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Abstract
In this paper a model of Hopfield’s graded response neural network is investigated.
A network whose neurons are subject to a certain impulsive state displacement at
random times is considered. The model is set up and studied. The presence of
randommoments of impulses in the model leads to a change of the solutions to
stochastic processes. Also, we use the Riemann–Liouville fractional derivative to
model adequately the long-term memory and the nonlocality in the neural networks.
We set up in an appropriate way both the initial conditions and the impulsive
conditions at randommoments. The application of the Riemann–Liouville fractional
derivative leads to a new definition of the equilibrium point. We define mean-square
Mittag-Leffler stability in time of the equilibrium point of the model and study this
type of stability. Some sufficient conditions for this type of stability are obtained. The
general case with time varying self-regulating parameters of all units and time varying
functions of the connection between two neurons is studied.
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1 Introduction
The study of the dynamic behavior of neural networks has been investigated in many pa-
pers in the literature. Some researchers have found that in contrast to signal processing
of integer-order models of neural networks, the application of fractional-order derivatives
has significant advantages in modeling the problem. One of the most popular and influ-
ential types of neural networks is the classical first-order Hopfield neural network [12].
The long-term memory and the nonlocality of fractional derivatives allowed them to be
incorporated into neural networks to describe better the behavior of the neurons con-
nected with memory and heredity. Many researchers studied fractional neural networks
and obtained many advantages over integer-order neural networks. For instance, Alofi
et al. [6] studied the finite-time stability of Caputo fractional neural networks with dis-
tributed delay. Kaslik et al. [13] discussed the stability analysis of fractional-order neural
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networks of Hopfield type. It is worth mentioning that a novel conceptual framework of
the fractional-order Hopfield neural network has been given in [18]. Several results con-
cerning the implementation of the Caputo fractional derivative in the model have been
obtained in the literature. We could mention, for example, the papers in [13, 18, 23, 31]
about Caputo fractional-order Hopfield type neural networks.

Note that the case of fractional-neural networks with Riemann–Liouville (RL) fractional
derivatives is not well studied because of this type of derivative and the required initial
condition (see, for example, [10, 11, 15, 27, 29]). At the same time, there are some inaccu-
racies when the RL fractional derivative is applied. For example, in papers [10, 15, 27] the
RL fractional integral and the RL fractional derivative, respectively, are not well defined in
the initial conditions associated with the RL fractional model with delay. In [30] the equi-
librium point is defined by an equation which has only the zero solution (see Remarks 3
and 1).

Sometimes, neural networks are subject to some perturbations acting on a negligible
small time. The models in this case are so-called impulsive models. In the case when
the time of impulsive perturbations are initially given deterministic points, the impulsive
models with ordinary derivatives for neural networks are studied in [9, 19, 22, 25, 26, 33].
Note that impulsive fractional neural networks are studied for Caputo fractional derivative
in several papers, such as [17, 20, 24, 32], and for RL fractional derivative, see [28, 29].

The presence of randomness in the neural networks could be incorporated in various
ways. One of them is considering stochastic models (see, for example, the review paper
[21] and the references cited therein). Another is considering impulsive perturbation in
the neural networks occurring at random times (see, for example, [3, 4]).

The main goal of this paper is to define and study for the first time the RL fractional
generalization of a Hopfield neural network with impulses occurring at random times. Ini-
tially, a brief detailed explanation of the solutions being stochastic processes is provided.
Then, the equilibrium, deeply connected with the RL fractional derivative, is defined (it
is different than the equilibrium in impulsive Caputo fractional models). Note that the
presence of the RL fractional derivative and the type of the initial condition require a new
type of stability which excludes an appropriate neighborhood of the initial time point (it
is different than in impulsive Caputo fractional models). This stability, called the mean-
square Mittag-Leffler stability in time, is defined and studied in the paper. Some examples
are provided to illustrate the introduced equilibrium, the defined fractional Dini deriva-
tive of Lyapunov functions as well as the practical application of the obtained sufficient
conditions.

The main contributions in this paper could be summarized as follows:
– the model of Hopfield’s neural networks with RL fractional derivative and impulses at

random times is defined;
– the model with all variables in time coefficients is investigated;
– both the initial conditions and the impulsive conditions are set up in an appropriate

way;
– the equilibrium point, deeply connected with the properties of RL fractional

derivative, is defined;
– appropriate types of stability, called mean-square Mittag-Leffler stability in time and

eventual mean-square Mittag-Leffler stability in time, are defined and studied.
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2 Preliminary notes on fractional derivatives and equations
Let t0 ≥ 0 be a given number. In this paper we use the following definitions for fractional
derivatives and integrals:

– Riemann–Liouville (RL) fractional integral of order q ∈ (0, 1) (see [7, 8, 16])

t0 Iq
t m(t) =

1
�(q)

∫ t

t0

m(s)
(t – s)1–q ds, t > t0,

where � is the gamma function.
– Riemann–Liouville (RL) fractional derivative of order q ∈ (0, 1) (see [7, 8, 16])

RL
t0 Dq

t m(t) =
d
dt

(
t0 I1–q

t m(t)
)

=
1

�(1 – q)
d
dt

∫ t

t0

(t – s)–qm(s) ds, t > t0.

We call the point t0 a lower limit of the RL fractional derivative.
– Grunwald–Letnikov fractional derivative given by (see [7, 8, 16])

GL
t0 Dqm(t) = lim

h→0

1
hq

[ t–t0
h ]∑

r=0

(–1)r
qCrm(t – rh), t > t0,

and the Grunwald–Letnikov fractional Dini derivative given by

GL
t0 Dq

+m(t) = lim sup
h→0+

1
hq

[ t–t0
h ]∑

r=0

(–1)r
qCrm(t – rh), t > t0,

where qCr = q(q–1)···(q–r+1)
r! , r ≥ 0, is an integer and [ t–t0

h ] denotes the integer part of the
fraction t–t0

h .
The definitions of the initial condition for fractional differential equations with RL-

derivatives are based on the following result.

Lemma 2.1 (Lemma 3.2 [14]) Let q ∈ (0, 1) and t ∈ J .
(a) If there exists a.e. a limit limt→t0+[(t – t0)1–qm(t)] = C, then there also exists a limit

t0 I1–q
t m(t)

∣∣
t=t0

:= lim
t→t0+ t0 I1–q

t m(t) = C�(q).

(b) If there exists a.e. a limit t0 I1–q
t m(t)|t=t0 = B and if there exists the limit

limt→t0+[(t – t0)1–qm(t)], then

lim
t→t0+

[
(t – t0)1–qm(t)

]
=

B
�(q)

.

Remark 1 Note that if m(t) ≡ C = const, then

t0 I1–q
t C

∣∣
t=t0

= lim
t→t0+

[
(t – t0)1–qm(t)

]
= 0

and

RL
t0 Dq

t C =
C

�(1 – q)(t – t0)q .
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Let 0 ≤ a < b ≤ ∞ and consider the scalar RL fractional differential equation

RL
a Dq

t x(t) = f
(
t, x(t)

)
, t ∈ (a, b], (1)

where f : [a, b] ×R →R.

Remark 2 Note that according to [14] the initial conditions to (1) could be one of the
following forms:

– integral form (see (3.1.6) [14])

aI1–q
t x(t)

∣∣
t=a = B; (2)

– weighted Cauchy type problem (see (3.1.7) [14])

lim
t→a+

(
(t – a)1–qx(t)

)
= C. (3)

Proposition 1 (Lemma 5.2 [8]) Let the function f : [a, b]×R→R be continuous, bounded,
and Lipschitz with respect to the second variable.

Then the solution of the Cauchy type problem

RL
a Dq

t x(t)) = f
(
t, x(t)

)
, aI1–q

t x(t)
∣∣
t=a = B

satisfies the Volterra integral equation

x(t) =
B

�(q)(t – a)1–q +
1

�(q)

∫ t

a
(t – s)q–1f

(
s, x(s)

)
ds, t ∈ [a, b]

and vise verse.

3 Description of the RL fractional model with random impulses
We consider the model proposed by Hopfield [12] and known as Hopfield’s graded re-
sponse neural network. We generalize it in two ways:

– the rate of change of the state variables of neurons will be modeled by an RL
fractional derivative;

– the neurons are subject to certain impulsive state displacements at random moments.

3.1 RL fractional model with fixed points of impulses
Initially, we consider the case of fixed initially given points of impulses {Tk}∞k=1 with 0 <
Tk < Tk+1, k = 1, 2, . . . , and limk→∞ Tk = ∞, T0 = 0.

Consider the general model of RL fractional Hopfield’s graded response neural networks
with impulses occurring at fixed initially given times (INN):

RL
0 Dq

t xi(t) = –ci(t)xi(t) +
n∑

j=1

aij(t)fj
(
xj(t)

)
+ Ii(t)

for Tk < t < Tk+1, k = 0, 1, . . . , i = 1, 2, . . . , n,

(4)
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where n represents the number of neurons in the network, xi(t) is the pseudostate
variable denoting the average membrane potential of the ith neuron at time t, x(t) =
(x1(t), x2(t), . . . , xn(t)) ∈ R

n, ci(t) > 0, i = 1, 2, . . . , n, is the self-regulating parameter of the
ith unit, aij(t), i, j = 1, 2, . . . , n, correspond to the synaptic connection strength of the ith
neuron to the jth neuron at time t, fj(xj(t)) denotes the activation functions of the neu-
rons at time t and represent the response of the jth neuron to its membrane potential,
f (x) = (f1(x1), f2(x2), . . . , fn(xn)) is the activation function, and I(t) = (I1(t), I2(t), . . . , In(t)) is
the external bias vector.

The RL fractional derivative leads to a specific type of the initial condition of the model
(see Remark 2 and Lemma 2.1):

0I1–q
t xi(t)

∣∣
t=0 = x0

i , i = 1, 2, . . . , n. (5)

Let the average membrane potential of each neuron be subject to some instantaneous
perturbations at times Tk , k = 1, 2, . . . . Then model (4) will have impulses at times Tk , k =
1, 2, . . . . Let us recall the meaning of impulses in differential equations. At the time point
the state variable has a jump and then this state variable continues to behave according to
the previously given dynamic equation. So, the value after the jump/impulse has a meaning
of the initial value. In the case of ordinary derivatives and Caputo fractional derivatives,
because of the type of the initial condition, the value of the impulse condition could be
given in the form x(Tk + 0) = Ik(x(Tk – 0)) with x(Tk + 0), x(Tk – 0) equaling to values of the
state variable after the jump and before the jump, respectively, or similar one. In the case
of the RL fractional derivative, some authors use this type of impulsive conditions (see,
for example, [28]). But because of the type of the initial condition, we think that the above
given type of the impulsive condition is not appropriate. Now, following the interpretation
of impulses, Remark 2, and Lemma 2.1, we will define the impulsive conditions in the form:

Tk I1–q
t xi(t)

∣∣
t=Tk

= ψik
(
xi(Tk – 0)

)
, for i = 1, 2, . . . , n, k = 1, 2, . . . , (6)

where the functions ψi,k(u), k = 1, 2, . . . , are the impulsive functions giving the impulsive
perturbation of the ith neuron at time Tk , k = 1, 2, . . . .

In our study we apply some results for the initial value problem for the scalar linear RL
fractional differential equations with fixed points of impulses

RL
0 Dq

t u = au(t) for t ∈ (Tk , Tk+1], k = 0, 1, 2, . . . ,

Tk I1–q
t u(t)

∣∣
t=Tk

= 0, for k = 1, 2, . . . ,

0I1–q
t u(t)

∣∣
t=0 = u0,

(7)

where u0 ∈R, a < 0.

Lemma 3.1 ([5]) IVP (7) has an exact solution u ∈ PC1–q([0,∞),R) such that

∣∣u(t)
∣∣ ≤

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

|u0|
t1–q�(q) , t ∈ (0, T1],
|u0|πCsc[πq]

t1–q�(q)�(1–q) , t ∈ (T1, T2],
|u0|πCsc(πq)

t1–q�(q)�(1–q) (n – 1)(1 + πCsc(πq)
�(q)�(1–q) ), t ∈ (Tn, Tn+1], n = 2, 3, . . .

holds.
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3.2 RL fractional model with random impulses
Note that the fractional differential equations with impulses occurring at random times
are studied in [1, 3, 5]. Similar to these papers, we will define now the RL fractional model
with impulses at random times.

Let the probability space (�,F , P) be given. Let a sequence of independent exponentially
distributed random variables {τk}∞k=1 with the same parameter λ > 0 defined on the sample
space � be given.

Define the sequence of random variables {ξk}∞k=0 by

ξk =
k∑

i=1

τi, k = 1, 2, . . . , ξ0 ≡ 0. (8)

The random variable τk measures the waiting time of the kth impulse after the (k – 1)th
impulse occurs, and the random variable ξk denotes the length of time until k impulses
occur for t ≥ 0.

Let the points tk be arbitrary values of the corresponding random variables τk , k =
1, 2, . . . . Define the increasing sequence of points Tk =

∑k
i=1 ti, k = 1, 2, 3, . . . , that are values

of the random variables ξk .
Consider the initial value problem for INN with fixed points of impulses (4)–(6). The

solution of the INN with fixed moments of impulses (4) depends not only on the initial
value x0 = (x0

1, x0
2, . . . , x0

n) but also on the moments of impulses Tk , k = 1, 2, . . . , i.e., the so-
lution depends on the chosen arbitrary values tk of the random variables τk , k = 1, 2, . . . .
We denote the solution of initial value problem (4) by x(t; x0, {Tk}) with x = (x1, x2, . . . , xn).

The set of all solutions x(t; x0, {Tk}) of INN (4)–(6) for any values tk of the random vari-
ables τk , k = 1, 2, . . . , generates a stochastic process with state space R

n. We denote it by
x(t; x0, {τk}), and we say that it is a solution of the general model of Hopfield’s graded re-
sponse neural networks with impulses occurring at random times (RINN), formally de-
noted by

RL
0 Dq

t xi(t) = –ci(t)xi(t) +
n∑

j=1

aij(t)fj
(
xj(t)

)
+ Ii(t)

for ξk < t < ξk+1, k = 0, 1, . . . , i = 1, 2, . . . , n

ξk I1–q
t xi(t)

∣∣
t=ξk

= ψk,i
(
xi(ξk)

)
for k = 1, 2, . . . ,

0I1–q
t xi(0) = x0

i .

(9)

Now, similar to the papers [1, 3, 5], we will define the solution of the RL fractional model
with impulses at random times.

Definition 1 Suppose that tk is a value of the random variable τk , k = 1, 2, 3, . . . , and Tk =∑k
i=1 ti, k = 1, 2, . . . . Then the solution x(t; x0, {Tk}) of the IVP for INN (4)–(6) is called

a sample path solution of the IVP for RINN (9) (here, T0 = 0).

Definition 2 A stochastic process x(t; x0, {τk}) with an uncountable state space R
n is said

to be a solution of the IVP for RINN (9) if, for any values tk of the random variable τk ,
k = 1, 2, 3, . . . , and Tk =

∑k
i=1 ti, k = 1, 2, . . . , the corresponding function x(t; x0, {Tk}) is a

sample path solution of the IVP for INN (4)–(6).
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According to Definition 2 any solution of IVP (7) is a sample path solution of the follow-
ing scalar linear RL fractional differential equation with random moments of impulses:

RL
0 Dq

t u = au for t > 0, ξk < t < ξk+1,

ξk I1–q
t u(t)

∣∣
t=ξk

= 0, for k = 1, 2, . . . ,

0I1–q
t u(t)

∣∣
t=0 = u0,

(10)

where u0 ∈R, a < 0.

Lemma 3.2 ([5]) For any positive number ε > 0, the solution u(t; u0, {τk}) of the scalar lin-
ear RL fractional differential equation with random moments of impulses(10) satisfies the
inequality

E
(∣∣u(

t; u0, {τk}
)∣∣) ≤ |u0| λ

t1–q�(q)
πCsc(πq)
�(1 – q)

(
1 +

πCsc(πq)
�(q)�(1 – q)

)
, t ≥ 0,

where E(·) is the expected value of the stochastic process |u(t; u0, {τk})| and it depends on
the time t.

3.3 Equilibrium of RL fractional model with random impulses
The main problem in the definition for the equilibrium point of RL fractional model is
based on the properties RL

a Dq
t C = C

(t–a)q�(1–q) with a, C = const and aI1–q
t C|t=a =

C(t–a)1–q

�(q) |t=a = 0 (see Remark 1). These properties lead to a totally different definition of
equilibrium of RL model (9), defined as follows.

Definition 3 A vector x∗ ∈R
n, x∗ = (x∗

1, x∗
2, . . . , x∗

n), is an equilibrium point of RINN (9) iff
the equalities

0 = –
(

ci(t) +
1

tq�(1 – q)

)
x∗

i +
n∑

j=1

aij(t)fj
(
x∗

j
)

+ Ii(t) for t ≥ 0, i = 1, 2, . . . , n, (11)

and

0 = ψk,i
(
x∗

i
)

for k = 1, 2, . . . , i = 1, 2, . . . , n, (12)

hold.

Remark 3 Equality (11) is the main part of the definition for the equality of an equilibrium
of any type of a model with RL fractional derivative. If the term 1

tq�(1–q) x∗
i is missing in the

definition for equilibrium, then it is correct only for zero equilibrium (see, for example,
where the definition does not contain the mentioned term). In [27] the equilibrium point
is defined as a function depending on time.

Remark 4 In the case of zero external bias vector, if zero is a fixed point of the activation
function and the impulsive functions, then for any ci(t) the point 0 is an equilibrium point
of RINN (9).
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Remark 5 In the special case of the zero external bias vector and ai,j(t) = ci(t) + 1
tq�(q) , i, j =

1, 2, . . . , n, any fixed points of the activation functions could form an equilibrium point,
i.e., if x∗

i = fi(x∗
i ), then x∗ = (x∗

1, x∗
2, . . . , x∗

n) could be an equilibrium of RINN (9).

Remark 6 In the case of all constant coefficients in the model, if the external bias vector
is zero, then 0 could be an equilibrium point, but if the external bias vector is a nonzero
constant vector, then the model has no equilibrium point.

Remark 7 In [28] the RL derivative is used in the model of BAM neural networks with
deterministic impulses. The equilibrium point is defined in Definition 7 [28] with missing
term 1

tq�(1–q) x∗
i , but in all examples only zero equilibrium and zero bias external vector are

considered.

The equilibrium point depends not only on the RL fractional equations but also on the
impulsive conditions. We will illustrate it in the following example.

Example 1 Consider the model of a neural network with three neurons with impulses at
random times:

RL
0 D0.2

t x1(t) = –
(

1
t

+ 5 –
1

t0.2�(0.8)

)
x1(t) – 0.1 sin(t) sin

(
x1(t)

)

+ 0.4 sin
(
x2(t)

)
+ 0.3 sin

(
x3(t)

)
+

(
1
t

+ 5
)

π for ξk < t < ξk+1,

RL
0 D0.2

t x2(t) = –
(

1
t

+ 5 –
1

t0.2�(0.8)

)
x2(t) –

t2

5t2 + 1
sin

(
x1(t)

)
π

+ 0.3 sin
(
x2(t)

)
+

t
5t + 1

sin
(
x3(t)

)
+ 2

(
1
t

+ 5
)

π for ξk < t < ξk+1,

RL
0 D0.2

t x3(t) = –
(

1
t

+ 5 –
1

t0.2�(0.8)

)
x3(t) +

t
10t + 1

sin
(
x1(t)

)
π

– 0.2 cos(t) sin
(
x2(t)

)
– 0.1 sin(t) sin

(
x3(t)

)

+ 3
(

1
t

+ 5
)

π for ξk < t < ξk+1,

(13)

and impulsive conditions

ξk I1–q
t x1(t)

∣∣
t=ξk

= ψk,1
(
x1(ξk)

)
for k = 1, 2, . . . ,

ξk I1–q
t x2(t)

∣∣
t=ξk

= ψk,2
(
x2(ξk)

)
for k = 1, 2, . . . ,

ξk I1–q
t x3(t)

∣∣
t=ξk

= ψk,3
(
x3(ξk)

)
for k = 1, 2, . . . .

(14)

Note that the point x∗ = (π , 2π , 3π ) satisfies the system of RL fractional differential equa-
tions (13).

In the case ψk,1(u) = ψk,3(u) = sin(k(u – π )), ψk,2(u) = sin(ku), k = 1, 2, . . . , the point x∗ =
(π , 2π , 3π ) is an equilibrium point of RINN (13),(14).

In the case ψk,1(u) = ψk,3(u) = sin(k(u – π )), ψk,2(u) = k(u – 2π ), k = 1, 2, . . . , the point
x∗ = (π , 2π , 3π ) is an equilibrium point of RINN (13),(14).
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In the case ψk,1(u) = ψk,3(u) = cos(k(u – π )), ψk,2(u) = sin(ku), k = 1, 2, . . . , the point x∗ =
(π , 2π , 3π ) is not an equilibrium point of RINN (13),(14). The model has no equilibrium
point.

We assume the following:

Assumption A1 Let RINN (9) have an equilibrium point x∗ ∈R
n.

If Assumption A1 is satisfied, then we can shift the equilibrium point x∗ of system (9)
to the origin. The transformation y(t) = x(t) – x∗ is used to put system (9) in the following
form:

RL
0 Dq

t yi(t) = –ci(t)yi(t) +
n∑

j=1

aij(t)Fj
(
yj(t)

)

for ξk < t < ξk+1, k = 0, 1, . . . , i = 1, 2, . . . , n,

ξk I1–q
t yi(t)

∣∣
t=ξk

= 
k,i
(
yi(ξk)

)
for k = 1, 2, . . . ,

0I1–q
t yi(t)

∣∣
t=0 = y0

i ,

(15)

where Fj(u) = fj(u + x∗
j ) – fj(x∗

j ), j = 1, 2, . . . , n, and 
k,i(u) = ψk,i(u + x∗
i ) – ψk,i(x∗

i ) = ψk,i(u +
x∗

i ), i = 1, 2, . . . , n, k = 1, 2, . . . , y0
i = x0

i .

Remark 8 RINN (15) has a zero external bias vector, zero is a fixed point of both the ac-
tivation functions Fj(u), j = 1, 2, . . . , n, and the impulsive functions 
k,i(u), i = 1, 2, . . . , n,
k = 1, 2, . . . , and according to Remark 5 the zero vector is an equilibrium of RINN (15).

Therefore, if we know the equilibrium point x∗ ∈ R
n of (9), then we can construct a

model with zero equilibrium point. But oppositely, if the point y∗ = 0 is an equilibrium of
RINN (15), then we are not able to obtain the equilibrium point x∗ ∈R

n of (9).

4 p-moment Mittag-Leffler stability in time for RL fractional model with
random impulses

We define the mean-square Mittag-Leffler stability in time of the equilibrium point of
RINN (9). This type of stability is deeply connected with the application of Mittag-Leffler
functions with one parameter. Also, the presence of the RL fractional derivative and its
singularity at the initial time leads to excluding this point from the interval of stability.
This definition is similar to the definition of p-moment Mittag-Leffler stability in time,
introduced for RL fractional delay differential equations by Agarwal et al. [5].

Definition 4 The equilibrium point x∗ of RINN (9) is said to be mean-square Mittag-
Leffler stable in time if, for any ε > 0 and any initial value x0 ∈ R

n, there exists a constant
α > 0 such that

E
[∥∥x

(
t; x0, {τk

)}) – x∗∥∥2] < α
∥∥x0 – x∗∥∥2Eq

(
–tq) for all t > ε,

where x(t; x0, {τk}) is the solution of RINN (9) and E[·] is the expected value, and Eq(z) =∑∞
k=0

zk

�(αk+1) is the Mittag-Leffler function with one parameter.



Agarwal et al. Advances in Difference Equations         (2021) 2021:98 Page 10 of 20

Definition 5 The equilibrium point x∗ of RINN (9) is said to be eventually mean-square
Mittag-Leffler stable if there exists a number T > 0 such that, for any ε > 0 and any initial
value x0 ∈R

n, there exists a constant α > 0 such that

E
[∥∥x

(
t; x0, {τk

)}) – x∗∥∥2] < α
∥∥x0 – x∗∥∥2Eq

(
–tq) for all t > max{T , ε}.

Remark 9 The above defined types of stability are mainly characterized by the corre-
sponding inequalities, giving bounds that the solutions are satisfied out of an enough small
neighborhood of the initial time. Note that it differs from the case of the Caputo fractional
derivative and ordinary derivatives. This is because of the type of the initial condition
which is deeply connected with the RL fractional derivative.

In the study of the stability properties of RINN(9) we use Lyapunov functions V (t, x) :
[0,∞) × R

n → R+ from the class �([0,∞),Rn), i.e., they are continuous on [0, ∞) × R
n

and Lipschitzian with respect to their second vector argument.
We use the Dini fractional derivative of a Lyapunov function V (t, x), and we define it

similarly to [2].

Definition 6 Let V ∈ �([0,∞),Rn), T ≤ ∞. The fractional Dini derivatives along trajec-
tories of solutions of RINN (9) are defined as follows:

Dq
(9)V (t, x) = lim sup

h→0+

1
hq

{
V (t, x)

–
[ t

h ]∑
r=1

(–1)r+1
qCrV

(
t – rh, x1 – hq

(
–c1(t)x1 +

n∑
j=1

a1j(t)fj(xj) + I1(t)

)
,

x2 – hq

(
–c2(t)x2 +

n∑
j=1

a2j(t)fj(xj) + I2(t)

)
, . . . ,

xn – hq

(
–cn(t)xn +

n∑
j=1

anj(t)fj(xj) + In(t)

))}
, t ≥ 0, x ∈ R

n,

(16)

where x = (x1, x2, . . . , xn).

Example 2 Let V (t, x1, x2, . . . , xn) = m(t)
∑n

i=1 x2
i , where m ∈ C1(R+,R+). Use (16) to obtain

the fractional Dini derivative of V along the trajectories of solutions of RINN (15):

Dq
(15)V (t, x1, x2, . . . , xn)

= lim sup
h→0+

1
hq

{
m(t)

n∑
i=1

x2
i

–
[ t

h ]∑
r=1

(–1)r+1
qCrm(t – rh)

n∑
i=1

(
xi – hq

(
–ci(t)xi +

n∑
j=1

aij(t)Fj(xj)

))2}

=
n∑

i=1

x2
i lim sup

h→0+

1
hq

[ t
h ]∑

r=0

(–1)r
qCrm(t – rh)
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+ lim sup
h→0+

n∑
i=1

(–2xi

(
–ci(t)xi +

n∑
j=1

aij(t)Fj(xj)

) [ t
h ]∑

r=1

(–1)r
qCrm(t – rh)

+ lim sup
h→0+

n∑
i=1

hq

(
–ci(t)xi +

n∑
j=1

aij(t)Fj(xj)

)2 [ t
h ]∑

r=1

(–1)r
qCrm(t – rh)}

= RL
0 Dq(m(t)

) n∑
i=1

x2
i – 2m(t)

n∑
i=1

ci(t)x2
i + 2m(t)

n∑
i=1

n∑
j=1

aij(t)xiFj(xj).

Note that the fractional Dini derivative depends significantly not only on the order q of
the fractional differential equation but also on the initial time (0 in our case).

We will introduce the following assumptions:

Assumption A2 The fractional order q ∈ (0, 1) of the RL fractional derivative is such that,
for any ε > 0, the equation 1

t1–q = 1
Eq(–εq)ε1–q Eq(–tq) has only one solution for t > 0, where

Eα(z) is the Mittag-Leffler function with one parameter.

Assumption A3 The neuron activation functions are Lipschitz, i.e., there exist positive
numbers Li > 0, i = 1, 2, . . . , n, such that |fi(u) – fi(v)| ≤ Li|u – v|, i = 1, 2, . . . , n for u, v ∈R.

Assumption A4 There exist positive numbers Mi,j, i, j = 1, 2, . . . , n, such that |ai,j(t)| ≤ Mi,j

for t ≥ 0.

Assumption A5 There exist numbers Bi > 0, i = 1, 2, . . . , n, such that the inequalities
ci(t) ≥ Bi > 0, t ≥ 0 hold.

Assumption A6 There exist positive constants A, B: A < B and a positive bounded RL dif-
ferentiable function m(t): R+ → [A, B]: A ≤ m(t) ≤ B, t ≥ 0, such that limt→0[tq–1m(t)] =
α < ∞, and the inequality

2 min
i∈1,n

Bi –
RL
0 Dq

t (m(t))
m(t)

–
n∑

j=1

(
max
i∈1,n

MijLj + max
i∈1,n

MjiLi

)
> 0, t ≥ 0, (17)

holds.

Assumption A7 There exist positive constants T , B and a positive bounded RL differen-
tiable function m(t): R+ → [0, B]: m(t) 	= 0 for t > 0 and limt→0[tq–1m(t)] = α < ∞, and the
inequality

2 min
i∈1,n

Bi –
RL
0 Dq

t (m(t))
m(t)

–
n∑

j=1

(
max
i∈1,n

MijLj + max
i∈1,n

MjiLi

)
> 0, t > T , (18)

holds.

Remark 10 If Assumption A3 is fulfilled, then the function F in RINN (15) satisfies
|Fj(u)| ≤ Lj|u|, j = 1, 2, . . . , n, for any u ∈R.
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Figure 1 Graphs of the functions 1
t1–q

and 1
Eq (–εq )ε1–q

Eq(–tq) for q = 0.2 and ε = 0.5

Figure 2 Graphs of the functions 1
t1–q

and 1
Eq (–εq )ε1–q

Eq(–tq) for q = 0.2 and ε = 0.1

Figure 3 Graphs of the functions 1
t1–q

and 1
Eq (–εq )ε1–q

Eq(–tq) for q = 0.8 and ε = 0.1

Remark 11 The number q = 0.2, for example, satisfies condition A2 (see Fig. 1 and Fig. 2 for
different values of ε), but the number q = 0.8 does not satisfy Assumption A2 (see Fig. 3).

Theorem 4.1 Let Assumptions A1–A6 be satisfied.
Then the equilibrium point x∗ of RINN (9) is mean-square Mittag-Leffler stable in time.
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Proof According to Remark 8, we study the behavior of the zero equilibrium of RINN(15).
Consider the Lyapunov function V (t, x) = m(t)

∑n
i=1 x2

i , x = (x1, x2, . . . , xn), where the func-
tion m(t) is defined in Assumption A6.

Choose a positive number C such that

2 min
i∈1,n

Bi –
RL
0 Dq

t (m(t))
m(t)

–
n∑

j=1

(
max
i∈1,n

MijLj + max
i∈1,n

MjiLi

)
≥ C > 0, t ≥ 0.

According to Example 2, Remark 10, and Assumption A6, we have, for t ≥ 0,

Dq
(15)V (t, x)

= RL
0 Dq

t
(
m(t)

) n∑
i=1

x2
i – 2m(t)

n∑
i=1

ci(t)x2
i + 2m(t)

n∑
i=1

n∑
j=1

aij(t)xiFj(xj)

≤ RL
0 Dq

t
(
m(t)

) n∑
i=1

x2
i – 2m(t)

n∑
i=1

Bix2
i + 2m(t)

n∑
i=1

n∑
j=1

Mij|xi|Lj|xj|

≤ –
(

2 min
i∈1,n

Bi –
RL
0 Dq

t (m(t))
m(t)

)
V (t, x) + m(t)

n∑
i=1

x2
i

n∑
j=1

MijLj

+ m(t)
n∑

i=1

n∑
j=1

MijLjx2
j

≤ –
(

2 min
i∈1,n

Bi –
RL
0 Dq

t (m(t))
m(t)

)
V (t, x)

+ V (t, x)

( n∑
j=1

max
i∈1,n

MijLj +
n∑

j=1

max
i∈1,n

MjiLi

)

≤ –

(
2 min

i∈1,n
Bi –

RL
0 Dq

t (m(t))
m(t)

–
n∑

j=1

(
max
i∈1,n

MijLj + max
i∈1,n

MjiLi

))
V (t, x)

≤ –mV (t, x),

(19)

where 1, n = {1, 2, . . . , n}.
Let x0 ∈R

n be an arbitrary initial value and the stochastic process x(t; x0, {τk}) be a solu-
tion of the initial value problem for RINN (9). Then the stochastic process y(t; x0 – x∗, {τk})
is a solution of the initial value problem for RINN (15).

Let ε > 0 be an arbitrary number and tk be arbitrary values of the random variables τk ,
k = 1, 2, . . . . Then Tk =

∑k
i=1 ti, k = 1, 2, . . . , are values of the random variables ξk . Thus the

corresponding function y(t) = y(t; x0 – x∗, {Tk}) is a sample path solution of the IVP for
RINN (9), i.e., y(t) = y(t; x0 – x∗, {Tk}) is a solution of the IVP for the INN with fixed points
of impulses

RL
0 Dq

t yi(t) = –ci(t)yi(t) +
n∑

j=1

aij(t)Fj
(
yj(t)

)
, t > 0, t 	= Tk , i = 1, 2, . . . , n,

Tk I1–q
t yi(t)

∣∣
t=Tk

= 
k,i
(
yi(Tk)

)
for k = 1, 2, . . . ,

0I1–q
t yi(t)

∣∣
t=0 = x0

i – x∗
i .

(20)
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Define the function v(t) = V (t, y(t)) = m(t)
∑n

i=1 y2
i (t). Then, for t ∈ (Tk , Tk+1], k =

0, 1, 2, . . . , (here T0 = 0), from the existence of the RL derivative of y(t; x0 – x∗, {τk}) on
the whole interval t ≥ 0 and the link between RL and Grunwald–Letnikov derivatives (see
p. 76 [16]), we obtain

–ci(t)yi(t) +
n∑

j=1

aij(t)Fj
(
yj(t)

)
= RL

0 Dq
t yi(t) = GL

0 Dq
+yi(t)

= lim sup
h→0+

1
hq

[
yi(t) –

[ t
h ]∑

p=1

(–1)p+1
qCpyi(t – ph)

]

or

yi(t) – hq

(
–ci(t)yi(t) +

n∑
j=1

aij(t)Fj
(
yj(t)

))
=

[ t
h ]∑

p=1

(–1)p+1
qCpyi(t – ph) + �i

(
hq) (21)

with �i(hq)
hq → 0 as h → 0. Thus, from the definition of the function v(t) and Eq. (21), we

get

v(t) –
[ t

h ]∑
r=1

(–1)r+1
qCrv(t – rh)

= m(t)
n∑

i=1

y2
i (t) –

[ t
h ]∑

r=1

(–1)r+1
qCrm(t – rh)

n∑
i=1

y2
i (t – rh)

= A(t) +
[ t

h ]∑
r=1

(–1)r+1
qCrm(t – rh)

×
n∑

i=1

{(
yi(t) – hq

(
–ci(t)yi(t) +

n∑
j=1

aij(t)Fj
(
yj(t)

)))2

– y2
i (t – rh)

}

= A(t) +
[ t

h ]∑
r=1

(–1)r+1
qCrm(t – rh)

×
n∑

i=1

{( [ t
h ]∑

p=1

(–1)p+1
qCpyi(t – ph) + �i

(
hq)

)2

– y2
i (t – rh)

}

≤A(t) + C
[ t

h ]∑
r=1

qCr

n∑
i=1

�2
i
(
hq)

+ 2A
[ t

h ]∑
r=1

qCr

n∑
i=1

�i
(
hq)

∣∣∣∣∣
[ t

h ]∑
p=1

(–1)r+1
qCpyi(t – ph)

∣∣∣∣∣

+ A

( [ t
h ]∑

r=0

(–1)r
qCr

)( n∑
i=1

{ [ t
h ]∑

p=0

(–1)p
qCpy2

i (t – ph)

})
,

(22)

where A(t) = m(t)
∑n

i=1 y2
i (t) –

∑[ t
h ]

r=1(–1)r+1
qCrm(t – rh)

∑n
i=1(yi(t) – hq(–ci(t)yi(t) +∑n

j=1 aij(t)Fj(yj(t))))2.
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Dividing both sides of inequality (22) by hq, taking the limit as h → 0+, using (19) and∑∞
r=0 qCrzr = (1 + z)q if |z| ≤ 1, we have

GL
0 Dq

+v(t) ≤ Dq
(15)V

(
t, y(t)

) ≤ –CV
(
t, y(t)

)
= –Cv(t), t ∈ (Tk , Tk+1]. (23)

From (20) and Lemma 2.1, we have

lim
t→0

[
t1–qyi(t)

]
=

x0
i – x∗

i
�(q)

and

lim
t→Tk

[
(t – Tk)1–qyi(t)

]
=

ψk,i(yi(Tk) + x∗
i )

�(q)
.

Then, applying Assumption A6, we obtain

lim
t→0

t1–qv(t) = lim
t→0

[
t1–qm(t)

n∑
i=1

y2
i (t)

]
= lim

t→0

m(t)
t1–q

n∑
i=1

(
lim
t→0

[
t1–qyi(t)

]2
)

= α

n∑
i=1

(
x0

i – x∗
i
)2 = α

∥∥x0 – x∗∥∥2

(24)

and

lim
t→Tk

(t – Tk)1–qv(t) = lim
t→Tk

[
(t – Tk)1–qm(t)

n∑
i=1

y2
i (t)

]

= m(Tk)
n∑

i=1

y2
i (Tk) lim

t→Tk

[
(t – Tk)1–q] = 0.

(25)

Therefore, from (23), (24), (25) it follows that the function v(t) satisfies the linear impul-
sive fractional differential inequalities with fixed points of impulses

RL
0 Dq

t v(t) ≤ –Cv(t) for t > 0, t 	= Tk ,

Tk I1–q
t v(t)

∣∣
t=Tk

= 0, k = 1, 2, . . . ,

0I1–q
t v(t)

∣∣
t=0 = u0,

(26)

where u0 = α‖x0 – x∗‖2.
Consider (7) with a = –C. According to Lemma 3.1 it has an exact solution u ∈

PC1–q([0,∞),R) and v(t) ≤ u(t). The function u(t) is a sample path solution of (10) where
the solution u(t; u0, {τk}) according to Lemma 3.2 satisfies the inequality

E
(∣∣u(

t; u0, {τk}
)∣∣)

≤ |u0| λ

t1–q�(q)
πCsc(πq)
�(1 – q)

(
1 +

πCsc(πq)
�(q)�(1 – q)

)

= α
∥∥x0 – x∗∥∥2 λ

t1–q�(q)
πCsc(πq)
�(1 – q)

(
1 +

πCsc(πq)
�(q)�(1 – q)

)
, t ≥ ε.

(27)
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According to Assumption A2 and (27), we get

E
(∣∣u(

t; u0, {τk}
)∣∣) ≤ ξλ,q,ε

∥∥x0 – x∗∥∥2Eq
(
–tq), t ≥ ε, (28)

with ξλ,q,ε = λα

Eq(–εq)ε1–q�(q)
πCsc(πq)
�(1–q) (1 + πCsc(πq)

�(q)�(1–q) ).
Applying

E
(∣∣v(t; u0, {τk}

)∣∣) = E

(
m(t)

n∑
i=1

yi
(
t; x0 – x∗, {τk}

)2
)

)

= m(t)E

( n∑
i=1

yi
(
t; x0 – x∗, {τk}

)2
)

= m(t)E

( n∑
i=1

(
xi

(
t; x0, {τk}

)
– x∗

i
)2

)

= m(t)E
(∥∥x

(
t; x0, {τk}

)
– x∗∥∥2)

≤ E
(∣∣u(

t; u0, {τk}
)∣∣),

(29)

we get

E
(∥∥x

(
t; x0, {τk}

)
– x∗∥∥2) ≤ ξλ,q,ε

B
∥∥x0 – x∗∥∥2Eq

(
–tq), t ≥ ε. (30)

Inequality (30) proves the mean-square Mittag-Leffler stability in time. �

In the case inequality (17) is not satisfied for all t ≥ 0 but inequality (18) is satisfied for
enough large t,we could prove the eventually mean-square Mittag-Leffler stability in time
of the equilibrium.

Theorem 4.2 Let Assumptions A1–A5 and A7 be satisfied.
Then the equilibrium point x∗ of RINN (9) is eventually mean-square Mittag-Leffler sta-

ble in time.

Proof According to Assumption A7, there exist a function m(t) and a number T such that
m(t) > 0 for t > T . Choose a constant C > 0 such that

2 min
i∈1,n

Bi –
RL
0 Dq

t (m(t))
m(t)

–
n∑

j=1

(
max
i∈1,n

MijLj + max
i∈1,n

MjiLi

)
≥ C, t > T .

Similar to the proof of Theorem 4.1, we consider the Lyapunov function V (t, x) =
m(t)

∑n
i=1 x2

i , x = (x1, x2, . . . , xn) and prove inequality (19) for t > T . Let x0 ∈R
n be an arbi-

trary initial value and the stochastic process x(t; x0, {τk}) be a solution of the initial value
problem for RINN (9) and y(t; x0 – x∗, {τk}) be a solution of (15).

Let ε > 0 be an arbitrary number and tk be arbitrary values of the random variables τk ,
k = 1, 2, . . . . Then Tk =

∑k
i=1 ti, k = 1, 2, . . . , are values of the random variables ξk . Thus the

corresponding function y(t) = y(t; x0 – x∗, {Tk}) is a solution of (20). Define the function
v(t) = V (t, y(t)). As in the proof of Theorem 4.1, we prove GL

0 Dq
+v(t) ≤ –Cv(t) for t > T ,

t ∈ (Tk , Tk+1], k = 0, 1, 2, . . . .
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Define the function ṽ(t) : [0,∞) → R+ such that ṽ(t) ≡ v(t), t > T , and ṽ(t) is a solution
of (26) for t ∈ [0, T].

Then, as in the proof of Theorem 4.1, we obtain for t > max{ε, T} the inequality
E(|ṽ(t; u0, {τk})|) = E(|v(t; u0, {τk})|) ≤ E(|u(t; u0, {τk})|), which proves the claim of Theo-
rem 4.2. �

Example 3 Let τk ∈ Exp(1), k = 1, 2, . . . , and consider the model of RL fractional neural
network with impulses at random times (13) with impulsive conditions

ξk I1–q
t x1(t)

∣∣
t=ξk

=
1
k

sin
(
x1(ξk)

)
for k = 1, 2, . . . ,

ξk I1–q
t x2(t)

∣∣
t=ξk

=
1
k

cos
(
x2(ξk) – 0.5π

)
for k = 1, 2, . . . ,

ξk I1–q
t x3(t)

∣∣
t=ξk

=
1
k

sin
(
x3(ξk)

)
for k = 1, 2, . . .

(31)

and initial conditions

0I1–q
t yi(t)

∣∣
t=0 = x0

i , i = 1, 2, 3. (32)

According to Example 1, the point (π , 2π , 3π ) is an equilibrium point of RINN (13),(31),
i.e., Assumption A1 is satisfied.

According to Remark 11, Assumption A2 is fulfilled.
In this special case ci(t) = ( 1

t – 1
t0.2�(1–0.2) + 5) > 4.55, f1(u) = f2(u) = f3(u) = sin(u), and the

matrix of coefficients A(t) = {aij(t)} is given by

A(t) =

⎛
⎜⎝

–0.1 sin t 0.4 0.3
– t2

5t2+1 0.3 t
5t+1

t
10t+1 –0.2 cos t –0.1 sin t

⎞
⎟⎠ .

Assumption A3 is satisfied with Li = 1, i = 1, 2, 3.
Also Assumption A4 is satisfied with the matrix

M =

⎛
⎜⎝

0.1 0.4 0.3
0.2 0.3 0.2
0.1 0.2 0.1

⎞
⎟⎠ .

Assumption A5 is satisfied with Bi = 4.55, i = 1, 2, 3.
Define the function m(t) : R+ → [0, 1) by m(t) = t0.8

t0.8+1 . It satisfies limt→0[t0.2–1m(t)] =
α = 1 (see Fig. 4).

Then there exists T = 0.00006 > 0 such that (see Fig. 5)

2 min
i=1,3

Bi –
3∑

j=1

(
max
i=1,3

MijLj + max
i=1,3

MjiLi

)

= 2(4.55) – 1.8 = 9.1 – 1.8 = 7.3 >
RL
0 Dq

t (m(t))
m(t)

, t > T .

(33)
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Figure 4 Example 3. Graph of the fractional derivative RL
0 D0.2(m(t))

Figure 5 Example 3. Graphs of bound 7.3 and the function
RL
0 D

q
t (m(t))
m(t)

Therefore, since (31) is not satisfied for all t ≥ 0, Assumption A6 is not satisfied, but As-
sumption A7 is fulfilled.

Thus, according to Theorem 4.2, the equilibrium of RINN (13) is eventually mean-
square Mittag-Leffler stable in time, i.e., in this particular case

ξ1,0.2,ε =
1

E0.2(–ε0.2)ε0.8�(0.2)
πCsc(π0.2)

�(0.8)

(
1 +

πCsc(π0.2)
�(0.2)�(0.8)

)
=

2
E0.2(–ε0.2)ε0.8

for any ε > 0 and t ≥ max{0.00006, ε}, the inequality

E
(∥∥x

(
t; x0, {τk}

)
– x∗∥∥2) ≤ 2

E0.2(–ε0.2)ε0.8

∥∥x0 – x∗∥∥2Eq
(
–tq)

holds.

5 Conclusions
In this paper the RL fractional generalization of the first-order Hopfield neural network is
studied in the case when some impulses occur at random times. We study the case when
the waiting time between two consecutive times of impulses is exponentially distributed.
In connection with the application of the RL fractional derivative in the model, we define
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in an appropriate way both the initial condition and the impulsive conditions. We define
mean-square stability in time of the model and obtain some sufficient conditions.

In further work we hope to consider a number of directions:
(i) Considering both fractional models, i.e., with the Caputo fractional derivative as

well as the RL fractional derivative, and generalizing the waiting time between two
consecutive impulses is Erlang distributed, is Log-normal distributed, etc.

(ii) Generalizing the RL fractional model to various other types of delays.
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