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Abstract
In this note, we broaden the utilization of an efficient computational scheme called
the approximate analytical method to obtain the solutions of fractional-order
Navier–Stokes model. The approximate analytical solution is obtained within
Liouville–Caputo operator. The analytical strategy generates the series form solution,
with less computational work and fast convergence rate to the exact solutions. The
obtained results have shown a simple and useful procedure to analyze complex
problems in related areas of science and technology.
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1 Introduction
Recently, the old idea of fractional-order derivatives became the focal point for many re-
searchers. The mathematicians investigated the recent applications of fractional deriva-
tives in advanced fields of applied science and engineering. Since the fractional-order
differential operator is nonlocal, the next state of a system depends on its current and
previous states. The noninteger order derivatives have the major merit of describing the
memory and heredity properties of various phenomena. Therefore the fractional-order
derivatives and integrals have numerous applications in science and technology; for exam-
ple, modeling nonlinear oscillations of earthquakes [1], the fractional-order fluid dynamic
traffic model [2], chaos theory [3], signal processing phenomena [4], electrodynamics [5],
fractional model of cancer chemotherapy [6], optics [7], fractional diabetes model [8], and
other areas [9–14].

A famous viscous fluid flow equation of motion called the Navier–Stokes equation has
been developed in 1822 [15]. This Navier–Stokes equation can be regarded as Newton’s
second law of motion for fluid substances, and it is a combination of the continuity, mo-
mentum, and energy equations. It describes many physical phenomena such as ocean
currents, liquid flow in a pipe, blood flows in arteries, and airflow around aircraft wings.
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The Navier–Stokes model was first modeled as a fractional-order model by El-Shahed and
Salem [16] in 2005 from the generalized classical NS equations.

Numerical and approximate analytical solutions of classical NSE and fractional NSE
are the primary consideration of researchers. Different techniques have were used by re-
searchers such as Kumar et al. [17], who solved a nonlinear fractional model of NS analyt-
ically by coupling LTA and HPM, Kumar et al. [18] also obtained an approximate solution
of NSE by coupling ADM and LTA, Ganji et al. [19] and Ragab et al. [20] used HAM for
solving fractional-order NS model. Rasool Shah et al. [21] applied a new hybrid method
known as the Laplace–Adomian decomposition method (LADM) for analytical approx-
imation of fractional-order system of NS equation. Momani and Odibat [22] used ADM
for analytical solution of fractional-order NSE, and Birajdar [23] also applied ADM for ap-
proximate solution of fractional-order NSE. Chaurasia and Kumar [24] used the Laplace
and Hankel transforms for analytical solution of fractional-order Navier–Stokes model,
Parkash et al. [25] used q-HATM for analytical solution of the coupled fractional-order
NS model, Barjes et al. [26] used FRDTM for numerical simulation of NSE. Some other
recent numerical and analytical methods used for fractional-order models are [27–35].

In this paper, we develop the approximate analytical method (AAM) based on an an-
alytical strategy using the Riemann–Liouville integral operator and Caputo operator (4).
The analytical approximation is obtained by testing some linear and nonlinear Navier–
Stokes models of fractional order. The AAM provided tentative results as compared to
other numerical and approximate methods.

The rest of this paper is organized as follows. In Sect. 2, we present preliminary concepts.
In Sect. 3, we present the procedure of AAM. In Sect. 4, we implement AAM on some fluid
flow model. In Sect. 5, we conclude the results.

2 Preliminaries and basic concepts
In this section, we present the related definitions and preliminary concepts of fractional
calculus and the procedure of the new AAM.

2.1 Riemann–Liouville integral operator [36]
The Riemann–Liouville fractional partial integral, denoted by Iϑ

t , where ϑ ∈ N , ϑ ≥ 0, is
defined as

Iϑ
t υ(�, t) =

⎧
⎨

⎩

1
�(ϑ)

∫ t
0 υ(�, t) dt, ϑ , t > 0,

υ(�, t), ϑ = 0, t > 0,
(1)

where, � is the gamma function.

2.2 Some properties of Riemann– fractional partial integral
Let ϑ ,β ∈ R \ N , ϑ ,β > 0, ρ > –1. Then the operator Iϑ

t has the following properties for
functions υ(�, t):

⎧
⎪⎪⎨

⎪⎪⎩

Iϑ
t υ(�, t)Iβ

t υ(�, t) = Iϑ+β
t υ(�, t),

Iϑ
t υ(�, t)Iβ

t υ(�, t) = Iβ
t υ(�, t)Iϑ

t υ(�, t),

Iϑ
t tρ = �(ρ+1)

�(ϑ+ρ+1) tϑ+ρ .

(2)
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2.3 Caputo operator of fractional partial derivative [37]

Dϑ
t υ(�, t) =

∂ϑυ(�, t)
∂tϑ

=

⎧
⎨

⎩

In–ϑ [ ∂ϑυ(�,t)
∂tϑ ], n – 1 < ϑ < n, n ∈ N ,

∂ϑυ(�,t)
∂tϑ , n = ϑ .

(3)

Theorem 2.1 ([36]) Let ϑ , t ∈ R, t > 0, and m – 1 < ρ < m ∈ N . Then

Iϑ
t Dϑ

t υ(�, t) = υ(�, t) –
m–1∑

k=0

tk

k!
∂kυ(�, 0+)

∂tk ,

Dϑ
t Iϑ

t υ(�, t) = υ(�, t).

(4)

3 NAAM procedure for the solution of problems [36]
In this section, we discuss a general procedure of NAAM for the solution of fluid model.
Consider the nonlinear time fractional-order physical model of the form

υϑ
t (�,�, ξ , t) = Lυ(�,�, ξ , t) + ℵυ(�,�, ξ , t) + g(�,�, ξ , t), ϑ ∈ [1, 2], (5)

with initial source

υ(�,�, ξ , 0) = υ(�,�, ξ ),

where L is a linear operator, whereas ℵ is a nonlinear operator.
For computational procedure, we define some basic definitions and results.

Lemma 3.1 ([26]) For υ(�,�, ξ , t) =
∑∞

0 ρkυk(�,�, ξ , t), the linear operator Lυ(�,�, ξ , t)
has the following property:

Lυ(�,�, ξ , t) = L
( ∞∑

k=0

ρkυk(�,�, ξ , t)

)

=
∞∑

k=0

L
(
ρkυk(�,�, ξ , t)

)
. (6)

Theorem 3.2 ([26]) Let υ(�,�, ξ , t) =
∑∞

0 υk(�,�, ξ , t). For the parameter λ, we define
υλ(�,�, ξ , t) =

∑∞
0 λkυk(�,�, ξ , t). Then the nonlinear operator ℵυ(�,�, ξ , t) satisfies the

following property:

ℵ(υλ) = ℵ
( ∞∑

0

λkυk(�,�, ξ , t)

)

=
∞∑

0

[
1
n!

dn

dλn

[

ℵ
( ∞∑

0

λkυk(�,�, ξ , t)

)]

λ=0

]

λn. (7)

Definition 3.3 ([1]) The polynomial Pn = Pn(u0, u1, . . . , un) is defined as

Pn(u0, u1, . . . , un) =
1
n!

dn

dλn

[

ℵ
( ∞∑

0

λkυk(�,�, ξ , t)

)]

λ=0

. (8)

Definition 3.4 ([26]) If Pn = Pn(u0, u1, . . . , un), then by definition (8) the nonlinear opera-
tor ℵ(υλ) is expressed as

ℵ(υλ) =
∞∑

0

λkPk . (9)
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3.1 The existence and uniqueness of NAAM solution [26]
The existence of NAAM is discussed by the following theorem.

Theorem 3.5 Let g(�,�, ξ , t), υ(�,�, ξ , t) be defined for m – 1 < ϑ < m in (5). Then the
fluid model (5) provides the unique solution in the form

υ(�,�, ξ , t) = g–ϑ
t (�,�, ξ , t) + υ(�,�, ξ ) +

∞∑

k=1

[
L–ϑ

t (υ(k–1)) + P–ϑ
(k–1)t

]
, (10)

where,L–ϑ
t (υ(k–1)) and P–ϑ

(k–1)t represent the fractional partial integrals of order ϑ forL(υk–1)
and P(k–1) with respect to t.

Proof Consider the solution of physical model υ(�,�, ξ , t) obtained by using the following
expansion:

υ(�,�, ξ , t) =
∞∑

k=0

υk(�,�, ξ , t). (11)

To solve the physical model with initial source (5), we consider

υϑ
tλ(�,�, ξ , t) = λ

[
Lυ(�,�, ξ , t) + ℵυ(�,�, ξ , t) + g(�,�, ξ , t)

]
, λ ∈ [0, 1], (12)

along with initial source

υ(�,�, ξ , 0) = υ(�,�, ξ ). (13)

Furthermore, we approximate the solution of equation (10) as

υλ(�,�, ξ , t) =
∞∑

0

λkυλ(�,�, ξ , t). (14)

Using the Riemann–Liouville fractional partial integral operator of order ϑ with respect
to t on both sides of equation (12) and thus using the properties of the Riemann–Liouuille
fractional order operator (4), we obtain

υλ(�,�, ξ , t) = υ(�,�, ξ , 0) + λIϑ
t
[
Lυ(�,�, ξ , t) + ℵυ(�,�, ξ , t) + g(�,�, ξ , t)

]
. (15)

By using the initial source (13) equation (15) becomes

υλ(�,�, ξ , t) = υ(�,�, ξ ) + λIϑ
t
[
Lυ(�,�, ξ , t) + ℵυ(�,�, ξ , t) + g(�,�, ξ , t)

]
. (16)

Substituting equation (14) into equation (16), we have

∞∑

k=0

λkυλ(�,�, ξ , t) = υ(�,�, ξ ) + λ
[
g(�,�, ξ , t)

]

+ λIϑ
t

[

L
( ∞∑

k=0

λkυ(�,�, ξ , t)

)

+ ℵ
( ∞∑

k=0

λkυ(�,�, ξ , t)

)]

. (17)
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Using Lemma 3.1 and Definition 3.4, equation (17) becomes

∞∑

k=0

λkυλ(�,�, ξ , t) = υ(�,�, ξ ) + λ
[
g(�,�, ξ , t)

]

+ λIϑ
t

[

L
( ∞∑

k=0

λkλkυk

)]

+ λIϑ
t

[

ℵ
( ∞∑

k=0

λkPn

)]

. (18)

Equating the coefficients at the same powers of λ in equation (18), we obtain the compo-
nent form

⎧
⎪⎪⎨

⎪⎪⎩

υ0(�,�, ξ , t) = υ(�,�, ξ ),

υ1(�,�, ξ , t) = g(�,�, ξ , t) + L–ϑ
t υ0 + P–ϑ

t0 ,

υk(�,�, ξ , t) = L–ϑ
t υ(k–1) + P–ϑ

t(k–1), k = 2, 3, . . . .

(19)

�

4 NAAM implementation and discussion of results [26]
In this section, we use NAAM for analytical analysis of some mathematical models related
to fluid mechanics.

Example 4.1 Consider the time fractional-order Naiver–Stokes model along with initial
source in the form [22];

∂ϑυ(�, t)
∂tϑ

= ξ +
∂2υ(�, t)

∂�2 +
1
�

(
∂υ(�, t)

∂�
)

, ϑ ∈ (0, 1], (20)

with initial source

υ(�, 0) = 1 – �2,

where ξ = – 1
ρ

∂p
∂z = 1. In the particular case ϑ = 1 the exact solution is

u(�, t) = 1 – �2 – 3t.

To solve the physical model (20), comparing it with equation (5), we get

∂ϑυ(�, t)
∂tϑ

= ξ +
∂2υ(�, t)

∂�2 + ℵ(
υ(�, t)

)
, ϑ ∈ (0, 1], (21)

where the nonlinear term ℵ(υ(�, t)) = 1
� ( ∂υ(�,t)

∂� ).
The approximate solution of equation (20) is assumed as

υ(�, t) =
∞∑

k=0

υk(�, t). (22)

For obtaining the analytical solution of equation (21), we use the procedure

∂ϑυ(�, t)
∂tϑ

= λ

[

ξ +
∂2υ(�, t)

∂�2 + ℵ(
υ(�, t)

)
]

, ϑ ∈ (0, 1], (23)
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with initial source

υ(�, 0) = 1 – �2. (24)

We assume that equation (23) has the solution of the form

υλ(�, t) =
∞∑

k=0

λkυk(�, t). (25)

Now by using Riemann–Liouville fractional-order integration with respect to t on both
sides of equation (23), its properties (2), and initial source (24), we obtain

υλ(�, t) = υ(�, 0) + λIϑ
t

[

ξ +
∂2υ(�, t)

∂�2 + ℵ(
υ(�, t)

)
]

. (26)

Use equation (25), we obtain

∞∑

k=0

λkυk(�, t) = υ(�, 0) + λIϑ
t

[

ξ +
∞∑

k=0

λk
(

∂2υk(�, t)
∂�2

)

+
∞∑

k=0

λkPk

]

. (27)

Equating the terms with identical powers of λ of equation (27), we get the final components
and recursive relation of the form

⎧
⎪⎪⎨

⎪⎪⎩

υ0(�, t) = υ(�, 0),

υ1(�, t) = Iϑ
t [ξ + ( ∂2υ0(�,t)

∂�2 ) + P0],

υk(�,�, ξ , t) = Iϑ
t [ξ + ( ∂2υ(k–1)(�,t)

∂�2 ) + P(k–1)].

(28)

Thus we obtain

υ0(�, t) = 1 – �2, (29)

υ1(�, t) = (ξ – 4)
tϑ

�(ϑ + 1)
, (30)

υ2(�, t) = 0, (31)

υ3(�, t) = 0. (32)

...

The NAAM solution is

υ(�, t) = υ0(�, t) + υ1(�, t) + υ2(�, t) + υ3(�, t) + · · · . (33)

By putting the corresponding obtained values we get

υ(�, t) = 1 – �2 + (ξ – 4)
tϑ

�(ϑ + 1)
. (34)
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Figure 1 The exact and NAAM solution graphs of
Example 4.1

Figure 2 The fractional-order graph of Example 4.1

Specifically, for ϑ = ξ = 1, the solution becomes the given exact solution

υ(�, t) = 1 – �2 – 3t. (35)

Example 4.2 The time fractional Navier–Stokes model is given as [22]

∂ϑυ(�, t)
∂tϑ

=
∂2υ(�, t)

∂�2 +
1
�

(
∂υ(�, t)

∂�
)

, ϑ ∈ (0, 1], (36)

with initial source

υ(�, 0) = �,

where ξ = – 1
ρ

∂p
∂z = 1. In the particular case ϑ = 1, the exact solution is

u(�, t) = � +
∞∑

m=1

12 × 32 · · · (2m – 3)2

�2m–1 .
tm

ϑ !
.
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Comparing equations (36) and (5), we have

∂ϑυ(�, t)
∂tϑ

=
∂2υ(�, t)

∂�2 + ℵ(
υ(�, t)

)
, ϑ ∈ (0, 1], (37)

where the nonlinear term ℵ(υ(�, t)) = 1
� ( ∂υ(�,t)

∂� ).
The approximate solution of equation (36) is assumed as

υ(�, t) =
∞∑

k=0

υk(�, t). (38)

We obtain the solution of equation (36) by using the following procedure:

∂ϑυ(�, t)
∂tϑ

= λ

[
∂2υ(�, t)

∂�2 + ℵ(
υ(�, t)

)
]

, ϑ ∈ (0, 1], (39)

with initial source

υ(�, 0) = �. (40)

We assume that equation (38) has the solution of the form

υλ(�, t) =
∞∑

k=0

λkυk(�, t). (41)

Using Riemann–Liouville fractional-order integration with respect to t of both sides of
equation (39), its properties (2), and initial source (40), we obtain

υλ(�, t) = υ(�, 0) + λIϑ
t

[
∂2υ(�, t)

∂�2 + ℵ(
υ(�, t)

)
]

. (42)

Using definition (9) and equation (41), we obtain

∞∑

k=0

λkυk(�, t) = υ(�, 0) + λIϑ
t

[ ∞∑

k=0

λk
(

∂2υk(�, t)
∂�2

)

+
∞∑

k=0

λkPk

]

. (43)

Equating the terms with identical powers of λ of equation (27), we get the following re-
cursive scheme:

⎧
⎪⎪⎨

⎪⎪⎩

υ0(�, t) = υ(�, 0),

υ1(�, t) = Iϑ
t [( ∂2υ0(�,t)

∂�2 ) + P0],

υk(�,�, ξ , t) = Iϑ
t [ρ + ( ∂2υ(k–1)(�,t)

∂�2 ) + P(k–1)].

(44)

Thus we obtain

υ0(�, t) = �, (45)

υ1(�, t) =
(

1
�

)
tϑ

�(ϑ + 1)
, (46)
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Figure 3 The exact and NAAM solution graphs of
Example 4.2

Figure 4 The fractional-order graph of Example 4.2

υ2(�, t) =
(

1
�3

)
t2ϑ

�(2ϑ + 1)
, (47)

υ3(�, t) =
(

9
�5

)
t3ϑ

�(3ϑ + 1)
. (48)

The NAAM solution is

υ(�, t) = υ0(�, t) + υ1(�, t) + υ2(�, t) + υ3(�, t) + · · · . (49)

Using the NAAM components, we have

υ(�, t) = � +
(

1
�

)
tϑ

�(ϑ + 1)
+

(
1
�3

)
t2ϑ

�(2ϑ + 1)
+

(
9
�5

)
t3ϑ

�(3ϑ + 1)
. (50)

Specifically, for ϑ = ρ = 1, the solution becomes the given exact solution

υ(�, t) = � +
∞∑

m=1

12 × 32 · · · (2m – 3)2

�2m–1 .
tm

ϑ !
. (51)
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Example 4.3 Consider the time fractional-order incompressible models of Navier–
Stokes with initial source in the form [25, 26]

⎧
⎨

⎩

∂ϑ u
∂tϑ + u ∂u

∂� + υ ∂u
∂� = ρ0( ∂2u

∂�2 + ∂2u
∂�2 ) + g,

∂ϑυ

∂tϑ + u ∂υ
∂� + υ ∂υ

∂� = ρ0( ∂2υ

∂�2 + ∂2υ

∂�2 ) – g,
ϑ ∈ (0, 1], (52)

with initial sources

u(�,�, 0) = –e�+�,

υ(�,�, 0) = e�+�.

We assume that equation (52) has the solution of the form

υλ(�, t) =
∞∑

k=0

λkυk(�, t). (53)

Using Riemann–Liouville fractional order integration with respect to t on both sides of
equation (52), its properties (2), and initial sources, we obtain

uλ(�, t) = u(�, 0) + λIϑ
t

[

–u
∂u
∂� – υ

∂u
∂� + ρ0

(
∂2u
∂�2 +

∂2u
∂�2

)

+ g
]

,

υλ(�, t) = υ(�, 0) + λIϑ
t

[

–u
∂υ

∂� – υ
∂υ

∂� + ρ0

(
∂2υ

∂�2 +
∂2υ

∂�2

)

– g
]

.
(54)

By (9) and equation (54) we obtain

∞∑

k=0

λkuk(�, t) = u(�, 0) + λIϑ
t

[

–
∞∑

k=0

λkPk –
∞∑

k=0

λkqk + ρ0

(
∂2u
∂�2 +

∂2u
∂�2

)

+ g

]

,

∞∑

k=0

λkυk(�, t) = υ(�, 0) + λIϑ
t

[

–
∞∑

k=0

λkP∗
k –

∞∑

k=0

λkq∗
k + ρ0

(
∂2υ

∂�2 +
∂2υ

∂�2

)

– g

]

.

(55)

Equating the terms with identical powers of λ of equation (55), we get the final compo-
nents of the system in the form of recursive relations

⎧
⎪⎪⎨

⎪⎪⎩

u0(�,�, t) = u(�,�, 0)

u1(�, t) = λIϑ
t [–P0 – q0 + ρ0( ∂2u0

∂�2 + ∂2u0
∂�2 ) + g],

uk(�,�, ξ , t) = λIϑ
t [–Pk–1 – qk–1 + ρ0( ∂2uk–1

∂�2 + ∂2uk–1
∂�2 ) + g],

(56)

⎧
⎪⎪⎨

⎪⎪⎩

υ0(�,�, t) = u(�,�, 0)

υ1(�, t) = λIϑ
t [–P∗

0 – q∗
0 + ρ0( ∂2u0

∂�2 + ∂2u0
∂�2 ) – g],

υk(�,�, ξ , t) = λIϑ
t [–P∗

k–1 – q∗
k–1 + ρ0( ∂2υk–1

∂�2 + ∂2υk–1
∂�2 ) – g].

(57)

Thus we obtain the terms of NAAM of equation (56) as

u0(�,�, t) = u(�,�, 0) = –e�+�, (58)
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Figure 5 The exact and NAAM solution graphs of
Example 4.3

u1(�,�, t) = 2ρ0
(
–e�+�) tϑ

�(ϑ + 1)
,

u2(�,�, t) = 4ρ2
0
(
–e�+�) t2ϑ

�(2ϑ + 1)
,

u3(�,�, t) = 8ρ3
0
(
–e�+�) t3ϑ

�(3ϑ + 1)
,

...

Thus we also obtain the terms of NAAM of equation (57) as

υ0(�,�, t) = υ(�,�, 0) = e�+�, (59)

υ1(�,�, t) = 2ρ0
(
e�+�) tϑ

�(ϑ + 1)
,

υ2(�,�, t) = 4ρ2
0
(
e�+�) t2ϑ

�(2ϑ + 1)
,

υ3(�,�, t) = 8ρ3
0
(
e�+�) t3ϑ

�(3ϑ + 1)
,

...

Thus the NAAM solution becomes
⎧
⎨

⎩

u = u0 + u1 + u2 + u3 + · · · ,

υ = υ0 + υ1 + υ2 + υ3 + · · · .
(60)

Putting the corresponding values of u and υ into (58), (59), we get

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

u(�,�, t) = –e�+� + 2ρ0(–e�+�) tϑ
�(ϑ+1) + 4ρ2

0 (–e�+�) t2ϑ

�(2ϑ+1)

+ 8ρ3
0 (–e�+�) t3ϑ

�(3ϑ+1) + · · · .

υ(�,�, t) = e�+� + 2ρ0(e�+�) tϑ
�(ϑ+1) + 4ρ2

0 (e�+�) t2ϑ

�(2ϑ+1)

+ 8ρ3
0 (e�+�) t3ϑ

�(3ϑ+1) + · · · .

(61)
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Figure 6 The fractional-order graph of Example 4.3

Figure 7 The different fractional-order graph of
Example 4.3

Figure 8 The different fractional-order graph of
Example 4.3

For the particular case of integer order ϑ = 1, we convert the NAAM result to the exact
form solution

⎧
⎨

⎩

u(�,�, t) = –e(�+�+2ρ0t),

υ(�,�, t) = e(�+�+2ρ0t).
(62)

Example 4.4 Consider the time fractional-order incompressible models of Navier–
Stokes with initial source in the form [25, 26]

⎧
⎨

⎩

∂ϑ u
∂tϑ + u ∂u

∂� + υ ∂u
∂� = ρ0( ∂2u

∂�2 + ∂2u
∂�2 ) + g,

∂ϑυ

∂tϑ + u ∂υ
∂� + υ ∂υ

∂� = ρ0( ∂2υ

∂�2 + ∂2υ

∂�2 ) – g,
ϑ ∈ (0, 1], (63)
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with initial sources

u(�,�, 0) = – sin(� + �),

υ(�,�, 0) = sin(� + �).

We assume that equation (63) has the solution of the form

υλ(�,�, t) =
∞∑

k=0

λkυk(�,�, t). (64)

Now by using the Riemann–Liouville operator with respect to t on both sides of equation
(63), its properties (2), and initial sources, we obtain

uλ(�,�, t) = u(�,�, 0) + λIϑ
t

[

–u
∂u
∂� – υ

∂u
∂� + ρ0

(
∂2u
∂�2 +

∂2u
∂�2

)

+ g
]

,

υλ(�,�, t) = υ(�,�, 0) + λIϑ
t

[

–u
∂υ

∂� – υ
∂υ

∂� + ρ0

(
∂2υ

∂�2 +
∂2υ

∂�2

)

– g
]

.
(65)

Use definition (9) and equation (65), we obtain

∞∑

k=0

λkuk(�,�, t) = u(�,�, 0)

+ λIϑ
t

[

–
∞∑

k=0

λkPk –
∞∑

k=0

λkqk + ρ0

(
∂2u
∂�2 +

∂2u
∂�2

)

+ g

]

,

∞∑

k=0

λkυk(�,�, t) = υ(�,�, 0)

+ λIϑ
t

[

–
∞∑

k=0

λkP∗
k –

∞∑

k=0

λkq∗
k + ρ0

(
∂2υ

∂�2 +
∂2υ

∂�2

)

– g

]

.

(66)

Equating the terms with identical powers of λ of equation (66), we get the final compo-
nents and recursive relation in the form

⎧
⎪⎪⎨

⎪⎪⎩

u0(�,�, t) = u(�,�, 0),

u1(�, t) = λIϑ
t [–P0 – q0 + ρ0( ∂2u0

∂�2 + ∂2u0
∂�2 ) + g],

uk(�,�, ξ , t) = λIϑ
t [–Pk–1 – qk–1 + ρ0( ∂2uk–1

∂�2 + ∂2uk–1
∂�2 ) + g],

(67)

⎧
⎪⎪⎨

⎪⎪⎩

υ0(�,�, t) = u(�,�, 0),

υ1(�, t) = λIϑ
t [–P∗

0 – q∗
0 + ρ0( ∂2u0

∂�2 + ∂2u0
∂�2 ) + g],

υk(�,�, ξ , t) = λIϑ
t [–P∗

k–1 – q∗
k–1 + ρ0( ∂2υk–1

∂�2 + ∂2υk–1
∂�2 ) + g].

(68)

Thus we obtain the NAAM term of equation (67) in the form

u0(�,�, t) = – sin(� + �), (69)

u1(�,�, t) = 2ρ0
(
sin(� + �)

) tϑ

�(ϑ + 1)
,
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Figure 9 The NAAM and fractional-order solution
graphs of Example 4.4

Figure 10 The different fractional-order graph of
Example 4.4

Figure 11 The NAAM and fractional-order solution
graphs of Example 4.4

u2(�,�, t) = –4ρ0
(
sin(� + �)

) t2ϑ

�(2ϑ + 1)
,

u3(�,�, t) = 8ρ0
(
sin(� + �)

) t3ϑ

�(3ϑ + 1)
,

...

Thus we can also obtain the NAAM term of equation (68) in the form
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Figure 12 The fractional-order graph of Example 4.4

υ0(�,�, t) = sin(� + �), (70)

υ1(�,�, t) = –2ρ0
(
sin(� + �)

) tϑ

�(ϑ + 1)
,

υ2(�,�, t) = 4ρ0
(
sin(� + �)

) t2ϑ

�(2ϑ + 1)
,

υ3(�,�, t) = –8ρ0
(
sin(� + �)

) t3ϑ

�(3ϑ + 1)
.

...

Thus the NAAM solution becomes

⎧
⎨

⎩

u = u0 + u1 + u2 + u3 + · · · .

υ = υ0 + υ1 + υ2 + υ3 + · · · .
(71)

By putting the NAAM components given into equations (69) and (70) we get

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

u = – sin(� + �) + 2ρ0(sin(� + �)) tϑ
�(ϑ+1) – 4ρ0(sin(� + �)) t2ϑ

�(2ϑ+1)

+ 8ρ0(sin(� + �)) t3ϑ

�(3ϑ+1) + · · · ,

υ = sin(� + � – 2ρ0(sin(� + �)) tϑ
�(ϑ+1) + 4ρ0(sin(� + �)) t2ϑ

�(2ϑ+1)

– 8ρ0(sin(� + �)) t3ϑ

�(3ϑ+1) + · · · .

(72)

For the particular case of integer order ϑ = 1, the NAAM provides the exact form solution

⎧
⎨

⎩

u = – sin(� + �)e–2ρ0t ,

υ = sin(� + �)e–2ρ0t .
(73)
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Example 4.5 Consider the three-dimensional time fractional-order incompressible mod-
els of Navier–Stokes with initial source in the form [25, 26]

⎧
⎪⎪⎨

⎪⎪⎩

∂ϑ u
∂tϑ + u ∂u

∂� + υ ∂u
∂� + ψ ∂u

∂ξ
= ρ0( ∂2u

∂�2 + ∂2u
∂�2 + ∂2u

∂ξ2 ) + g1,
∂ϑυ

∂tϑ + u ∂υ
∂� + υ ∂υ

∂� + ψ ∂υ
∂ξ

+ = ρ0( ∂2υ

∂�2 + ∂2υ

∂�2 + ∂2υ

∂ξ2 ) + g2,
∂ϑψ

∂tϑ + u ∂ψ

∂� + υ
∂ψ

∂� + ψ
∂ψ

∂ξ
+ = ρ0( ∂2ψ

∂�2 + ∂2ψ

∂�2 + ∂2ψ

∂ξ2 ) + g3,

ϑ ∈ (0, 1], (74)

with initial sources

u(�,�, ξ , 0) = –0.5� + � + ξ ,

υ(�,�, ξ , 0) = � – 0.5� + ξ ,

ψ(�,�, ξ , 0) = � + � – 0.5ξ ,

where g1 = – 1
ρ

∂p
∂� , g2 = – 1

ρ

∂p
∂� , g3 = – 1

ρ

∂p
∂ξ

.
We assume that equation (74) has the solution in the form

υλ(�,�, t) =
∞∑

k=0

λkυk(�,�, t). (75)

Using the Caputo operator with respect to t on both sides of equation (74), its properties
(2), and initial sources, we obtain

uλ(�,�, ξ , t) = u(�,�, ξ , 0)

+ λIϑ
t

[

–u
∂u
∂� – υ

∂u
∂� – ψ

∂u
∂ξ

+ ρ0

(
∂2u
∂�2 +

∂2u
∂�2 +

∂2u
∂ξ 2

)

+ g1

]

,

υλ(�,�, ξ , t) = υ(�,�, ξ , 0)

+ λIϑ
t

[

–u
∂υ

∂� – υ
∂υ

∂� – ψ
∂υ

∂ξ
+ ρ0

(
∂2υ

∂�2 +
∂2υ

∂�2 +
∂2υ

∂ξ 2

)

+ g2

]

,

ψλ(�,�, ξ , t) = ψ(�,�, ξ , 0)

+ λIϑ
t

[

–u
∂ψ

∂� – υ
∂ψ

∂� – ψ
∂ψ

∂ξ
+ ρ0

(
∂2ψ

∂�2 +
∂2ψ

∂�2 +
∂2ψ

∂ξ 2

)

+ g3

]

.

(76)

Using definition (9) and equation (76), we obtain

∞∑

k=0

λkuk(�,�, ξ , t)

= u(�,�, ξ , 0) + λIϑ
t

[

–
∞∑

k=0

λkPk –
∞∑

k=0

λkqk +
∞∑

k=0

λkδk

+ ρ0

(
∂2u
∂�2 +

∂2u
∂�2 +

∂2u
∂ξ 2

)

+ g1

]

,
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∞∑

k=0

λkυk(�,�, ξ , t)

= υ(�,�, ξ , 0) + λIϑ
t

[

–
∞∑

k=0

λkP∗
k –

∞∑

k=0

λkq∗
k +

∞∑

k=0

λkδ∗
k

+ ρ0

(
∂2υ

∂�2 +
∂2υ

∂�2 +
∂2υ

∂ξ 2

)

+ g2

]

,

(77)

∞∑

k=0

λkψk(�,�, ξ , t)

= ψ(�,�, ξ , 0) + λIϑ
t

[

–
∞∑

k=0

λkP•
k –

∞∑

k=0

λkq•
k +

∞∑

k=0

λkδ•
k

+ ρ0

(
∂2ψ

∂�2 +
∂2ψ

∂�2 +
∂2ψ

∂ξ 2

)

+ g3

]

,

where, p, q, δ, p∗, q∗, δ∗, p•, q•, δ• represent the nonlinear terms of system (76).
Equating the terms with identical powers of λ of equation (77), we get the final compo-

nents and recursive relation in the form

⎧
⎪⎪⎨

⎪⎪⎩

u0(�,�, ξ , t) = u(�,�, ξ , 0),

u1(�,�, ξ , t) = λIϑ
t [–P0 – q0 – δ0 + ρ0( ∂2u

∂�2 + ∂2u
∂�2 + ∂2u

∂ξ2 ) + g1],

uk(�,�, ξ , t) = λIϑ
t [–Pk–1 – qk–1 – δk–1 + ρ0( ∂2uk–1

∂�2 + ∂2uk–1
∂�2 + ∂2uk–1

∂ξ2 ) + g1].

(78)

Similarly, we also obtain the recursive scheme

⎧
⎪⎪⎨

⎪⎪⎩

υ0(�,�, ξ , t) = υ(�,�, ξ , 0),

u1(�,�, ξ , t) = λIϑ
t [–P∗

0 – q∗
0 – δ∗

0 + ρ0( ∂2υ

∂�2 + ∂2υ

∂�2 + ∂2υ

∂ξ2 ) + g2],

υk(�,�, ξ , t) = λIϑ
t [–P∗

k–1 – q∗
k–1 – δ∗

k–1 + ρ0( ∂2υk–1
∂�2 + ∂2υk–1

∂�2 + ∂2υk–1
∂ξ2 ) + g2],

(79)

⎧
⎪⎪⎨

⎪⎪⎩

ψ0(�,�, ξ , t) = ψ(�,�, ξ , 0),

ψ1(�,�, ξ , t) = λIϑ
t [–P•

0 – q•
0 – δ•

0 + ρ0( ∂2ψ

∂�2 + ∂2ψ

∂�2 + ∂2ψ

∂ξ2 ) + g3],

ψk(�,�, ξ , t) = λIϑ
t [–P•

k–1 – q•
k–1 – δ•

k–1 + ρ0( ∂2ψk–1
∂�2 + ∂2ψk–1

∂�2 + ∂2ψk–1
∂ξ2 ) + g3].

(80)

Thus we obtain the NAAM terms of equation (78) in the form

u0(�,�, ξ , t) = –0.5� + � + ξ ,

u1(�,�, ξ , t) = –(2.25�)
tϑ

�(ϑ + 1)
,

u2(�,�, ξ , t) = (–2.25� + 4.5� + 4.5ξ )
t2ϑ

�(2ϑ + 1)
.

...
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Similarly, we also obtain the NAAM terms of equation (79) in the form

υ0(�,�, ξ , t) = � – 0.5� + ξ ,

υ1(�,�, ξ , t) = –(2.25�)
tϑ

�(ϑ + 1)
,

υ2(�,�, ξ , t) = (4.5� – 2.25� + 4.5ξ )
t2ϑ

�(2ϑ + 1)
.

...

We also obtain the NAAM terms of equation (80) in the form

ψ0(�,�, ξ , t) = � + � – 0.5ξ ,

ψ1(�,�, ξ , t) = –(2.25ξ )
tϑ

�(ϑ + 1)
,

ψ2(�,�, ξ , t) = (4.5� + 4.5� – 2.25ξ )
t2ϑ

�(2ϑ + 1)
.

...

Thus the NAAM solution becomes

⎧
⎪⎪⎨

⎪⎪⎩

u(�,�, ξ , t) = u0(�,�, ξ , t) + u1(�,�, ξ , t) + u2(�,�, ξ , t) + · · · ,

υ(�,�, ξ , t) = υ0(�,�, ξ , t) + υ1(�,�, ξ , t) + υ2(�,�, ξ , t) + · · · ,

ψ(�,�, ξ , t) = ψ0(�,�, ξ , t) + ψ1(�,�, ξ , t) + ψ2(�,�, ξ , t) + · · · .

(81)

By putting the NAAM components we get

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u(�,�, ξ , t) = –0.5� + � + ξ ± (2.25�) tϑ
�(ϑ+1)

+ (–2.25� + 4.5� + 4.5ξ ) t2ϑ

�(2ϑ+1) + · · · ,

υ(�,�, ξ , t) = � – 0.5� + ξ ± (2.25�) tϑ
�(ϑ+1)

+ (4.5� – 2.25� + 4.5ξ ) t2ϑ

�(2ϑ+1) + · · · ,

ψ(�,�, ξ , t) = � + � – 0.5ξ ± (2.25ξ ) tϑ
�(ϑ+1)

+ (4.5� + 4.5� – 2.25ξ ) t2ϑ

�(2ϑ+1) + · · · .

(82)

For the particular ϑ = 1, the solution converges to the exact form solution

⎧
⎪⎪⎨

⎪⎪⎩

u(�,�, ξ , t) = –0.5�+�+ξ±(2.25�)t
1–2.25t2 ,

υ(�,�, ξ , t) = �±0.5�+ξ±(2.25�)t
1–2.25t2 ,

ψ(�,�, ξ , t) = �+�±0.5ξ±(2.25ξ )t
1–2.25t2 .

(83)

5 Conclusion
In this paper, we applied a newly developed approximate analytical method based on the it-
erative procedure and the properties of Caputo and Riemann–Liouville integral operators.
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First, we proceeded to the iterative approximation and then used the Liouville integral op-
erator of fractional order with Caputo derivative. The Liouville–Caputo operator provides
the approximated term of fractional order. We have solved some linear and nonlinear well-
known fluid flow models known as Naiver–Stocks equations. The approximation through
the proposed method provides the closed-form solutions of the suggested models. The
nonlinearity in each problem is evaluated effortlessly and effectively. The technique is sim-
ple to assess both linear and nonlinear terms of the testing problems. The NAA method
has a less and more powerful computational ability to evaluate the closed-form analytical
solution. Overall, the method has less computational procedures and simple to apply for
both linear and nonlinear physical models. This method is also applicable to other physical
phenomena of fractional order.
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