16
3

λ(4 – λ)
1
2 + 14λ +

64
3

(4 – λ)
1
2 – 40

)∣∣∣∣g ′′
(

c + d
2

)∣∣∣∣
]

. (19)

In [8] the author used the convexity of |g ′| to estimate the error. We can do a similar work
by using the convexity of |g ′′|.

Remark 3.1 Taking λ = 0 and λ = 1 In Corollary 3.1, we get the following two inequalities:

∣∣∣∣2(d – c)g ′
(

c + d
2

)
+ 2

[
g(c) – g(d)

]
–

4
d – c

∫ d

c
g(x) dx

∣∣∣∣
≤ (d – c)2

8

[
2
3
∣∣g ′′(c)

∣∣ +
2
3
∣∣g ′′(d)

∣∣ +
8
3

∣∣∣∣g ′′
(

c + d
2

)∣∣∣∣
]

,

∣∣∣∣d – c
2

[
g ′(c) + g ′(d)

]
+ (d – c)g ′

(
c + d

2

)
+ 2

[
g(c) – g(d)

]
–

4
d – c

∫ d

c
g(x) dx

∣∣∣∣
≤ (d – c)2

8

[
23 – 13

√
3

3
∣∣g ′′(c)

∣∣ +
23 – 13

√
3

3
∣∣g ′′(d)

∣∣ + (16
√

3 – 26)
∣∣∣∣g ′′

(
c + d

2

)∣∣∣∣
]

.

Theorem 3.2 Let g, g ′ : [c, d] → R be differentiable functions on [c, d], and suppose g ′′ is in-
tegrable. If |g ′′|q is s-(α, m)-convex on [c, d] with q ≥ 1, then we have the following inequality
with 0 < α ≤ 1, 0 ≤ λ ≤ 1:

∣∣∣∣ λ

2α
(d – c)

[
g ′(c) + g ′(d)

]
+

(
2 –

2
2αλ

)
(d – c)g ′

(
c + d

2

)

+ (α + 1)
[
g(c) – g(d)

]
–

�(α + 2)
(d – c)α

[
Jα
c+ g(d) + Jα

d– g(c)
]∣∣∣∣

≤ (d – c)2

2α+2

{
(N2)1– 1

q

[(
N1

∣∣g ′′(c)
∣∣q + m(N2 – N1)

∣∣∣∣g ′′
(

c + d
2

)∣∣∣∣
q) 1

q

+
(

N1
∣∣g ′(d)

∣∣q + m(N2 – N1)
∣∣∣∣g ′′

(
c + d

2

)∣∣∣∣
q) 1

q
]

+ (N4)1– 1
q

[(
N3

∣∣g ′′(c)
∣∣q + m(N4 – N3)

∣∣∣∣g ′′
(

c + d
2

)∣∣∣∣
q) 1

q
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+
(

N3
∣∣g ′′(c)

∣∣q + m(N4 – N3)
∣∣∣∣g ′′

(
c + d

2

)∣∣∣∣
q) 1

q
]}

. (20)

Proof Using the well-known power-mean integral inequality

∫ b

a

∣∣f (x)g(x)
∣∣dx ≤

(∫ b

a

∣∣f (x)
∣∣dx

)1– 1
q
(∫ b

a

∣∣f (x)
∣∣∣∣g(x)

∣∣q dx
) 1

q

for q > 1 and the convexity of |g ′′|q, we have:

|M1| =
∣∣∣∣
∫ 1

0

[
(1 – t)α+1 – λ

]
g ′′

(
tc + (1 – t)

c + d
2

)
dt

∣∣∣∣

≤
(∫ 1

0

∣∣(1 – t)α+1 – λ
∣∣dt

)1– 1
q
(∫ 1

0

∣∣(1 – t)α+1 – λ
∣∣
∣∣∣∣g ′′

(
tc + (1 – t)

c + d
2

)∣∣∣∣
q

dt
) 1

q

≤
(∫ 1

0

∣∣(1 – t)α+1 – λ
∣∣dt

)1– 1
q

×
[∫ 1

0

∣∣(1 – t)α+1 – λ
∣∣(tαs∣∣g ′′(c)

∣∣q + m
(
1 – tαs)∣∣∣∣g ′′

(
c + d

2

)∣∣∣∣
q)

dt
] 1

q

= (N2)1– 1
q

(
N1

∣∣g ′′(c)
∣∣q + m(N2 – N1)

∣∣∣∣g ′′
(

c + d
2

)∣∣∣∣
q) 1

q
,

|M2| =
∣∣∣∣
∫ 1

0

[
λ – (1 – t)α+1]g ′′

(
td + (1 – t)

c + d
2

)
dt

∣∣∣∣

≤
(∫ 1

0

∣∣(1 – t)α+1 – λ
∣∣dt

)1– 1
q
(∫ 1

0

∣∣(1 – t)α+1 – λ
∣∣∣∣∣∣g ′′

(
td + (1 – t)

c + d
2

)∣∣∣∣
q

dt
) 1

q

≤
(∫ 1

0

∣∣(1 – t)α+1 – λ
∣∣dt

)1– 1
q

×
[∫ 1

0

∣∣(1 – t)α+1 – λ
∣∣(tαs∣∣g ′′(d)

∣∣q + m
(
1 – tαs)∣∣∣∣g ′′

(
c + d

2

)∣∣∣∣
q)

dt
] 1

q

= (N2)1– 1
q

(
N1

∣∣g ′′(d)
∣∣q + m(N2 – N1)

∣∣∣∣g ′′
(

c + d
2

)∣∣∣∣
q) 1

q
,

|M3| =
∣∣∣∣
∫ 1

0

[
2α+1 – (2 – t)α+1 – λ

]
g ′′

(
c + d

2
t + (1 – t)c

)
dt

∣∣∣∣

≤
(∫ 1

0

∣∣2α+1 – (2 – t)α+1 – λ
∣∣dt

)1– 1
q

×
(∫ 1

0

∣∣2α+1 – (2 – t)α+1 – λ
∣∣
∣∣∣∣g ′′

(
c + d

2
t + (1 – t)c

)∣∣∣∣
q

dt
) 1

q

≤
(∫ 1

0

∣∣2α+1 – (2 – t)α+1 – λ
∣∣dt

)1– 1
q

×
[∫ 1

0

∣∣2α+1 – (2 – t)α+1 – λ
∣∣(tαs

∣∣∣∣g ′′
(

c + d
2

)∣∣∣∣
q

+ m
(
1 – tαs)∣∣g ′′(c)

∣∣q
)

dt
] 1

q
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= (N4)1– 1
q

(
N3

∣∣∣∣g ′′
(

c + d
2

)∣∣∣∣
q

+ m(N4 – N3)
∣∣g ′′(d)

∣∣q
) 1

q
,

|M4| =
∣∣∣∣
∫ 1

0

[
λ – 2α+1 + (2 – t)α+1]g ′′

(
c + d

2
t + (1 – t)d

)
dt

∣∣∣∣

≤
(∫ 1

0

∣∣2α+1 – (2 – t)α+1 – λ
∣∣dt

)1– 1
q

×
(∫ 1

0

∣∣2α+1 – (2 – t)α+1 – λ
∣∣
∣∣∣∣g ′′

(
c + d

2
t + (1 – t)d

)∣∣∣∣
q

dt
) 1

q

≤
(∫ 1

0

∣∣2α+1 – (2 – t)α+1 – λ
∣∣dt

)1– 1
q

×
[∫ 1

0

∣∣2α+1 – (2 – t)α+1 – λ
∣∣(tαs

∣∣∣∣g ′′
(

c + d
2

)∣∣∣∣
q

+ m
(
1 – tαs)∣∣g ′′(d)

∣∣q
)

dt
] 1

q

= (N4)1– 1
q

(
N3

∣∣∣∣g ′′
(

c + d
2

)∣∣∣∣
q

+ m(N4 – N3)
∣∣g ′′(d)

∣∣q
) 1

q
.

Summing |M1|, |M2|, |M3|, and |M4|, we get formula (20). This completes the proof. �

Taking α = s = m = 1 in Theorem 3.2, we get the following integer-order inequalities of
general convexity. First, taking λ = 0, we get the following:

Corollary 3.2 Let g, g ′ be defined as in Theorem 3.2. If |g ′′|q is convex on [c, d] with q > 1,
then

∣∣∣∣2(d – c)g ′
(

c + d
2

)
+ 2

[
g(c) – g(d)

]
–

4
d – c

∫ d

c
g(x) dx

∣∣∣∣

≤ (d – c)2

12

[(
1 + 13 · 5q–1

8
∣∣g ′′(c)

∣∣q +
3 + 7 · 5q–1

8

∣∣∣∣g ′′
(

c + d
2

)∣∣∣∣
q) 1

q

+
(

1 + 13 · 5q–1

8
∣∣g ′′(d)

∣∣q +
3 + 7 · 5q–1

8

∣∣∣∣g ′′
(

c + d
2

)∣∣∣∣
q) 1

q
]

.

Second, taking λ = 1, we get the following:

Corollary 3.3 Let g, g ′ be defined as in Theorem 3.2. If |g ′′|q is convex on [c, d] with q > 1,
then

∣∣∣∣d – c
2

[
g ′(c) + g ′(d)

]
+ (d – c)g ′

(
c + d

2

)
+ 2

[
g(c) – g(d)

]
–

4
d – c

∫ d

c
g(x) dx

∣∣∣∣

≤ (d – c)2

8

{(
2
3

)1– 1
q
[(

5
12

∣∣g ′′(c)
∣∣q +

1
4

∣∣∣∣g ′′
(

c + d
2

)∣∣∣∣
q) 1

q

+
(

5
12

∣∣g ′′(d)
∣∣q +

1
4

∣∣∣∣g ′′
(

c + d
2

)∣∣∣∣
q) 1

q
]

+ (4
√

3 – 6)1– 1
q

[((
8
√

3 –
53
4

)∣∣g ′′(c)
∣∣q +

(
29
4

– 4
√

3
)∣∣∣∣g ′′

(
c + d

2

)∣∣∣∣
q) 1

q
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+
((

8
√

3 –
53
4

)∣∣g ′′(d)
∣∣q +

(
29
4

– 4
√

3
)∣∣∣∣g ′′

(
c + d

2

)∣∣∣∣
q) 1

q
]}

.

Theorem 3.3 Let g, g ′ : [c, d] → R be differentiable functions on [c, d], and suppose g ′′ is
integrable. If |g ′′| is s-(α, m)-concave on [c, d], then we have the following inequality for
Riemann–Liouville fractional integrals with 0 < α ≤ 1, 0 ≤ λ ≤ 1:

λ

2α
(d – c)

[
g ′(c) + g ′(d)

]
+

(
2 –

2
2α

λ

)
(d – c)g ′

(
c + d

2

)

+ (α + 1)
[
g(c) – g(d)

]
–

�(α + 2)
(d – c)α

[
Jα
c+ g(d) + Jα

d– g(c)
]

≤ (d – c)2

2α+2

{
N2

[∣∣∣∣g ′′
(N5c + (N2 – N5) c+d

2
N2

)∣∣∣∣ +
∣∣∣∣g ′′

(N5d + (N2 – N5) c+d
2

N2

)∣∣∣∣
]

+ N4

[∣∣∣∣g ′′
(N6

c+d
2 + (N4 – N6)c

N4

)∣∣∣∣ +
∣∣∣∣g ′′

(N6
c+d

2 + (N4 – N6)d
N2

)∣∣∣∣
]}

, (21)

where

N5 =
∫ 1

0

∣∣(1 – t)α+1 – λ
∣∣t dt, N6 =

∫ 1

0

∣∣2α+1 – (2 – t)α+1 – λ
∣∣t dt.

Proof Using the concavity of |g ′′|q and the power-mean inequality, we obtain

∣∣g ′′(tc + (1 – t)d
)∣∣q ≥ t

∣∣g ′′(c)
∣∣q + (1 – t)

∣∣g ′′(d)
∣∣q

≥ (
t
∣∣g ′′(c)

∣∣ + (1 – t)
∣∣g ′′(d)

∣∣)q.

Then

∣∣g ′′(tc + (1 – t)d
)∣∣ ≥ t

∣∣g ′′(c)
∣∣ + (1 – t)

∣∣g ′′(d)
∣∣,

so that |g ′′| is also concave. By the Jensen integral inequality for concave functions

∫ d
c λ(x)g(u(x)) dx∫ d

c λ(x) dx
≤ g

(∫ d
c λ(x)u(x) dx∫ d

c λ(x) dx

)

we have

∣∣∣∣ λ

2α
(d – c)

[
g ′(c) + g ′(d)

]
+

(
2 –

2
2αλ

)
(d – c)g ′

(
c + d

2

)

+ (α + 1)
[
g(c) – g(d)

]
–

�(α + 2)
(d – c)α

[
Jα
c+ g(d) + Jα

d– g(c)
]∣∣∣∣

≤ (d – c)2

2α+2

{∫ 1

0

∣∣(1 – t)α+1 – λ
∣∣dt

∫ 1
0 |(1 – t)α+1 – λ||g ′′(tc + (1 – t) c+d

2 )|dt∫ 1
0 |(1 – t)α+1 – λ|dt

+
∫ 1

0

∣∣(1 – t)α+1 – λ
∣∣dt

∫ 1
0 |(1 – t)α+1 – λ||g ′′(td + (1 – t) c+d

2 )|dt∫ 1
0 |(1 – t)α+1 – λ|dt
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+
∫ 1

0

∣∣2α+1 – (2 – t)α+1 – λ
∣∣dt

∫ 1
0 |2α+1 – (2 – t)α+1 – λ||g ′′(t c+d

2 + (1 – t)c)|dt∫ 1
0 |2α+1 – (2 – t)α+1 – λ|dt

+
∫ 1

0

∣∣2α+1 – (2 – t)α+1 – λ
∣∣dt

∫ 1
0 |2α+1 – (2 – t)α+1 – λ||g ′′(t c+d

2 + (1 – t)d)|dt∫ 1
0 |2α+1 – (2 – t)α+1 – λ|dt

}

≤ (d – c)2

2α+2

{∫ 1

0

∣∣(1 – t)α+1 – λ
∣∣dt

∣∣∣∣g ′′
(∫ 1

0 |(1 – t)α+1 – λ|(tc + (1 – t) c+d
2 ) dt∫ 1

0 |(1 – t)α+1 – λ|dt

)∣∣∣∣

+
∫ 1

0

∣∣(1 – t)α+1 – λ
∣∣dt

∣∣∣∣g ′′
(∫ 1

0 |(1 – t)α+1 – λ|(td + (1 – t) c+d
2 ) dt∫ 1

0 |(1 – t)α+1 – λ|dt

)∣∣∣∣

+
∫ 1

0

∣∣2α+1 – (2 – t)α+1 – λ
∣∣dt

∣∣∣∣g ′′
(∫ 1

0 |2α+1 – (2 – t)α+1 – λ|(t c+d
2 + (1 – t)c) dt∫ 1

0 |2α+1 – (2 – t)α+1 – λ|dt

)∣∣∣∣

+
∫ 1

0

∣∣2α+1 – (2 – t)α+1 – λ
∣∣dt

∣∣∣∣g ′′
(∫ 1

0 |2α+1 – (2 – t)α+1 – λ|(t c+d
2 + (1 – t)d) dt∫ 1

0 |2α+1 – (2 – t)α+1 – λ|dt

)∣∣∣∣
}

=
(d – c)2

2α+2

{
N2

[∣∣∣∣g ′′
(N5c + (N2 – N5) c+d

2
N2

)∣∣∣∣ +
∣∣∣∣g ′′

(N5d + (N2 – N5) c+d
2

N2

)∣∣∣∣
]

+ N4

[∣∣∣∣g ′′
(N6

c+d
2 + (N4 – N6)c

N4

)∣∣∣∣ +
∣∣∣∣g ′′

(N6
c+d

2 + (N4 – N6)d
N2

)∣∣∣∣
]}

.

This completes the proof. �

Taking α = 1 in Theorem 3.3, we get the following integer-order inequalities. First, taking
λ = 0, we get the following:

Corollary 3.4 Let g, g ′ be defined as in Theorem 3.2. If |g ′′| is convex on [c, d], then

∣∣∣∣2(d – c)g ′
(

c + d
2

)
+ 2

[
g(c) – g(d)

]
–

4
d – c

∫ d

c
g(x) dx

∣∣∣∣
≤ (d – c)2

24

[(∣∣∣∣g ′′
(

5c + 3d
8

)∣∣∣∣ +
∣∣∣∣g ′′

(
3c + 5d

8

)∣∣∣∣
)

+ 5
(∣∣∣∣g ′′

(
27c + 13d

40

)∣∣∣∣ +
∣∣∣∣g ′′

(
13c + 27d

40

)∣∣∣∣
)]

.

Second, taking λ = 1, we get the following:

Corollary 3.5 Let g, g ′ be defined as in Theorem 3.3. If |g ′′| is convex on [c, d], then

∣∣∣∣d – c
2

[
g ′(c) + g ′(d)

]
+ (d – c)g ′

(
c + d

2

)
+ 2

[
g(c) – g(d)

]
–

4
d – c

∫ d

c
g(x) dx

∣∣∣∣
≤ (d – c)2

8

[
2
3

(∣∣∣∣g ′′
(

13c + 3d
16

)∣∣∣∣ +
∣∣∣∣g ′′

(
3c + 13d

16

)∣∣∣∣
)

+ (4
√

3 – 6)
(∣∣∣∣g ′′

(
5c + (32

√
3 – 53)d

32
√

3 – 48

)∣∣∣∣ +
∣∣∣∣g ′′

(
(32

√
3 – 53)c + 5d

32
√

3 – 48

)∣∣∣∣
)]

.

4 Applications of the result
Using the results obtained, we can get new estimates for the following special means.
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1. The arithmetic mean: A(c, d) = c+d
2 for c, d ∈ R.

2. The geometric mean: G(c, d) =
√

ab for c, d > 0.
3. The harmonic mean: H(c, d) = 2cd

c+d for c, d ∈ R\{0}.
4. The index mean:

I(c, d) =

⎧⎨
⎩

c, c = d,
1
e ( dd

cc )
1

d–c , c 
= d, c, d > 0.

5. The logarithmic mean:

L(c, d) =

⎧⎨
⎩

c, c = d,
d–c

ln d–ln c , c 
= d, c, d > 0.

6. Generalized logarithmic mean:

Ln(c, d) =

⎧⎨
⎩

c, c = d,

[ dn+1–cn+1

(n+1)(d–c) ] 1
n , c 
= d, n ∈ Z\{–1, 0}, c, d > 0.

Proposition 4.1 Let n ∈ Z\{–1, 0} and c, d > 0. Then we have the following inequality:

∣∣nλ(d – c)A
(
cn–1, dn–1) + n(2 – λ)(d – c)An–1(c, d) + 2

(
cn – dn) – 4Ln

n(c, d)
∣∣

≤ n(n – 1)(d – c)2

4

[(
4λ – 16

3
(4 – λ)

1
2 +

4
3
λ

3
2 + 3λ +

34
3

)
A

(∣∣cn–2∣∣, ∣∣dn–2∣∣)

+
(

32 – 8λ

3
(4 – λ)

1
2 + 7λ – 20

)
An–2(|c|, |d|)

]
. (22)

Proof The statement follows from Corollary 3.1 for g(x) = xn, x ∈ [c, d]:

4
d – c

∫ d

c
g(x) dx =

4(dn+1 – cn+1)
(d – c)(n + 1)

,

(2 – λ)(d – c)g ′
(

c + d
2

)
= n(2 – λ)(d – c)

(
c + d

2

)n–1

,

λ(d – c)
2

[
g ′(c) + g ′(d)

]
= nλ(d – c)

(
cn–1 + dn–1

2

)
.

Substituting these formulas into Corollary 3.1, we obtain (22). �

Remark 4.1 Taking λ = 0 in Proposition 1, we have

∣∣2n(d – c)An–1(c, d) + 2
(
cn – dn) – 4Ln

n(c, d)
∣∣

≤ n(n – 1)(d – c)2

4

[
2
3

A
(∣∣cn–2∣∣, ∣∣dn–2∣∣) +

4
3

An–2(|c|, |d|)
]

.

Remark 4.2 Taking λ = 1 in Proposition 4.1, we have

∣∣n(d – c)A
(
cn–1, dn–1) + n(d – c)An–1(c, d) + 2

(
cn – dn) – 4Ln

n(c, d)
∣∣
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≤ n(n – 1)(d – c)2

4

[
23 – 13

√
3

3
A

(∣∣cn–2∣∣, ∣∣dn–2∣∣) + (8
√

3 – 13)An–2(|c|, |d|)
]

.

Proposition 4.2 Suppose c, d ∈ R with c, d > 0. Then we have the following inequality:

∣∣∣∣ 2(c – d)
A(1 + c, 1 + d)

– 4 ln

[
G

(
1 + d,

1
1 + c

)
I(1 + d, 1 + c)

]∣∣∣∣

≤ (d – c)2

12

[(
1 + 13 · 5q–1

8(1 + c)2q +
3 + 7 · 5q–1

8A2q(1 + c, 1 + d)

) 1
q

+
(

1 + 13 · 5q–1

8(1 + d)2q +
3 + 7 · 5q–1

8A2q(1 + c, 1 + d)

) 1
q
]

. (23)

Proof The statement follows from Corollary 3.2 for g(x) = – ln(1 + x), x ∈ [c, d]. Since
g ′(x) = –1

1+x and g ′′(x) = 1
(1+x)2 , we get

2(d – c)g ′
(

c + d
2

)
=

2(c – d)
2+c+d

2
, 2

[
g(c) – g(d)

]
= 4 ln

(
1 + d
1 + c

) 1
2

,

4
d – c

∫ d

c
g(x) dx =

4
d – c

[
ln

(1 + c)c

(1 + d)d + (d – c) + ln
1 + c
1 + d

]

= 4 ln
e

( (1+c)1+c

(1+d)1+d )
1

c–d
. (24)

Substituting formula (24) into Corollary 3.2, we obtain (23). �

Proposition 4.3 Suppose c, d ∈ R with c, d > 0. Then we have the following inequality:

∣∣∣∣ (c – d)A(1 + c, 1 + d)
G2(1 + c, 1 + d)

+
c – d

A(1 + c, 1 + d)
– 4 ln

[
G

(
1 + d,

1
1 + c

)
I(1 + d, 1 + c)

]∣∣∣∣

≤ (d – c)2

8

{(
2
3

)1– 1
q
[(

5
12(1 + c)2q +

1
4A2q(1 + c, 1 + d)

) 1
q

+
(

5
12(1 + d)2q +

1
4A2q(1 + c, 1 + d)

) 1
q
]

+ (4
√

3 – 6)1– 1
q

[(
32

√
3 – 53

4(1 + c)2q +
29 – 16

√
3

4A2q(1 + c, 1 + d)

) 1
q

+
(

32
√

3 – 53
4(1 + d)2q +

29 – 16
√

3
4A2q(1 + c, 1 + d)

) 1
q
]}

. (25)

Proof The statement follows from Corollary 3.3 for g(x) = – ln(1 + x), x ∈ [c, d]. Using
g ′(x) = –1

1+x and g ′′(x) = 1
(1+x)2 , we get

d – c
2

[
g ′(c) + g ′(d)

]
=

(c – d)(1 + c + 1 + d)
2(1 + c)(1 + d)

. (26)

Substituting formulas (24) and (26) into Corollary 3.3, we obtain (25). �
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Proposition 4.4 Suppose c, d ∈ R with c, d > 0. Then we have the following inequality:

∣∣∣∣2(c – d)
A2(c, d)

+
2(c – d)
G2(c, d)

– 4L–1(c, d)
∣∣∣∣

≤ (d – c)2

24

[(
128

A3(5c, 3d)
+

128
A3(3c, 5d)

)
+

(
10 × 203

A3(27c, 13d)
+

10 × 203

A3(13c, 27d)

)]
. (27)

Proof The statement follows from Corollary 3.4 for g(x) = 1
x , x ∈ [c, d]. Using g ′(x) = – 1

x2

and g ′′(x) = 2
x3 , we get

2(d – c)g ′
(

c + d
2

)
=

2(c – d)
( c+d

2 )2
, 2

[
g(c) – g(d)

]
=

2(d – c)
cd

,

4
d – c

∫ d

c
g(x) dx =

4(ln d – ln c)
d – c

. (28)

Substituting formula (28) into Corollary 3.4, we obtain (27). �

Proposition 4.5 Suppose c, d ∈ R with c, d > 0. Then we have the following inequality:

∣∣∣∣(c – d)H–1(c2, d2) +
c – d

A2(c, d)
+

2(d – c)
G2(c, d)

– 4L–1(c, d)
∣∣∣∣

≤ (d – c)2

8

[(
4 × 83

3A3(13c, 3d)
+

4 × 83

3A3(3c, 13d)

)

+
(

(16
√

3 – 24)4

2A3(5c, (32
√

3 – 53)d)

)
+

(
(16

√
3 – 24)4

2A3((32
√

3 – 53)c, 5d)

)]
. (29)

Proof The statement follows from Corollary 3.5 for g(x) = 1
x , x ∈ [c, d]. Using g ′(x) = – 1

x2

and g ′′(x) = 2
x3 , we get

d – c
2

[
g ′(c) + g ′(d)

]
=

(c – d)(c2 + d2)
2c2d2 . (30)

Substituting formulas (28) and (30) into Corollary 3.5, we obtain (29). �

5 Conclusions
We first introduced the new function class of s-(α, m)-convex functions. Then we pre-
sented a new differentiability condition to establish the important equation (17) for
the Riemann–Liouville fractional integral. In Theorems 3.1–3.3, we gave new Hermite–
Hadamard integral inequalities depending on (17) by using the associated power-mean
inequality and Jensen’s integral inequality. Finally, we applied these inequalities to special
mean values. These results can be applied to the qualitative theory research of calculus
equations in the future.
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