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Abstract
Fractional calculus (FC) is useful in studying physical phenomena with memory effect.
In this paper, a fractional form of Ambartsumian equation is considered utilizing the
Caputo fractional derivative. The Heaviside expansion formula in classical calculus
(CC) is extended/developed in view of FC. Then, the extended Heaviside expansion
formula is applied to obtain the exact solution in a simplest form. Several theorems
and lemmas are proved to facilitate the evaluation of the inverse Laplace transform of
specific expressions in fractional forms. The exact solution is established in terms of a
one-parameter Mittag-Leffler function which is provided for the first time for the
Ambartsumian equation in FC. The present solution reduces to the corresponding
one in the relevant literature as the fractional order tends to one. Moreover, the
convergence of the obtained solution is theoretically proved. Comparisons with
another approach in the literature are performed. The advantage of the present
analysis over the existing one in the relevant literature is discussed and analyzed.

Keywords: Ambartsumian equation; Adomian decomposition method; Laplace
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1 Introduction
The standard Ambartsumian equation (SAE) was derived by Ambartsumian [1] more than
two decades ago. This equation describes the absorption of light by the interstellar matter.
In this paper, we consider the fractional Ambartsumian equation (FAE) in the form:

C
0 Dα

t y(t) = –y(t) +
1
ξ

y
(

t
ξ

)
, 0 < α ≤ 1, ξ > 1, (1)

where ξ is a constant and α is the arbitrary order of the Caputo fractional derivative with
the following initial condition (IC):

y(0) = λ. (2)

The FAE reduces to the SAE as α → 1. The SAE has been investigated by Kato and McLeod
[2] for existence and uniqueness. Later, Patade and Bhalekar [3] solved the SAE using the
power series approach, and the obtained power series solution was proved for conver-
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gence. In addition, Bakodah and Ebaid [4] obtained the exact solution for the SAE. Re-
cently, Alatawi et al. [5] applied the homotopy perturbation method (HPM) to obtain the
approximate solution of the SAE in terms of the exponential functions, while Khaled et
al. [6] provided the solution using the conformable derivative. Very recently, Kumar et al.
[7] obtained the approximate solution for the FAE using the homotopy transform analysis
method (HTAM). It can be observed from Ref. [7] that the series solution is expressed in
terms of tα which converges in certain subdomains.

The objective of this paper is to obtain the exact solution of the FAE in terms of the one-
parameter Mittag-Leffler function which converges in the whole domain t ∈ [0,∞). Our
approach utilizes the Laplace transform (LT) combined with the Adomian decomposition
method (ADM) [8–12]. The ADM [8–12] has been extensively used to solve various inte-
gral/differential equations and IVPs/BVPs [13–27]. The FC approach has been extended
successfully to include several phenomena in physics, engineering, and biology [28–38].
In order to achieve the target of this paper, the Heaviside expansion formula in CC is ex-
tended in view of FC. The extended Heaviside expansion formula is applied to calculate
the inverse LT of specific fractional expressions. Furthermore, it is shown that the present
exact solution reduces to the corresponding one in the relevant literature as α → 1. Be-
sides, the convergence of the present solution is theoretically proved. Moreover, numeri-
cal comparisons with the existing approach in the literature are performed to indicate the
advantage and effectiveness of the present analysis.

2 Preliminaries and analysis
The Riemann–Liouville fractional integral of order α is defined as follows [39]:

0Iα
t y(t) =

1
�(α)

∫ t

0

y(τ )
(t – τ )1–α

dτ , α > 0, t > 0. (3)

Let α �= 0 denote the order of the derivative in such a way that n – 1 < α ≤ n. Then the
Caputo fractional derivative of a function y(t) is defined by [39]

C
0 Dα

t y(t) =
dαy(t)

dtα
=

⎧⎨
⎩

1
�(n–α)

∫ t
0 (t – τ )n–α–1y(n)(τ ) dτ if n – 1 < α < n,

dny(t)
dtn if α = n.

(4)

In applied problems, it is required to use the definitions of fractional derivatives that allow
the utilization of interpreted initial conditions. It is clear from Eq. (5) that definition (4)
satisfies these demands

L
{

dαy(t)
dtα

}
= sαY (s) –

n–1∑
m=0

sα–m–1y(m)(0), (5)

where Y (s) is the Laplace transform (LT) of y(t). When solving fractional differential equa-
tions, the following relations for the inverse LT in terms of Mittag-Leffler functions can
be used, see [39] for details:

L–1
{

m!sα–β

(sα ∓ a)m+1

}
= tαm+β–1E(m)

α,β
(±atα

)
, (6)

L–1
{

sα–1

sα + 1

}
= Eα

(
–tα

)
, (7)
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L–1
{

1
sα + a

}
= tα–1Eα,α

(
–atα

)
, (8)

L–1
{

s–1

sα + a

}
= tαEα,α+1

(
–atα

)
, (9)

where the Mittag-Leffler functions of one parameter and two parameters are defined by

Eα(z) =
∞∑

m=0

zm

�(αm + 1)
, α > 0 (10)

Eα,β (z) =
∞∑

m=0

zm

�(αm + β)
(α > 0,β > 0). (11)

Some useful properties are given by

Eα,β (z) = zEα,α+β (z) +
1

�(β)
, (12)

Eα(z) = zEα,α+1(z) + 1, (13)

Eα,1(z) = Eα(z), E1(z) = ez, (14)

and
∫ t

0
τ γ –1Eα,γ

(
aτα

)
(t – τ )β–1Eα,β

[
b(t – τ )α

]
dτ

=
tβ+γ –1

a – b
[
aEα,β+γ

(
atα

)
– bEα,β+γ

(
btα

)]
. (15)

The Heaviside expansion formula in CC is a well-known formula which is frequently used
to calculate the inverse LT of specific expressions, the statement of such a formula is in-
troduced below.

Theorem 1 (Heaviside expansion formula in CC) Let H(s) and G(s) be two polynomials
such that the degree of H(s) is less than the degree of G(s), also assume that G(s) has n
distinct zeros σk , k = 1, 2, 3, . . . , n, then

L–1
{

H(s)
G(s)

}
=

n∑
k=1

H(σk)
G′(σk)

× eσk t . (16)

Proof See please Ref. [40] (pages 61–62). �

3 Analysis
In this section, the Heaviside expansion formula is extended, and a generalized form of
Eq. (16) is derived by the next theorem.

Theorem 2 (Extended Heaviside expansion formula) Let 0 < α ≤ 1 and suppose that H(sα)
and G(sα) are two polynomials in sα such that the degree of H(sα) is less than the degree of
G(sα). If G(sα) has n distinct zeros σk , k = 1, 2, 3, . . . , n, then

L–1
{

H(sα)
G(sα)

}
= tα–1

n∑
k=1

H(σk)
G′(σk)

× Eα,α
(
σktα

)
. (17)
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Proof Since G(sα) is a polynomial with n distinct zeros σ1, σ2,. . . ..., σn, then we can write
H(sα )
G(sα ) according to the method of partial fractions as follows:

H(sα)
G(sα)

=
c1

sα – σ1
+

c2

sα – σ2
+ · · · +

ck

sα – σk
+ · · · +

cn

sα – σn
. (18)

Multiplying both sides of Eq. (18) by sα –σ1 and letting sα → σ1, we find, using L’Hospital’s
rule,

c1 = lim
sα→σ1

(
sα – σ1

)H(sα)
G(sα)

,

= lim
sα→σ1

H
(
sα

) × lim
sα→σ1

{
sα – σ1

G(sα)

}
,

= H(σ1) × lim
sα→σ1

{ d
dsα (sα – σ1)

d
dsα G(sα)

}
,

= H(σ1) × lim
sα→σ1

{
1

G′(sα)

}
,

=
H(σ1)
G′(σ1)

. (19)

Similarly, the general term ck can be calculated as follows:

ck = lim
sα→σk

(
sα – σk

)H(sα)
G(sα)

,

= lim
sα→σk

H
(
sα

) × lim
sα→σk

{
sα – σk

G(sα)

}
,

= H(σk) × lim
sα→σk

{ d
dsα (sα – σk)

d
dsα G(sα)

}
,

= H(σk) × lim
sα→σk

{
1

G′(sα)

}
,

=
H(σk)
G′(σk)

. (20)

Therefore, Eq. (18) can be expressed as

H(sα)
G(sα)

=
H(σ1)
G′(σ1)

1
sα – σ1

+
H(σ2)
G′(σ2)

1
sα – σ2

+ · · · +
H(σk)
G′(σk)

1
sα – σk

+
H(σn)
G′(σn)

+ · · ·

+
1

sα – σn
(21)

or

H(sα)
G(sα)

=
n∑

k=1

H(σk)
G′(σk)

× 1
sα – σk

. (22)
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Applying the inverse LT on Eq. (22), we obtain

L–1
{

H(sα)
G(sα)

}
=

n∑
k=1

H(σk)
G′(σk)

× L–1
{

1
sα – σk

}
, (23)

and this yields

L–1
{

H(sα)
G(sα)

}
= tα–1

n∑
k=1

H(σk)
G′(σk)

× Eα,α
(
σktα

)
. (24)

�

Lemma 1 The extended Heaviside expansion formula (17) reduces to the original Heavi-
side expansion formula (16) as α → 1.

Proof From Eq. (17) provided by Theorem 1, we have as α → 1 that

L–1
{

H(s)
G(s)

}
=

n∑
k=1

H(σk)
G′(σk)

× E1,1(σkt) =
n∑

k=1

H(σk)
G′(σk)

× eσk t , (25)

which is the original Heaviside expansion formula (16). �

Lemma 2 (Special case of the extended Heaviside expansion formula) If H(sα) and Gi(sα)
are two polynomials in sα such that

H
(
sα

)
= sα , Gi

(
sα

)
=

i∏
k=0

(
sα + ξ–kα

)
, i ≥ 1, 0 < α ≤ 1, (26)

then

L–1
{

H(sα)
Gi(sα)

}
= tα–1

i∑
k=0

–ξ–kα

G′
i(–ξ–kα)

× Eα,α
(
–ξ–kαtα

)
. (27)

Proof From the definitions of H(sα) and Gi(sα), it is clear that H(sα) has a degree less than
that of Gi(sα) ∀i ≥ 1. Besides, Gi(sα) has i + 1 distinct zeros σk = –ξ–kα , k = 0, 1, 2, 3, . . . , i.
Applying Theorem 2 and substituting σk = –ξ–kα into the extended Heaviside expansion
formula yields

L–1
{

H(sα)
Gi(sα)

}
= tα–1

i∑
k=0

H(–ξ–kα)
G′

i(–ξ–kα)
× Eα,α

(
–ξ–kαtα

)
. (28)

However, the definition of H(sα) gives H(–ξ–kα) = –ξ–kα , hence,

L–1
{

H(sα)
Gi(sα)

}
= tα–1

i∑
k=0

–ξ–kα

G′
i(–ξ–kα)

× Eα,α
(
–ξ–kαtα

)
. (29)

�

4 The exact solution
This section is devoted to obtaining the solution of FAE (1)–(2) in an exact form in terms
of the Mittag-Leffler functions. The previous theorems and lemmas are applied in this
section to derive such exact solution.
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4.1 Solution in terms of two-parameter Mittag-Leffler function
Applying the LT on Eq. (1) and noting that L{( 1

ξ
y( t

ξ
))} = Y (ξ s) yield

Y (s) =
λsα–1

sα + 1
+

Y (ξ s)
sα + 1

. (30)

The ADM assumes the solution of (30) in the series form

Y (s) =
∞∑
i=0

Yi(s), (31)

which leads to

Y0(s) =
λsα–1

sα + 1
, (32)

Yi(s) =
Yi–1(ξ s)
sα + 1

, i ≥ 1. (33)

The recurrence scheme (33) gives

Y1(s) =
Y0(ξ s)
sα + 1

=
λ(ξ s)α–1

(sα + 1)(ξαsα + 1)
=

λ(ξ 1s)α–1∏1
k=0(ξ kαsα + 1)

,

Y2(s) =
Y1(ξ s)
sα + 1

=
λ(ξ 2s)α–1

(sα + 1)(ξαsα + 1)(ξ 2αsα + 1)
=

λ(ξ 2s)α–1∏2
k=0(ξ kαsα + 1)

,

Y3(s) =
Y2(ξ s)
sα + 1

=
λ(ξ 3s)α–1

(sα + 1)(ξαsα + 1)(ξ 2αsα + 1)(ξ 3αsα + 1)
=

λ(ξ 2s)α–1∏3
k=0(ξ kαsα + 1)

, (34)

and hence the general component Yi(s) can be obtained as

Yi(s) =
λ(ξ is)α–1

(sα + 1)(ξαsα + 1)(ξ 2αsα + 1) . . . . . . (ξ iαsα + 1)
, i ≥ 1. (35)

Therefore, Yi(s) can be written as

Yi(s) =
λ(ξ is)α–1∏i

k=0(ξ kαsα + 1)
, i ≥ 1. (36)

Also, we note that

i∏
k=0

(
ξ kαsα + 1

)
= ξ i(i+1)α/2

i∏
k=0

(
sα + ξ–kα

)
. (37)

Inserting (37) into (36) and simplifying lead to

Yi(s) = λξ iα(1–i)/2–i
(

1
s

× sα∏i
k=0(sα + ξ–kα)

)
, i ≥ 1. (38)

Assume that H(sα) and Gi(sα) are defined as in Lemma 2, then Eq. (38) is expressed as

Yi(s) = λξ iα(1–i)/2–i
(

1
s

× H(sα)
Gi(sα)

)
, i ≥ 1. (39)
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From (32), it then follows

Y (s) = Y0(s) +
∞∑
i=1

Yi(s), (40)

i.e.,

Y (s) =
λsα–1

sα + 1
+ λ

∞∑
i=1

ξ iα(1–i)/2–i
(

1
s

× H(sα)
Gi(sα)

)
. (41)

Applying the inverse LT on the last equation, we get the solution y(t) of the current model
as

y(t) = L–1
{

λsα–1

sα + 1

}
+ λ

∞∑
i=1

ξ iα(1–i)/2–i
(

L–1
{

1
s

}
∗ L–1

{
H(sα)
Gi(sα)

})
, (42)

where (∗) refers to the convolution operation. From the results of Lemma 2, we have

y(t) = λEα

(
–tα

)
+ λ

∞∑
i=1

ξ iα(1–i)/2–i

(
1 ∗

{
tα–1

i∑
k=0

–ξ–kα

G′
i(–ξ–kα)

× Eα,α
(
–ξ–kαtα

)})
(43)

or

y(t) = λEα

(
–tα

)
+ λ

∞∑
i=1

i∑
k=0

ξ iα(1–i)/2–i
∫ t

0

(
τα–1 –ξ–kα

G′
i(–ξ–kα)

× Eα,α
(
–ξ–kατα

))
dτ , (44)

which can be written as

y(t) = λEα

(
–tα

)
+ λ

∞∑
i=1

i∑
k=0

ξ iα(1–i)/2–i × –ξ–kα

G′
i(–ξ–kα)

∫ t

0

(
τα–1Eα,α

(
–ξ–kατα

))
dτ . (45)

Using the integral formula (15) when γ = α, β = 1, a = –ξ–kα , and b = 0, we obtain

∫ t

0
τα–1Eα,α

(
–ξ–kατα

)
dτ = tαEα,α+1

(
–ξ–kαtα

)
. (46)

From (45) and (46), we can write

y(t) = λEα

(
–tα

)
+ λ

∞∑
i=1

i∑
k=0

ξ iα(1–i)/2–i

G′
i(–ξ–kα)

(
–ξ–kαtαEα,α+1

(
–ξ–kαtα

))
. (47)

4.2 Solution in terms of one-parameter Mittag-Leffler function
Implementing property (13) for z = –ξ–kαtα , we have

Eα

(
–ξ–kαtα

)
= –ξ–kαtαEα,α+1

(
–ξ–kαtα

)
+ 1, (48)

hence,

–ξ–kαtαEα,α+1
(
–ξ–kαtα

)
= Eα

(
–ξ–kαtα

)
– 1. (49)
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Inserting (49) into (47) yields

y(t) = λEα

(
–tα

)
+ λ

∞∑
i=1

i∑
k=0

ξ iα(1–i)/2–i

G′
i(–ξ–kα)

(
Eα

(
–ξ–kαtα

)
– 1

)
, (50)

which is the required exact solution. However, we can rewrite Eq. (50) as

y(t) = λEα

(
–tα

)
+ λ

( ∞∑
i=1

i∑
k=0

ξ iα(1–i)/2–iEα(–ξ–kαtα)
G′

i(–ξ–kα)
–

∞∑
i=1

i∑
k=0

ξ iα(1–i)/2–i

G′
i(–ξ–kα)

)
(51)

or

y(t) = λEα

(
–tα

)
+ λ

( ∞∑
i=1

i∑
k=0

ξ iα(1–i)/2–iEα(–ξ–kαtα)
G′

i(–ξ–kα)
– S

)
, (52)

where S is the sum defined by

S =
∞∑
i=1

i∑
k=0

ξ iα(1–i)/2–i

G′
i(–ξ–kα)

. (53)

5 The solution in a simplest form
Here, we show that the sum S in Eq. (53) vanishes, and hence the right-hand side of Eq. (52)
can be further simplified. To do that, we express S as

S =
∞∑
i=1

ξ iα(1–i)/2–i
i∑

k=0

1
G′

i(–ξ–kα)
=

∞∑
i=1

ξ iα(1–i)/2–iψi, (54)

where

ψi =
i∑

k=0

1
G′

i(–ξ–kα)
. (55)

From (54), we have

S = ξ–1ψ1 + ξ–α–2ψ2 + ξ–3α–3ψ3 + · · · . (56)

It is clear from (56) that S vanishes when each ψi vanishes, i.e., ψi = 0, ∀i ≥ 1. For ψ1, we
find

ψ1 =
1∑

k=0

1
G′

1(–ξ–kα)
=

1
G′

1(–1)
+

1
G′

1(–ξ–α)
. (57)

From the definition of Gi(sα), we have at i = 1 that

G1
(
sα

)
=

1∏
k=0

(
sα + ξ–kα

)
=

(
sα + 1

)(
sα + ξ–α

)
, (58)
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i.e.,

G1
(
sα

)
=

(
sα

)2 +
(
1 + ξ–α

)
sα + ξ–α , G′

1
(
sα

)
= 2sα +

(
1 + ξ–α

)
, (59)

and hence,

G′
1(–1) = –1 + ξ–α , G′

1
(
–ξ–α

)
= 1 – ξ–α . (60)

Substituting (60) into (57), we obtain

ψ1 =
1

–1 + ξ–α
+

1
1 – ξ–α

= 0. (61)

Similarly, we can prove that ψ2 = 0, in this case we have

ψ2 =
2∑

k=0

1
G′

2(–ξ–kα)
=

1
G′

2(–1)
+

1
G′

2(–ξ–α)
+

1
G′

2(–ξ–2α)
(62)

and

G2
(
sα

)
=

2∏
k=0

(
sα + ξ–kα

)
=

(
sα + 1

)(
sα + ξ–α

)(
sα + ξ–2α

)
, (63)

i.e.,

G2
(
sα

)
=

(
sα

)3 +
(
1 + ξ–α + ξ–2α

)(
sα

)2 +
(
ξ–α + ξ–2α + ξ–3α

)
sα + ξ–3α , (64)

G′
2
(
sα

)
= 3

(
sα

)2 + 2
(
1 + ξ–α + ξ–2α

)
sα +

(
ξ–α + ξ–2α + ξ–3α

)
, (65)

G′
2(–1) =

(
1 + ξ–α

)(
1 – ξ–α

)2, (66)

G′
2
(
–ξ–α

)
= –ξ–α

(
1 – ξ–α

)2, (67)

G′
2
(
–ξ–2α

)
= ξ–α

(
1 + ξ–α

)(
1 – ξ–α

)2. (68)

Substituting (66)–(68) into (62), we obtain

ψ2 =
1

(1 + ξ–α)(1 – ξ–α)2 +
1

–ξ–α(1 – ξ–α)2 +
1

ξ–α(1 + ξ–α)(1 – ξ–α)2 ,

=
ξ–α – (1 + ξ–α) + 1

ξ–α(1 + ξ–α)(1 – ξ–α)2 ,

= 0. (69)

It can be proved by induction that ψi = 0, ∀i ≥ 1, and hence the sum S in (56) vanishes.
Formulas (59), (64), and (65) can also be obtained directly using the q-calculus [41], see
the appendices. Therefore, solution (52) takes the form

y(t) = λEα

(
–tα

)
+ λ

∞∑
i=1

i∑
k=0

ξ iα(1–i)/2–iEα(–ξ–kαtα)
G′

i(–ξ–kα)
. (70)
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Indeed, expression (70) can also be put in a simpler form by writing the initial component
λEα(–tα) as

λEα

(
–tα

)
= λ

[ i∑
k=0

ξ iα(1–i)/2–iEα(–ξ–kαtα)
G′

i(–ξ–kα)

]
i=0

, (71)

where

[
Eα

(
–ξ–kαtα

)]
k=0 = Eα

(
–tα

)
,

[
ξ iα(1–i)/2–i]

i=0 = 1,
[
G′

i
(
–ξ–kα

)]
k=0,i=0 = G′

0(–1) = 1.
(72)

In view of (70) and (71), we obtain the solution in the simplest form:

y(t) = λ

∞∑
i=0

i∑
k=0

ξ iα(1–i)/2–iEα(–ξ–kαtα)
G′

i(–ξ–kα)
. (73)

6 Validation as α → 1
Here, it is shown that the exact solution obtained by Bakodah and Ebaid [4] for the SAE
can be recovered as a special case of our exact solution (73) α → 1. In such a case, Eq. (73)
reduces to

y(t) = λ

∞∑
i=0

i∑
k=0

ξ i(1–i)/2–iE1(–ξ–kt)
G′

i(–ξ–k)
, (74)

i.e.,

y(t) = λ

∞∑
i=0

i∑
k=0

ξ–i(1+i)/2e–ξ–kt

G′
i(–ξ–k)

,
[
Gi

(
sα

)]
α→1 = Gi(s) =

i∏
k=0

(
s + ξ–k). (75)

However, Gi(s) can be written as

Gi(s) =
i∏

k=0

(
s + ξ–k) =

i∏
k=0

ξ–k
i∏

k=0

(
ξ ks + 1

)
= ξ–i(1+i)/2Qi(s), (76)

where Qi(s) is defined as

Qi(s) =
i∏

k=0

(
ξ ks + 1

)
. (77)

From (76), we obtain

G′
i(s) = ξ–i(1+i)/2Q′

i(s), (78)

which leads to

G′
i
(
–ξ–k) = ξ–i(1+i)/2Q′

i
(
–ξ–k). (79)
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Substituting (79) into (75), we obtain

y(t) = λ

∞∑
i=0

i∑
k=0

e–ξ–k t

Q′
i(–ξ–k)

, (80)

which is the corresponding solution obtained by Bakodah and Ebaid [4] for the SAE. Here,
it may be important to refer to that the present exact solution (73) for the FAE is introduced
for the first time. Moreover, the current analysis was not previously reported on the FAE.

7 Convergence analysis
Theorem 3 For α ∈ (0, 1], the closed-form series solution (73) is convergent ∀ ξ > 1, t ≥ 0.

Proof Firstly, we rewrite (73) as

y(t) =
∞∑
i=0

ci, (81)

where ci is defined by

ci = λ

i∑
k=0

ξ iα(1–i)/2–iEα(–ξ–kαtα)
G′

i(–ξ–kα)
. (82)

The series coefficient ci can be rewritten as

ci = λ

i∑
k=0

q–i(1–i)/2+i/αEα(–qkτ )
G′

i(–qk)
, q = ξ–α , τ = tα . (83)

Accordingly,

ci+1 = λ

i+1∑
k=0

q(i+1)(i/2+1/α)Eα(qkτ )
G′

i+1(–qk)
(84)

or

ci+1 = λ

i∑
k=0

q(i+1)(i/2+1/α)Eα(–qkτ )
G′

i+1(–qk)
+ λ

q(i+1)(i/2+1/α)Eα(–qi+1τ )
G′

i+1(–qi+1)
. (85)

From the definition of Gi(sα) in (26), we find that

Gi
(
sα

)
=

i∏
k=0

(
sα + qk), Gi+1

(
sα

)
=

i+1∏
k=0

(
sα + qk) =

(
sα + qi+1)Gi

(
sα

)
, (86)

and

G′
i+1

(
sα

)
=

(
sα + qi+1)G′

i
(
sα

)
+ Gi

(
sα

)
. (87)
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Hence,

G′
i+1

(
–qk) =

(
–qk + qi+1)G′

i
(
–qk) + Gi

(
–qk) =

(
qi+1 – qk)G′

i
(
–qk), (88)

where Gi(–qk) = 0 (∀k = 0, 1, . . . , i). Moreover, we have from (87) that G′
i+1(–qi+1) =

Gi(–qi+1) and, consequently,

ci+1 = λ

i∑
k=0

q(i+1)(i/2+1/α)Eα(–qkτ )
(qi+1 – qk)G′

i(–qk)
+ λ

q(i+1)(i/2+1/α)Eα(–qi+1τ )
Gi(–qi+1)

. (89)

From (83) and (89), we have

ci+1 –ci = λ

i∑
k=0

(
μ(i+1)(i/2+1/α)

qi+1 – qk –q–i(1–i)/2+i/α
)

Eα(–qkτ )
G′

i(–qk)
+λ

q(i+1)(i/2+1/α)Eα(–qi+1τ )
Gi(–qi+1)

, (90)

which can be simplified as

ci+1 – ci = λqi(i–1)/2+i/α
i∑

k=0

�i,kEα(–qkτ )
G′

i(–qk)
+ λq(i+1)/α Eα(–qi+1τ )∏i

k=0(1 – qi–k+1)
, (91)

where

�i,k = –
qk – (1 – q1/α)qi

qk – qi+1 , Gi
(
–qi+1) = qi(i+1)/2

i∏
k=0

(
1 – qi–k+1). (92)

Using q-calculus notations, we have
∏i

k=0(1 – qi–k+1) =
∏i

j=0(1 – q.qj) = (q : q)i+1 (see Ap-
pendix A). For a fixed integer i ≥ 1, we have from (91) that

|ci+1 – ci| ≤ λqi(i–1)/2+i/α
i∑

k=0

∣∣∣∣ �i,k

G′
i(–qk)

∣∣∣∣
∣∣Eα

(
–qkτ

)∣∣ +
λq(i+1)/α

|(q : q)i+1|
∣∣Eα

(
–qi+1τ

)∣∣. (93)

Applying the property 0 < Eα(–γ τ ) ≤ 1 (γ > 0, τ ≥ 0) on (93), it then follows

|ci+1 – ci| ≤ λqi(i–1)/2+i/α
i∑

k=0

∣∣∣∣ �i,k

G′
i(–qk)

∣∣∣∣ +
λq(i+1)/α

|(q : q)i+1| . (94)

As i → ∞ and since q < 1, then qi(i–1)/2+i/α → 0, q(i+1)/α → 0 (∀α ∈ (0, 1]) and 0 < (q : q)∞ <
1, hence |ci+1 – ci| → 0 which completes the proof. �

8 Numerical results and discussions
This section is devoted to performing several comparisons with the existing solution in
the relevant literature using the CAS Wolfram Mathematica. For numerical purposes, we
define the n-term approximate solution σn of series (73) as follows:

σn(t) = λ

n–1∑
i=0

i∑
k=0

ξ iα(1–i)/2–iEα(–ξ–kαtα)
G′

i(–ξ–kα)
, n ≥ 1. (95)
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Figure 1 Convergence of current approximate solutions σn(t), n = 4, 5, 7, 10, 12, at λ = 1, ξ = 1.5, and α = 0.5

Figure 2 Convergence of current approximate solutions σn(t), n = 4, 5, 7, 10, 12, at λ = 1, ξ = 2.5, and α = 1

Figures 1 and 2 display the convergence of current approximate solutions σn(t), n =
4, 5, 7, 10, 12, at λ = 1, ξ = 2.5, α = 0.5 (Fig. 1), and α = 1 (Fig. 2).

In the literature, Bhalekar and Patade [42] solved the initial value problem (IVP)

C
0 Dα

t y(t) = Ay(t) + By(Ct), y(1) = 1, 0 < α ≤ 1, A ∈R, B ∈R, (96)

where C is a constant and C ∈ (0, 1). In [41], the solution of IVP (96) was given as

y(t) = 1 +
∞∑
i=1

tiα

�(iα + 1)

i–1∏
k=0

(
A + BCαk). (97)

Comparing (96) with Eqs. (1)–(2), we find that λ = 1, A = –1, and B = C = 1
ξ

. Accordingly,
Eq. (97) becomes

y(t) = 1 +
∞∑
i=1

tiα

�(iα + 1)

i–1∏
k=0

(
ξ–αk–1 – 1

)
, (98)
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Figure 3 Comparison between σ12 (present) and θ12, θ24, and θ36 in Ref. [42] at λ = 1, ξ = 1.5, and α = 0.5

Figure 4 Comparison between σ12 (present) and θ12, θ24 in Ref. [42], and θ36 at λ = 1, ξ = 2.5, and α = 1

with the n-term approximate solution θn(t) defined by

θn(t) = 1 +
n∑

i=1

tiα

�(iα + 1)

i–1∏
k=0

(
ξ–αk–1 – 1

)
, n ≥ 1. (99)

Now the task is to compare the present approximation (95) and the corresponding one
in Ref. [42] given by (99). For fixed λ = 1 and ξ = 1.5, the comparisons between the present
σ12 and θ12, θ24, θ36 of Ref. [42] are depicted in Figs. 3, 4 at α = 0.5 and α = 1, respectively.
Figures 3 and 4 show that the approximation θ12 coincides with the present one σ12 on the
interval [0,5), while θ24 coincides with our σ12 on a slightly wider interval [0,10), and θ36

leads to a coincidence on the interval [0,15). It is observed that the number of terms needed
from θn to achieve a coincidence with our exact solution is multiplied by the present num-
ber of terms of σn. Therefore, the obtained results confirm the effectiveness and efficiency
of the present approach.
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9 Conclusions
The Heaviside expansion formula in CC was extended in this paper in view of FC. Sev-
eral theoretical theorems and lemmas were proved for the extended Heaviside expansion
formula and then applied on particular expressions in FC. Accordingly, the solution of
the FAE was obtained based on Caputo’s fractional derivative. The solution was derived
in a simplest form in terms of a one-parameter Mittag-Leffler function. Besides, the con-
vergence of the obtained solution was theoretically proved. Furthermore, it was shown
that the exact solution obtained by Bakodah and Ebaid [4] for the SAE was recovered as a
special case of the present exact one for the FAE when the fractional order tends to one.

In addition, graphical comparisons with another approach in the literature were per-
formed. The advantage of the present analysis over the existing one in the relevant liter-
ature was discussed and analyzed. It was also shown that the current solution converges
in the whole domain, as consequences of the properties of the Mittag-Leffler functions,
while the solution in Ref. [42] converges in subdomains.

Appendix A: Concepts of q-calculus
For q ∈ (0, 1) and x ∈N, the q-version of x is defined as (see [41])

[x]q =
1 – qx

1 – q
and lim

q→1
[x]q = x. (A.1)

For i, k ∈N, the q-binomial
( i

k
)

q is defined by

(
i
k

)
q

=
[i]q!

[k]q![i – k]q!
and

(
i
0

)
q

=
(

i
i

)
q

= 1, (A.2)

where [i]q! is the q-factorial of i:

[i]q! = [1]q.[2]q.[3]q. . . . [i]q and lim
q→1

[i]q! = [i]! (A.3)

The q-shifted factorials are defined by

(a : q)i =
i–1∏
k=0

(
1 – aqk), where (a : q)0 = 1, and

(a : q)∞ = lim
i→∞(a : q)i =

∞∏
k=0

(
1 – aqk).

(A.4)

For u, v ∈R and i ∈ N, the q-binomial theorem is given by

(u + v)i
q =

i–1∏
k=0

(
u + qkv

)
=

i∑
r=0

q(r
2)

(
i
r

)
q
ui–rvr . (A.5)
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Appendix B: Properties of Gi(sα) in view of q-calculus
Here, we show that the q-calculus can be implemented to derive some obtained results in
Sect. 5. Firstly, we rewrite Gi(sα) in Eq. (26) in view of q-calculus as follows:

Gi
(
sα

)
=

i∏
k=0

(
sα + qk), 0 < q = ξ–α < 1. (B.1)

Substituting u = sα and v = 1 in (A.5) and replacing i with i + 1, we obtain

(
sα + 1

)i+1
q =

i∏
k=0

(
sα + qk) =

i+1∑
r=0

q(r
2)

(
i + 1

r

)
q

(
sα

)i–r+1. (B.2)

In view of (B.1) and (B.2) we have the following series form for Gi(sα):

Gi
(
sα

)
=

i+1∑
r=0

q(r
2)

(
i + 1

r

)
q

(
sα

)i–r+1. (B.3)

Differentiating (B.3) once with respect to sα , we get

G′
i
(
sα

)
=

i+1∑
r=0

q(r
2)

(
i + 1

r

)
q
(i – r + 1)

(
sα

)i–r =
i∑

r=0

q
r
2 (r–1)

(
i + 1

r

)
q
(i – r + 1)

(
sα

)i–r . (B.4)

This is a unified formula to calculate G′
i(sα) for fixed i. For example, at i = 1, we obtain

G′
1
(
sα

)
=

1∑
r=0

q
r
2 (r–1)

(
2
r

)
q
(2 – r)

(
sα

)1–r = 2
(

2
0

)
q

(
sα

)
+

(
2
1

)
q
, (B.5)

and hence,

G′
1
(
sα

)
= 2

(
sα

)
+ (1 + q) = 2

(
sα

)
+ 1 + ξ–α , (B.6)

which is the same expression in Eq. (59), where

(
2
0

)
q

= 1,
(

2
1

)
q

= 1 + q = 1 + ξ–α . (B.7)

Similarly, at i = 2 we have

G′
2
(
sα

)
=

2∑
r=0

q
r
2 (r–1)

(
3
r

)
q
(3 – r)

(
sα

)2–r = 3
(

3
0

)
q

(
sα

)2 + 2
(

3
1

)
q

(
sα

)
+ q

(
3
2

)
q
, (B.8)

i.e.,

G′
2
(
sα

)
= 3

(
sα

)2 + 2
(
1 + q + q2)(sα

)
+ q

(
1 + q + q2),

= 3
(
sα

)2 + 2
(
1 + ξ–α + ξ–2α

)(
sα

)
+

(
ξ–α + ξ–2α + ξ–3α

)
, (B.9)
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where
(

3
0

)
q

= 1,
(

3
1

)
q

=
(

3
2

)
q

= 1 + q + q2 = 1 + ξ–α + ξ–2α . (B.10)

The expression given by Eq. (B.9) agrees with the previous one in Eq. (65). Indeed, the
unified formula (B.4) for G′

i(sα) is easily programmable by any software when compared
with the preceding one in Sect. 5. This of course reflects the advantages of the q-calculus.
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