
Bari et al. Advances in Difference Equations         (2021) 2021:72 
https://doi.org/10.1186/s13662-021-03234-x

R E S E A R C H Open Access

Construction and analysis of unified 4-point
interpolating nonstationary subdivision
surfaces
Mehwish Bari1, Ghulam Mustafa1, Abdul Ghaffar2,3, Kottakkaran Sooppy Nisar4* and
Dumitru Baleanu5,6,7

*Correspondence:
n.sooppy@psau.edu.sa
4Department of Mathematics,
College of Arts and Science, Prince
Sattam bin Abdulaziz University,
Wadi Aldawaser 11991, Saudi Arabia
Full list of author information is
available at the end of the article

Abstract
Subdivision schemes (SSs) have been the heart of computer-aided geometric design
almost from its origin, and several unifications of SSs have been established. SSs are
commonly used in computer graphics, and several ways were discovered to connect
smooth curves/surfaces generated by SSs to applied geometry. To construct the link
between nonstationary SSs and applied geometry, in this paper, we unify the
interpolating nonstationary subdivision scheme (INSS) with a tension control
parameter, which is considered as a generalization of 4-point binary nonstationary
SSs. The proposed scheme produces a limit surface having C1 smoothness. It
generates circular images, spirals, or parts of conics, which are important
requirements for practical applications in computer graphics and geometric
modeling. We also establish the rules for arbitrary topology for extraordinary vertices
(valence ≥ 3). The well-known subdivision Kobbelt scheme (Kobbelt in Comput.
Graph. Forum 15(3):409–420, 1996) is a particular case. We can visualize the
performance of the unified scheme by taking different values of the tension
parameter. It provides an exact reproduction of parametric surfaces and is used in the
processing of free-form surfaces in engineering.

Keywords: Subdivision; Interpolation; Tension control; Regular topology; Arbitrary
topology

1 Introduction
The subdivision is a very popular geometric modeling tool. Subdivision algorithms are
widely used in computer graphics and computer aided geometric design (CAGD) due to
their efficiency, flexibility, and simplicity. There are two common classes of SSs. One is
approximating in which the limit surface usually does not go through its control vertices,
and in case of interpolating, the limit surface interpolates all subdivision steps of con-
trol vertices exactly, which is most appropriate to engineering applications. They seem
to have their origin in the geometric problem of smoothing the corners of a given poly-
gon. Further, SSs are classified into stationary and nonstationary schemes. The proposed
scheme is in the class of nonstationary interpolating schemes. The idea of nonstation-
ary SSs was given by Dyn and Levin [2]. Nonstationary SSs form a standard structure for
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introducing self-referential sets such as practical applications in computer graphics and
provide a potential new technique of researching the texture and shape of images. Yong-
gang et al. [3] proved that the trigonometric polynomial B-spline curves not only inherit
the useful advantage of the polynomial curve but also have reconstructing property of the
trigonometric curve. Due to its importance in generating images, several unifications to
the nonstationary schemes such as interpolating and approximating are discussed in the
literature [4–17]. Being two various subjects that had been improving individually and
in parallel, the relation between curves and surfaces of SSs have sought after. Later, it was
proved that there is a close relation between curves and surfaces produced by SSs. Kobbelt
[1] has extended the technique of [18] and constructed interpolating SS on open quadri-
lateral meshes with arbitrary topology. Reif [19] has established a generalized technique
to the SSs near extraordinary vertices. Fang et al. [20] introduced the unified stationary
SS of arbitrary order with image controlling variable, but it does not hold up the surfaces
like sphere and hyperboloid. Recently, Ghaffar et al. [21] have introduced tensor products
of nine-tic B-spline. Therefore, the natural way to define refinement operators for quadri-
lateral nets to modify a tensor product scheme such that special rules for the vicinity of
nonregular vertices are found. The proposed unified INSS has such potential. The main
contribution is as follows:

• Three different schemes (trigonometric, polynomial, and hyperbolic) of surface work
under one parameter.

• The proposed schemes reproduce trigonometric functions and hyperbolic functions.
• Results from the hyperbolic scheme are shown in Fig. 7.

The decomposition is extended to regular vertices of quadrilateral surfaces by the ten-
sor product of a unified scheme. Rules for extraordinary and boundary vertices are also
established based on repeated local operations. The performance of INSS, which based
on quadrilaterals, is comparatively better to triangles for constructing the symmetries of
natural and human objects such as legs, arms, and fingers. The major advantage of the
proposed scheme is that it has the interpolation property and works on quadrilateral nets,
which are most appropriate for engineering applications. Here we present the rule of the
unified scheme for arbitrary topology (valence ≥ 3). To achieve this, it may be necessary
to use one step of the Catmull Clark method to eliminate extraordinary faces. In quad
meshes, there remains only the question of how to compute new edge points and new
face points. No new vertex points are computed since the method is interpolating. The
nonstationary tension parameter of our scheme is used to control the image of resulting
surfaces and the interpolation of the control mesh to limit surface.

Section 2 shows the rules of unified INSS. By topological regularity we mean a tensor
product structure with four faces meeting at every vertex. Section 2 is also based on a
unified surface subdivision for arbitrary topology. Boundary and crease features are also
discussed. Section 3 gives the reconstruction of sine and cosine functions. Also, the anal-
ysis of the proposed scheme is presented in this section. Section 4 provides the numerical
examples for open (boundary edges occur, which belong to one face) and closed nets (ev-
ery edge is part of exactly two faces). Section 5 holds the conclusion.

2 Unified four-point binary interpolating nonstationary SS
This section is intended to use a framework for the construction of a unified family of
four-point SS for curve and surface designing. The framework has two cases. In the first
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case, we construct a univariate scheme. In the second case, we derive the bivariate scheme
(regular or irregular surfaces).

2.1 Curve case
Here we introduce the algorithmic technique for the construction of the univariate family
of unified four-point binary INSS by applying trigonometric, polynomial, and hyperbolic
basis. We can describe the proposed scheme as various stage construction.

• Consider interpolating the limiting curve from the linear space spanned by
{1, y, sin(y), cos(y)}, {1, y, y2, y3}, and {1, y, sinh(y), cosh(y)}.

• Describe the control polygon {q�
m|i ∈ Z} at refinement subdivision step � and the

interpolation of initial data q�
i+h, h = –1, 0, 1, 2, by a limit curve of the forms

q(y) = α0 + α1y + α2 cos(y) + α3 sin(y), q(y) = α0 + α1y + α2y2 + α3y3, and
q(y) = α0 + α1y + α2 cosh(y) + α3 sinh(y).

• Obtain a system of linear equations by the interpolation of initial data q�
i+h

corresponding to y = hθ/2�, 0 ≤ θ ≤ π
2 .

• Now find a solution of the system of equations f (–2–�θ ) = q�
m–1, q(0) = q�

m,
q(2–�θ ) = q�

m+1 and q(2–�+1θ ) = q�
m+2 for unknowns constants α0, α1, α2 and α3. We

obtained three different schemes (trigonometric, polynomial, and hyperbolic)
depending on the spanning set.

• Unifying these SSs, we obtained the following INSS with control polygon q0
m = qm,

–2 ≤ m ≤ N + 2:

q�+1
2m = q�

m, –1 ≤ m ≤ 2�N + 1,

q�+1
2m+1 = α�

(
q�

m–1 + q�
m+2

)
+ β�

(
q�

m + q�
m+1

)
, –1 ≤ m ≤ 2�N , (1)

where

α� = –
1

8μ�+1(μ�+1 + 1)
and β� =

(2μ�+1 + 1)2

8μ�+1(μ�+1 + 1)
,

where � shows the subdivision step or refinement level of INSS, and
μ�+1 = cos(θ/2�+1), 1, and cosh(θ/2�+1) for trigonometric, polynomial, and hyperbolic
cases, respectively.

2.2 Regular surface case
Let {q0

m,n; m = –2, . . . , N + 2, n = –2, . . . , N + 2} be the sequence of control polygon at the
initial subdivision step. For the �th subdivision step, the newly generated control points
are calculated by using tensor product of univariate INSS (1):

q�+1
2m,2n = q�

m,n, –1 ≤ m ≤ 2�N + 1, –1 ≤ n ≤ 2�N + 1,

q�+1
2m+1,2n = α�

(
q�

m–1,n + q�
m+2,n

)
+ β�

(
q�

m,n + q�
m+1,n

)
, –1 ≤ m ≤ 2�N , –1 ≤ n ≤ 2�N + 1,

q�+1
2m,2n+1 = α�

(
q�

m,n–1 + q�
m,n+2

)
+ β�

(
q�

m,n + q�
m,n+1

)
, –1 ≤ m ≤ 2�N + 1, –1 ≤ n ≤ 2�N ,

q�+1
2m+1,2n+1 = α2�

(
q�

m–1,n–1 + q�
m+2,n–1 + q�

m–1,n+2 + q�
m+2,n+2

)
+ α�β�

(
q�

m,n–1 + q�
m+1,n–1

+ q�
m–1,n + q�

m+2,n + q�
m–1,n+1 + q�

m+2,n+1 + q�
m,n+2 + q�

m+1,n+2
)

+ β2�
(
q�

m,n + q�
m+1,n + q�

m,n+1 + q�
m+1,n+1

)
, –1 ≤ m ≤ 2�N , –1 ≤ n ≤ 2�N .
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Figure 1 (a) represents coefficients of regular mesh for edge points, (b) indicates the face points, and
(c) depicts the positioning of an edge and face point near an extraordinary vertex, respectively

This extended scheme is designed to calculate the algorithm for quadrilateral surfaces. In
the considered regular case the valence of vertex is 4, that is, 4 rule for the insertion of
points. For insertion of edge points, we use the rules q�+1

2m+1,2n and q�+1
2m,2n+1 in horizontal

and vertical directions, respectively; see Fig. 1(a) as α� = αl. The rules q�+1
2m+1,2n+1 and q�+1

2m,2n
are used to insert new face points as shown in Fig. 1(b) as β� = β l.

2.3 Irregular surface case
Irregular surfaces are those that cannot be unfolded or unrolled to lie in a flat plane. Solids
that have irregular or warped surfaces cannot be created merely by extrusion or revolution.
These irregular surfaces are created using surface modeling techniques. In irregular cases,
that is, meshes include vertices where other than four faces meet except at boundary, we
adopted the subdivision criteria followed by Kobbelt’s SS for arbitrary topology. So the
unified INSS requires only one more rule to insert edge points on a nonregular vertex
corresponding to the adjacent vertex. All remaining edge and face points are generated by
using the unified four point INSS. By applying the proposed scheme it is possible that the
points Xm and Ym are undefined. If we need both possible ways to compute Xm and Ym by
using the proposed scheme to the succeeding edge points, which lead to the same result,
then we find a dependence relation for Xm+1 to Xm, with one edge to the next edge, and
we have the notion Km–2, Km–1, Km, Km+1, Km+2 with arbitrary point P; see Fig. 1(c). Now
we have

Xm+1 – Xm = β�(Lm+1 – Lm) + α�(Hm+1 – Hm) + α�(Lm–1 – Lm+2) +
α2�

β�
(Km–2 – Km+2),

which implies

Xm+1 – Xm = α�(Hm+1 – Hm) + α�(Lm–1 – Lm+2) + ζ �(Km–2 – Km+2) + β�(Lm+1 – Lm),

where ζ � = 1/8μ�+1(1 + μ�+1)(1 + 2μ�+1)2.
The undefined point Xm will be computed by rotation of mask of the SS. Thus the neigh-

borhood points of P will become symmetric with the refinement process. By using a sim-
ilar approach of [1] we can define the following equation:

1
a

a–1∑

m=0

Xm = β�P +
1

2a

a–1∑

m=0

Lm +
α�

a

a–1∑

m=0

Hm for a = 4, (2)
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where for n ≥ 4,

1
a

a–1∑

m=0

Xm =
1
a

n–2∑

m=0

(a – 1 – m) � Xm+n + Xn, n = 0, 1, . . . , a – 1, (3)

with �Xm+n = Xi+j+1 – Xm+n denoting the difference, and the face treated as vertex Vn of
unified INSS is defined as

Vn =
4
a

a–1∑

m=0

Lm –
8α�

(2α� – 1)n

a–1∑

m=0

Km +
2α�

(2α� – 1)
(Kn–2 + Kn–1 + Kn + Kn+1)

– (Ln–1 + Ln + Ln+1) for a �= 4

and

Vn = Ln+2 for n = 4.

Unifying of the common terms of the scheme and putting (2) into (3), we get

Xn = α�(Hn + Vn) + β�(Ln + P). (4)

By taking a = 3 we get Lm–1 = Lm+2 = Km–2 = Km+2. Thus by using our unified four point
rule to the neighboring points P, Hn, Ln, and Vn, n = 0, . . . , a – 1, the edge points Xn can be
computed easily. Similarly, we compute the face points Yn, and it does not matter whether
we compute Xm (horizontally) or Xm+1 (vertically). In other words, we can compute all
vertex points for the face containing an isolated extraordinary vertex from a regular mesh
with virtual point Vn.

2.4 Open polygons and boundary curves
It is impossible to insert the first and last edge points of an open polygon by the unified
scheme (1). It needs two neighborhood points to compute the edge point q�+1

1 , which re-
fines the first edge point by q�

0q�
1. By describing the extrapolated edge point q�

–1 = 2q�
0 – q�

1

the initial point q�+1
1 is computed by using (1) on the subpolygon formed by q�

–1, q�
0, q�

1,
q�

2. The additional rule can be denoted as a linear combination of nonextrapolated initial
points q�

0, q�
1, q�

2:

q�+1
1 =

(2μ�+1 + 1)2 – 2
8μ�+1(μ�+1 + 1)

q�
0 +

(2μ�+1 + 1)2 + 1
8μ�+1(μ�+1 + 1)

q�
1 –

1
8μ�+1(μ�+1 + 1)

q�
2.

The rule to insert the point q�+1
2n–1 refining the last edge point q�

n–1q�
n is defined as

q�+1
2n+1 =

1
8μ�+1(μ�+1 + 1)

q�
n–2 –

(2μ�+1 + 1)2 + 1
8μ�+1(μ�+1 + 1)

q�
n–1

+
(2μ�+1 + 1)2 + 2(2μ�+1 + 1)2 – 2

8μ�+1(μ�+1 + 1)
q�

n.

If the point on the boundary edge has a corner vertex (valence 2), then we use the boundary
rule to insert the edge points on it. Applying the boundary rules q�

–1 = 2q�
0 – q�

1, q�
n+1 =
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2q�
n – q�

n–1, and q�
n+2 = 2q�

n – q�
n–2, we can produce limit curves/surfaces of open polygon at

the end vertices or boundary vertices (valence > 2).

Lemma 2.1 The unified IRSS satisfies the affine invariance property.

Proof 2.1 Since α� + β� + β� + α� = 1, the unified IRSS satisfies the affine invariance prop-
erty.

Remark 2.1 The unified IRSS is primal because of odd symmetry.

Remark 2.2 The unified scheme is exactly the well-known four-point scheme of [4] and
[18] for μ�+1 = 1. The polynomial case of unified scheme (1) comes from cubic interpola-
tory polynomial, so the polynomial reproduction will be cubic.

2.5 Analysis of unified scheme
For μ�+1 = cos( θ

2�+1 ), 1, and cosh( θ

2�+1 ), the masks of the unified schemes coincides with the
mask of Kobbelt’s scheme [1] as � → ∞. For μ�+1 = cos( θ

2�+1 ), we have

(i) lim
�→∞α� = – lim

�→∞
1

8 cos( θ

2�+1 )(cos( θ

2�+1 ) + 1)
= –

1
16

,

(ii) lim
�→∞β� = lim

�→∞
(2 cos( θ

2�+1 ) + 1)2

8 cos( θ

2�+1 )(cos( θ

2�+1 ) + 1)
=

9
16

,

(iii) lim
�→∞α2� = lim

�→∞
1

(8 cos( θ

2�+1 )(cos( θ

2�+1 ) + 1))2
=

1
256

,

(iv) lim
�→∞

α�β� = – lim
�→∞

(2 cos( θ

2�+1 ) + 1)2

(8 cos( θ

2�+1 )(cos( θ

2�+1 ) + 1))2
= –

9
256

,

(v) lim
�→∞

β2� = lim
�→∞

(2 cos( θ

2�+1 ) + 1)4

(8 cos( θ

2�+1 )(cos( θ

2�+1 ) + 1))2
=

81
256

.

Similarly, for other values of μ�+1, we get the same mask. In [11], it is proved that the
scheme of Kobbelt [1] at all control points of closed meshes is C1-continuous. Since in the
limiting case the Kobbelt scheme is a particular case of the unified scheme, the latter is
also C1-continuous in this case.

Tables 1–5 indicate the eigenvalues of the proposed SS at μ�+1 = cos( θ

2�+1 ), 1, and
cosh( θ

2�+1 ) for θ = π/3 and θ = 2π/5. From these tables we observe that the largest eigen-
value is one, and the other eigenvalues are less than one, and thus the unified scheme is
convergent. Since the second and third eigenvalues are same, the unified scheme is C1-
continuous by [19].

Table 1 Eigenvalues of trigonometric (i.e.,μ�+1 = cos(π /3× 2�+1)) subdivision matrix with valence n

n 3 4 5 6 7 8 9 10

e0 1 1 1 1 1 1 1 1
e1 0.40973 0.49482 0.56859 0.60675 0.62912 0.64342 0.65314 0.66005
e2 0.40973 0.49482 0.56859 0.60675 0.62912 0.64342 0.65314 0.66005
e3 0.22122 0.20877 0.20688 0.19447 0.18626 0.18062 0.17660 0.17364
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Table 2 Eigenvalues of trigonometric (i.e., μ�+1 = cos(2π /5× 2�+1)) subdivision matrix with
valence n

n 3 4 5 6 7 8 9 10

e0 1 1 1 1 1 1 1 1
e1 0.41486 0.49482 0.50986 0.60675 0.61337 0.65171 0.66085 0.67042
e1 0.41486 0.49482 0.50986 0.60675 0.61337 0.65171 0.66085 0.67042
e3 0.22561 0.22280 0.21640 0.20820 0.19910 0.18955 0.17977 0.16988

Table 3 Eigenvalues of polynomial (i.e., μ�+1 = 1) subdivision matrix with valence n

n 3 4 5 6 7 8 9 10

e0 1 1 1 1 1 1 1 1
e1 0.42633 0.50000 0.53794 0.55968 0.57322 0.58213 0.58834 0.59123
e2 0.42633 0.50000 0.53794 0.55968 0.57322 0.58213 0.58834 0.59123
e3 0.25000 0.25000 0.42633 0.42633 0.46972 0.50000 0.52180 0.53894

Table 4 Eigen-values of of hyperbolic (i.e., μ�+1 = cosh(π /3× 2�+1)) subdivision matrix with
valence n

n 3 4 5 6 7 8 9 10

e0 1 1 1 1 1 1 1 1
e1 0.44057 0.49863 0.53192 0.55174 0.56423 0.57254 0.57833 0.58185
e2 0.44057 0.49863 0.53192 0.55174 0.56423 0.57254 0.57833 0.58185
e3 0.18659 0.17300 0.16644 0.16125 0.15776 0.15533 0.15358 0.15209

Table 5 Eigenvalues of of hyperbolic (i.e., μ�+1 = cosh(2π /5× 2�+1)) subdivision matrix with
valence n

n 3 4 5 6 7 8 9 10

e0 1 1 1 1 1 1 1 1
e1 0.43198 0.46520 0.49856 0.52515 0.54257 0.55628 0.56815 0.57907
e2 0.44057 0.49863 0.53192 0.55174 0.56423 0.57254 0.57833 0.58185
e3 0.21359 0.208900 0.19344 0.18342 0.17776 0.16533 0.15328 0.15009

3 Reproduction of functions
Consider the functions sin(·), cos(·), sin(·) sin(·), cos(·) cos(·), cos(·) sin(·), cosh(·),
cosh(·) cosh(·), sinh(·), sinh(·) sinh(·), and cosh(·) sinh(·) can be reproduced by unified SSs.

Lemma 3.1 Let q�
m = cos( mθ

2� ) (or q�
m = sin( mθ

2� )) for –1 ≤ m ≤ 2�N + 1, l ≥ 0. Then q�+1
2m =

cos( 2mθ

2�+1 ) (or q�+1
2m = sin( 2mθ

2�+1 )).

Proof 3.1 Since q�
m = cos( mθ

2� ), it is obvious that q�+1
2m = cos( 2mθ

2�+1 ). Similarly, for q�
m =

sin( mθ

2� ), we have q�+1
2m = sin( 2mθ

2�+1 ).

Lemma 3.2 Let q�
n = cos( nθ

2� ) for –1 ≤ n ≤ 2�N + 1, l ≥ 0. Then q�+1
2n+1 = cos( (2n+1)θ

2�+1 ).

Proof 3.2 From (1) with m = n we have

q�+1
2n+1 =

–1
8μ�+1(μ�+1 + 1)

(
q�

n–1 + q�
n+2

)
+

(2μ�+1 + 1)2

8μ�+1(μ�+1 + 1)
(
q�

n + q�
n+1

)
.
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Putting μ�+1 = cos( θ

2�+1 ), q�
n–1 = cos( (n–1)θ

2� ), q�
n = cos( nθ

2� ), q�
n+1 = cos( (n+1)θ

2� ), and q�
n+2 =

cos( (n+2)θ
2� ), we have

q�+1
2n+1 =

–1
8 cos( θ

2�+1 )(cos( θ

2�+1 ) + 1)

(
cos

(
(n – 1)θ

2�

)
+ cos

(
(n + 2)θ

2�

))

+
(2 cos( 3θ

2�+1 ) + 1)2

8 cos( θ

2�+1 )(cos( θ

2�+1 ) + 1)

(
cos

(
nθ

2�

)
+ cos

(
(n + 1)θ

2�

))
.

Applying the identities 1 + cos(α) = 2 cos2( α
2 ) and cos(α) + cos(β) = 2 cos( α+β

2 ) cos( α–β

2 ), we
get

q�+1
2n+1 =

–1
16 cos( θ

2�+1 ) cos2( θ

2�+2 )

(
2 cos

(
(2n + 1)θ

2�+1

)
cos

(
3θ

2�+1

))

+
(2 cos( 3θ

2�+1 ) + 1)2

16 cos( θ

2�+1 ) cos2( θ

2�+2 )

(
2 cos

(
(2n + 1)θ

2�+1

)
cos

(
θ

2�+1

))

�⇒ 1
16 cos( θ

2�+1 ) cos2( θ

2�+2 )
=

sin2( 3θ

2�+2 )
2 sin( θ

2� ) sin( θ

2�+1 )

and

(
2 cos

(
θ

2�+1

)
+ 1

)2

=
(

2 cos

(
2θ

2�+2

)
+ 1

)2

=
(

3 – 4 sin2
(

θ

2�+2

))2

.

Then

q�+1
2n+1 =

– sin2( θ

2�+2 )
2 sin( θ

2� ) sin( θ

2�+1 )

(
2 cos

(
(2n + 1)θ

2�+1

)
cos

(
3θ

2�+1

))

+
sin2( θ

2�+2 )(3 – 4 sin2( θ

2�+2 ))2

2 sin( θ

2� ) sin( θ

2�+1 )

(
2 cos

(
(2n + 1)θ

2�+1

)
cos

(
θ

2�+1

))

�⇒ q�+1
2n+1 =

( (3 sin( θ

2�+2 ) – 4 sin3( θ

2�+2 ))2

sin( θ

2� ) sin( θ

2�+1 )
cos

(
θ

2�+1

)

–
sin2( θ

2�+2 )
sin( θ

2� ) sin( θ

2�+1 )
cos

(
3θ

2�+1

))
cos

(
(2n + 1)θ

2�+1

)
.

Since

q�+1
2n+1 =

(
sin2( 3θ

2�+2 ) cos( θ

2�+1 )
sin( θ

2� ) sin( θ

2�+1 )
–

sin2( θ

2�+2 ) cos( 3θ

2�+1 )
sin( θ

2� ) sin( θ

2�+1 )

)

× cos

(
(2n + 1)θ

2�+1

)
,
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applying the identity sin2( α
2 ) = 1–cosα

2 , we have

q�+1
2n+1 =

( (1 – cos( 3θ

2�+1 )) cos( θ

2�+1 ) – (1 – cos( 3θ

2�+1 )) cos( 3θ

2�+1 )
2 sin( θ

2� ) sin( t
2�+1 )

)

× cos

(
(2n + 1)θ

2�+1

)
.

By the identity cos a – cos b = –2 sin( a+b
2 ) sin( a–b

2 ) we have

q�+1
2n+1 = cos

(
(2n + 1)θ

2�+1

)
.

Similarly, putting μ�+1 = cos( θ

2�+1 ), and applying the identities 1 + cos(α) = 2 cos2( α
2 ),

sin(α) + sin(β) = 2 sin( α+β

2 ) cos( α–β

2 ), (3 sin( θ

2�+2 ) – 4 sin3( θ

2�+2 ))2 = sin2( 3θ

2�+2 ), sin2( 3α
2 ) =

1–cos 3α
2 , sin2( α

2 ) = 1–cosα
2 , and cosα – cosβ = –2 sin( α+β

2 ) sin( α–β

2 ), we have the following
lemma.

Lemma 3.3 Let q�
n = sin( nθ

2� ) for –1 ≤ n ≤ 2�N + 1, l ≥ 0. Then q�+1
2n+1 = sin( (2n+1)θ

2�+1 ).

By Lemmas 3.1–3.3, applying q�
m,n = q�

mq�
n, we have the following theorems.

Theorem 3.3 Let q�
m = cos( mθ

2� ) and q�
n = cos( nθ

2� ) for –1 ≤ m, n ≤ 2�N + 1, l ≥ 0. Then

q�+1
2m,2n = cos

(
2mθ

2�+1

)
cos

(
2nt
2�+1

)
.

Theorem 3.4 Let q�
m = cos( mθ

2� ) and q�
n = sin( nθ

2� ) for –1 ≤ m, n ≤ 2�N + 1, l ≥ 0. Then

q�+1
2m+1,2n+1 = cos

(
(2m + 1)t

2�+1

)
sin

(
(2n + 1)θ

2�+1

)
.

Theorem 3.5 Let q�
m = sin( mθ

2� ) and q�
n = sin( nθ

2� ) for –1 ≤ m, n ≤ 2�N + 1, l ≥ 0. Then

q�+1
2m+1,2n+1 = sin

(
(2m + 1)t

2�+1

)
sin

(
(2n + 1)θ

2�+1

)
.

Lemma 3.4 Let q�
m = cosh( mθ

2� ) (or q�
m = sinh( mθ

2� )) for –1 ≤ m ≤ 2�N + 1, l ≥ 0. Then q�+1
2m =

cosh( 2mθ

2�+1 ) (or q�+1
2m = sinh( 2mθ

2�+1 )).

Proof 3.6 Since q�
m = cosh( mθ

2� ), it is obvious that q�+1
2m = cosh( 2mθ

2�+1 ). Similarly, we get q�+1
2m =

sinh( 2mθ

2�+1 ).

Lemma 3.5 Let q�
n = cosh( nθ

2� ) for –1 ≤ n ≤ 2�N + 1, l ≥ 0. Then q�+1
2n+1 = cosh( (2n+1)θ

2�+1 ).

Proof 3.7 From (1) with i = j we have

q�+1
2n+1 =

–1
8μ�+1(μ�+1 + 1)

(
q�

n–1 + q�
n+2

)
+

(2μ�+1 + 1)2

8μ�+1(μ�+1 + 1)
(
q�

n + q�
n+1

)
.
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Substituting μ�+1 = cosh( θ

2�+1 ), q�
n–1 = cosh( (n–1)θ

2� ), q�
n = cosh( nθ

2� ), q�
n+1 = cosh( (n+1)θ

2� ), and
q�

n+2 = cosh( (n+2)θ
2� ), we get

q�+1
2n+1 =

–1
8 cosh( θ

2�+1 )(cosh( θ

2�+1 ) + 1)

(
cosh

(
(n – 1)θ

2�

)
+ cosh

(
(n + 2)θ

2�

))

+
(2 cosh( 3θ

2�+1 ) + 1)2

8 cosh( θ

2�+1 )(cosh( θ

2�+1 ) + 1)

(
cosh

(
nθ

2�

)
+ cosh

(
(n + 1)θ

2�

))
.

Let ι = iota. Then applying sinh(α) = –ι sin(ια), cosh(α) = cos(ια), 1 + cos(α) = 2 cos2( α
2 ),

and cos(α) + cos(β) = 2 cos( α+β

2 ) cos( α–β

2 ), we get

q�+1
2n+1 =

–1
16 cos( ιθ

2�+1 ) cos2( ιθ

2�+1 )

{
2 cos

(
(2n + 1)ιt

2�+2

)
cos

(
3ιt

2�+1

)}

+
(2 cos( ιθ

2�+1 ) + 1)2

16 cos( ιθ

2�+1 ) cos2( ιθ

2�+2 )

{
2 cos

(
(2n + 1)ιt

2�+1

)
cos

(
ιθ

2�+1

)}
.

Since

1
16 cos( ιθ

2�+1 ) cos2( ιθ

2�+2 )
=

sinh2( θ

2�+2 )
2 sinh( θ

2� ) sinh( θ

2�+1 )

and
(

2 cosh

(
θ

2�+1

)
+ 1

)2

=
(

2 cos

(
2ιt

2�+2

)
+ 1

)2

=
(

3 + 4 sinh2
(

θ

2�+2

))2

,

we get

q�+1
2n+1 =

– sinh2( θ

2�+2 )
2 sinh( θ

2� ) sinh( θ

2�+1 )

(
2 cosh

(
(2n + 1)θ

2�+1

)
cosh

(
3θ

2�+1

))

+
sinh2( θ

2�+2 )(3 + 4 sinh2( θ

2�+2 ))2

2 sinh( θ

2� ) sinh( θ

2�+1 )

(
2 cosh

(
(2n + 1)θ

2�+1

)
cosh

(
θ

2�+1

))
.

This implies

q�+1
2n+1 =

( (3 sinh( θ

2�+2 ) + 4 sinh3( θ

2�+2 ))2

sinh( θ

2� ) sinh( θ

2�+1 )
cosh

(
θ

2�+1

)

–
sinh2( θ

2�+2 )
sinh( θ

2� ) sinh( θ

2�+1 )
cosh

(
3θ

2�+1

))
cosh

(
(2n + 1)θ

2�+1

)
. (5)

Consider

3 sinh

(
θ

2�+2

)
+ 4 sinh3

(
θ

2�+2

)
= –3ι sin

(
ιθ

2�+2

)
+ 4ι sin3

(
ιθ

2�+2

)
.

This implies

3 sinh

(
θ

2�+2

)
+ 4 sinh3

(
θ

2�+2

)
= –ι sin

(
3ιt

2�+2

)
= sinh

(
3θ

2�+2

)
. (6)
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By substituting (6) into (5) we get

q�+1
2n+1 =

(
sinh2( 3θ

2�+2 ) cosh( θ

2�+1 )
sinh( θ

2� ) sinh( θ

2�+1 )
–

sinh2( θ

2�+2 ) cosh( 3θ

2�+1 )
sinh( θ

2� ) sinh( θ

2�+1 )

)

× cosh

(
(2n + 1)θ

2�+1

)
.

This implies

q�+1
2n+1 =

(
sin2( 3ιt

2�+1 ) cos( ιθ

2�+1 )
sin( ιθ

2� ) sin( ιθ

2�+1 )
–

sin2( ιθ

2�+2 ) cos( 3ιt
2�+1 )

sin( ιθ

2� ) sin( ιθ

2�+1 )

)

× cosh

(
(2n + 1)θ

2�+1

)
.

Using sin2( a
2 ) = 1–cos a

2 and sin2( 3a
2 ) = 1–cos 3a

2 , we get

q�+1
2n+1 =

( (1 – cos( 3ιt
2�+1 )) cos( ιθ

2�+1 ) – (1 – cos( ιθ

2�+1 )) cos( 3ιt
2�+1 )

2 sin( ιθ

2� ) sin( ιθ

2�+1 )

)

× cosh

(
(2n + 1)θ

2�+1

)
.

Simplifying and using cos a – cos b = –2 sin( a+b
2 ) sin( a–b

2 ), we get

q�+1
2n+1 =

(–2 sin( ι+3ιt
2�+2 ) sin( ι–3ιt

2�+2 )
2 sin( ιθ

2� ) sin( ιθ

2�+1 )

)
cosh

(
(2n + 1)θ

2�+1

)
.

This implies

q�+1
2n+1 = cosh

(
(2n + 1)θ

2�+1

)
.

In a similar way, putting μ�+1 = cosh( θ

2�+1 ) and applying sinh(α) = –ι sin(ια), cosh(α) =
cos(ια), 1 + cos(α) = 2 cos2( α

2 ), sin(α) + sin(α) = 2 sin( α+β

2 ) cos( α–β

2 ), sin2( α
2 ) = 1–cosα

2 ,
sin2( 3α

2 ) = 1–cos 3α
2 , and cosα – cosβ = –2 sin( α+β

2 ) sin( α–β

2 ), we have following lemma.

Lemma 3.6 Let q�
n = sinh( nθ

2� ) for –1 ≤ n ≤ 2�N + 1, l ≥ 0. Then q�+1
2n+1 = sinh( (2n+1)θ

2�+1 ).

Using Lemmas 3.4–3.6, we get following theorems.

Theorem 3.8 Let q�
m = cosh( mθ

2� ) and q�
n = cosh( nθ

2� ) for –1 ≤ m, n ≤ 2�N + 1, l ≥ 0. Then

q�+1
2m,2n = cosh

(
2mθ

2�+1

)
cosh

(
2nt
2�+1

)
.

Theorem 3.9 Let q�
m = cosh( mθ

2� ) and q�
n = sinh( nθ

2� ) for –1 ≤ m, n ≤ 2�N + 1, l ≥ 0. Then

q�+1
2m+1,2n+1 = cosh

(
(2m + 1)t

2�+1

)
sinh

(
(2n + 1)θ

2�+1

)
.
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Theorem 3.10 Let q�
m = sinh( mθ

2� ) and q�
n = sinh( nθ

2� ) for –1 ≤ m, n ≤ 2�N + 1, l ≥ 0. Then

q�+1
2m+1,2n+1 = sinh

(
(2m + 1)t

2�+1

)
sinh

(
(2n + 1)θ

2�+1

)
.

4 Numerical results
In this section, we present several numerical examples to check the performance and show
that the proposed SS reconstruct conics.

4.1 Reproduction of fundamental images
In this section, we have implemented our proposed SS on 10 different examples, which
support our theoretical analysis. We observe that the fundamental images can be recon-
structed by using our method if the control points are taken from these images.

Example 1 By using the control points presented in Fig. 2(a),

q0
m,n =

(
sin

(
2πm

η

)
cos

(
2πn
η

)
, sin

(
2πm

η

)
sin

(
2πn
η

)
, cos

(
2πm

η

))
,

for m = 0, 1, 2, . . . ,η, n = 0, 1, 2, . . . , 2η – 1, η = 7, the limiting smooth sphere obtained by
the proposed SS is shown in Fig. 2(c), Similarly, the limiting ellipsoid generated in Fig. 3(c),
whose control mesh points are

q0
m,n =

(
sin

(
2πm

η

)
cos

(
2πn
η

)
, 2 sin

(
2πm

η

)
sin

(
2πn
η

)
, cos

(
2πm

η

))
,

m = 0, 1, 2, . . . ,η, n = 0, 1, 2, . . . , 2η – 1, η = 7, is shown in Fig. 3(a).

Figure 2 (a) indicates the control data sampled from a sphere. The corresponding results of the first and 7th
iterations of subdivision are shown in the (b) and (c), respectively

Figure 3 (a) indicates the control data sampled from a ellipsoid. The corresponding results of the first and 7th
iterations of subdivision are shown in (b) and (c), respectively
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Figure 4 (a) indicates the control data sampled from a cylinder. The corresponding results of the first and 7th
iterations of subdivision are shown in (b) and (c), respectively

Figure 5 (a) indicates the control data sampled from a cone. The corresponding results of the first and 7th
iterations of subdivision are shown in (b) and (c), respectively

Example 2 By using the mesh with initial points

q0
m,n =

(
cos

(
2πm

η

)
, sin

(
2πm

η

)
,

n
η

)
, m = 0, 1, . . . ,η, n = 0, 1, . . . ,η – 2,η = 6,

and

q0
m,n =

(
n
η

cos

(
2πm

η

)
,

n
η

sin

(
2πm

η

)
,

n
η

)
, m, n ∈ 0, 1, . . . ,η,η = 6,

we get the limiting cylinder and cone shown in Figs. 4(c) and 5(c), respectively.

Example 3 The control mesh of torus is presented in Fig. 6(a) with initial points

q0
m,n =

(
3 cos

(
2πm

η

)
+ cos

(
2πm

η

)
cos

(
2πn
η

)
,

3 sin

(
2πm

η

)
+ sin

(
2πm

η

)
cos

(
2πn
η

)
, sin

(
2πn
η

))
,

m, n = 0, 1, 2, . . . ,η, η = 8, whereas the smooth surface after first subdivision step and the
limiting surface of torus are given in Figs. 6(b) and 6(c), respectively.
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Figure 6 (a) indicates the control data sampled from a torus. The corresponding results of the first and 7th
iterations of subdivision are shown in (b) and (c), respectively

Figure 7 (a) indicates the control data sampled from a hyperboloid. The corresponding result s of the first
and 7th iterations of subdivision are shown in (b) and (c), respectively

Example 4 The control meshes of upper and lower hyperboloid surfaces are given in
Fig. 7(a) with initial points

q0
m,n =

(
a sinh

(
m
2η

)
cos

(
2πn
2η

)
, b sinh

(
m
2η

)
sin

(
2πn
2η

)
, c cosh

(
m
2η

))
,

where m = –η, . . . , 0, . . . ,η and n = 0, 1, 2, . . . , 2η, η = 4 with a = b = 1, c = 1 (i.e., for upper
hyperbola) and c = –1 (i.e., for lower hyperbola). The limiting hyperbolas are shown in
Fig. 7(c).

Example 5 The limiting surface of shell and strip constructed by our SS are presented in
Figs. 8(c) and 9(c), whereas their control points

q0
m,n =

((
1 – e

m
η
)

cos(mπ ) cos

(
nπ

η – 5

)2

, –
(
1 – e

m
η
)

sin(mπ ) cos

(
nπ

η – 5

)2

,

(
1 – e

m
η /(η–4)) – sin(nπ ) + ei/η sin(nπ )

)
,

for m = 0, 1, 2, . . . ,η, n = 0, 1, 2, . . . ,η – 4, η = 6, and

q0
m,n =

(
n cos(πm), n sin(πm),πm

)
, m = 0, 1, 2, . . . ,η, n = –η + 5, . . . ,η – 5,η = 2,
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Figure 8 (a) indicates the control data sampled from a shell. The corresponding results of the first and 7th
iterations of subdivision are shown in (b) and (c), respectively

Figure 9 (a)–(c) indicate the data sampled from the mesh, the result at the first level, and the shaded smooth
surface

are shown in Figs. 8(a) and 9(a). Figure 10 indicates the impact of parameters on the shapes
produced by trigonometric and hyperbolic SSc.

5 Conclusion
In this paper, by using the tensor product we extended the four-point univariate non-
stationary SS to a unified bivariate nonstationary SS for regular meshes. Recall that the
bivariate SS with the tensor product is obtained starting from the unified SS, which can
generalize quite several existing SSs, including the Kobbelt [1] scheme as k → ∞ for μ�+1

and μ�+1 = 1. Weobserved from the examples that the proposed bivariate SS is suitable
to generate different images and texture of the geometric object. Local and adaptive re-
finement within the domain of image parameter can also be easily applied as the unified
univariate SS can generate many classical images, such as classical, analytical, and para-
metric surfaces. Applications of the univariate SS are not confined for closed meshes; in
fact, it works for open meshes as well.

Some properties of the SS are:
• It can reconstruct polynomial, cosine, sine, hyperbolic cosine, and hyperbolic sine

functions
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Figure 10 (a) indicates the mesh point. (b) and (c) indicate the first level by the trigonometric SS at θ = π /3
and θ = 2π /5, respectively. (d) and (e) represent the first level of the hyperbolic SS at θ = π /3 and
θ = 2π /5 = –2π /5. Observe that the parameter has major impact on images

• It can be considered as counterpart of the four-point DD SS [18] in one dimension for
μ�+1 = 1 and, in the limiting case, of trigonometric and hyperbolic functions when the
data is constant along the other directions.
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