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Abstract
In this paper, we investigate a class of fractional-order gene regulatory networks with
time-varying delays and structured uncertainties (UDFGRNs). First, we deduce the
existence and uniqueness of the equilibrium for the UDFGRNs by using the
contraction mapping principle. Next, we derive a novel global uniform asymptotic
stability criterion of the UDFGRNs by using a Lyapunov function and the Razumikhin
technique, and the conditions relating to the criterion depend on the fractional order
of the UDFGRNs. Finally, we provide two numerical simulation examples to
demonstrate the correctness and usefulness of the novel stability conditions. One of
the most interesting findings is that the structured uncertainties indeed have an
impact on the stability of the system.
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1 Introduction
In recent years, tremendous progress has been made in modern biology because of the de-
velopment of gene sequencing, especially the third generation gene sequencing technol-
ogy. Based on gene sequencing and other experimental methods, it has been found that
most biological functions are controlled not only by several molecules or genes, but also by
complex interactions between many components. A large number of DNAs, RNAs, pro-
teins, and small molecules in an organism together with the mechanisms which regulate
the expression of genes form gene regulatory networks (GRNs) [1]. Now GRNs comprise
one of the important research directions in the field of system biology. Researchers have
established various GRN models from their respective perspectives, such as Boolean net-
works [2], Petri networks [3], Bayesian networks [4], differential equation models [5–7],
etc.

A lot of research has focused on integer-order differential equation model of GRNs [8–
10]. Fractional-order calculus is a generalization of integer-order derivative and integral
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theory to arbitrary real order. Because fractional derivative operators are nonlocal, possess
memory and hereditary properties, they have more advantages than integer-order systems
in modeling GRNs. So with the development of fractional differential equation theory,
the research on GRNs has gradually shifted from integer-order model to fractional-order
model [1, 5, 11, 12].

As GRNs are modeled from time-series data of real-world gene expression, it has been
well recognized that the modeling errors and parameter fluctuations are unavoidable pri-
marily due to certain limitations to the current experimental techniques in GRNs. More-
over, it has been pointed out that the system parameters identified from experimental data
may form an unknown, but bounded time-varying function, which incorporates struc-
tured or parameter uncertainties (also called variations or fluctuations) [13]. It is obtained
that structured uncertainties in GRNs may cause poor performance or even instability of
real genetic networks [13–17]. Therefore, it may be essential to take the structured uncer-
tainties into account when investigating the dynamical behaviors of DFGRNs.

According to bioinformatics theory, some time is needed to complete the process of
transcription and translation of gene information in GRNs. For example, in eukaryotic
cells, it takes time for RNA and protein synthesis and to transport RNA and protein from
nucleus to cytoplasm at different locations. Therefore, time delay has become a key factor
affecting gene expression. Many literature sources have reported the effects of time delay
in gene regulatory networks [8, 10, 18–20]. These results show that the stability of a gene
regulatory network system may even be affected due to the existence of time delay. In re-
cent years, fractional-order gene regulatory networks with constant delays have attracted
more and more researchers’ interest [6, 10, 19, 21]. Moreover, some researchers have paid
attention to the fractional-order dynamic systems with time-varying delays [7, 22–26].
Zhang et al. [7] discussed the stability for a fractional-order gene regulatory network with
time-lag by using Jensen and Wirtinger inequalities, etc., and obtained the model stability
results. Recently, Zhang et al. put forward a novel stability condition on fractional-order
composite systems with time delay based on the vector Lyapunov function [27], and inves-
tigated the asymptotic stability of nonlinear fractional-order systems with multiple time
delays via two new control methods [28], which provide us a new idea to find stability con-
ditions and control of fractional-order dynamic systems with time-varying delays in the
future research. In [22], Razumikhin-type stability for fractional-order differential equa-
tion with time-varying delays is investigated. The authors obtained global uniform asymp-
totic stability results for the considered systems. However, the stability conditions didn’t
include the fractional order of the systems. Wu et al. [21] investigated global asymptotic
stability for fractional-order GRNs (FGRNs) with constant time delay by using the Lya-
punov method and comparison theorem. Wu et al. [26] studied the finite-time stability
for DFGRNs with structured uncertainties and controllers by using a generalized Gron-
wall inequality and norm technique. The results showed that the structured uncertain-
ties can shorten the “estimated time” of finite-time stability. We naturally ask whether the
structured uncertainties affect the global asymptotic stability of DFGRNs. What are the
global uniform asymptotic stability conditions related to fractional order for FGRNs with
time-varying delays and structured uncertainties?

This paper answers the above questions. We investigate a class of FGRNs with time-
varying delays and structured uncertainties by virtue of a Lyapunov function and Razu-
mikhin technique. Compared with some recent results [21, 22, 26], the chief contributions
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of our study are as follows: (1) we obtain sufficient conditions related to fractional order
of the global uniform asymptotic stability for FGRNs with time-varying delays and struc-
tured uncertainties, and illustrate the advantages of our stability conditions in numerical
examples; (2) It is shown that bigger structured uncertainties can make DFGRNs unsta-
ble in numerical examples. The rest of this paper is organized as follows: Sect. 2 mainly
introduces the model studied in this paper and some necessary concepts and lemmas.
In Sect. 3, the existence and uniqueness of the equilibrium point are obtained, and the
sufficient conditions on global uniform asymptotical stability for the DFGRNs are given.
In Sect. 4, two examples are provided to show the effectiveness of the obtained results.
Finally, some conclusions are drawn in Sect. 5.

2 Preliminaries
Definition 1 ([29]) The fractional integral of order q for a function f (t) is defined as

aIq
t f (t) =

1
�(q)

∫ t

a
(t – τ )q–1f (τ ) dτ ,

where t ≥ a, a ∈ R, q > 0. The Gamma function �(q) is defined by the integral �(q) =∫∞
0 tq–1e–t dt.

Definition 2 ([29]) The Riemann–Liouville fractional derivative of order q for a function
f is defined as

RL
a Dq

t f (t) =
1

�(n – q)
dn

dtn

∫ t

a
(t – τ )n–q–1f (τ ) dτ ,

where t ≥ a and n is a positive integer such that n – 1 < q < n.

Definition 3 ([29]) Caputo’s fractional derivative of order q for a function f is defined by

C
a Dq

t f (t) =
1

�(n – q)

∫ t

a

1
(t – τ )q–n+1 f (n)(τ ) dτ ,

where t ≥ a and n is a positive integer such that n – 1 < q < n.

For convenience, we choose the notation Iq
t = 0Iq

t , CDq
t = C

0 Dq
t , RLDq

t = RL
0 Dq

t .
In [26], we have investigated the finite-time stability of the following FGRNs with time-

varying delays and structured uncertainties:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

CDq
t mi(t) = –(ai + �ai(t))mi(t) +

∑n
j=1(wij + �wij(t))fj(pj(t))

+
∑n

j=1(kij + �kij(t))gj(pj(t – τ1(t))) + Bi,
CDq

t pi(t) = –(ci + �ci(t))pi(t) + (di + �di(t))mi(t)

+ (ei + �ei(t))mi(t – τ2(t)), i = 1, 2, . . . , n,

(1)

where q ∈ (0, 1), mi(t), pi(t) ∈ R+ are the concentrations of mRNA and protein of the ith
node, respectively; the parameters ai > 0 and ci > 0 are the decay rates of mRNA and pro-
tein, respectively; di > 0 and ei ≥ 0 are the translation rates; �ai(t),�ci(t),�di(t),�ei(t),
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�wij(t),�kij(t) are the norm-bounded unknown functions; the transcriptional delay τ1(t)
and translational delay τ2(t) are bounded continuous functions on R with 0 ≤ τi(t) ≤ τ ∗

i (i =
1, 2), here τ ∗

i are positive constants. Both fj(pj(t)) and gj(pj(t –τ1(t))) represent the feedback
regulation of the protein on the transcription. Generally, both functions are nonlinear but
monotonic. As monotonic increasing or decreasing regulatory functions, fj and gj usu-
ally have the Michaelis–Menten or Hill forms [30]; Bi =

∑
j∈Ii

bij +
∑

j∈Īi
b̄ij, bij and b̄ij are

bounded constants which are respectively the dimensionless transcriptional rate of tran-
scription factor j to i at time t and t – τ1(t), and Ii, Īi, respectively, are the sets of all j’s
where the transcription factor j is a repressor of gene i at time t and t – τ1(t); the matrices
W = (wij) ∈ Rn×n, K = (kij) ∈ Rn×n are the coupling matrices of the gene network, which
are defined as follows:

wij(kij) =

⎧⎪⎪⎨
⎪⎪⎩

bij(b̄ij) if transcription factor j is an activator of gene i,

–bij(–b̄ij) if transcription factor j is a repressor of gene i,

0 if there is no link from node j to i.

In order to investigate whether structured uncertainties can affect the global asymptoti-
cal stability of FGRNs and get the global stability conditions related to the fractional order,
we consider the global uniform asymptotical stability of DFGRN (1).

The initial conditions for system (1) are as follows:

⎧⎨
⎩

m(θ ) = φ1(θ ), θ ∈ [–τ ∗, 0],

p(θ ) = φ2(θ ), θ ∈ [–τ ∗, 0],
(2)

where τ ∗ = max{τ ∗
1 , τ ∗

2 },φi(t) ∈ C([–τ ∗, 0], Rn) (i = 1, 2) are the given initial functions with

φ = ‖φ1‖ + ‖φ2‖ = max
θ∈[–τ∗ ,0]

∥∥φ1(θ )
∥∥ + max

θ∈[–τ∗ ,0]

∥∥φ2(θ )
∥∥.

Definition 4 The vector (m∗, p∗) is an equilibrium point of DFGRN (1) if and only if

⎧⎨
⎩

–(ai + �ai)m∗
i +
∑n

j=1(wij + �wij)fj(p∗
j ) +

∑n
j=1(kij + �kij)gj(p∗

j ) + Bi = 0,

–(ci + �ci)p∗
i + (di + �di)m∗

i + (ei + �ei)m∗
i = 0, i = 1, 2, . . . , n,

where m∗ = (m∗
1, . . . , m∗

n)T , p∗ = (p∗
1, . . . , p∗

n)T .

3 Main results
In order to prove our theorems, we need the following lemmas.

Lemma 1 ([31]) If h(t) ∈ C1([0, +∞), R) is a continuously differentiable function, then the
following inequality holds almost everywhere:

CDq
t
∣∣h(t)

∣∣≤ sgn
(
h(t)
)CDq

t h(t), 0 < q ≤ 1.

Lemma 2 ([29]) If f (t) ∈ C1[a, +∞) and 0 < q < 1, then the following properties hold:
(i) C

a Dq
t f (t) =RL

a Dq
t f (t) – f (a)

�(1–q) (t – a)–q
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(ii) If f (t) and ϕ, along with all its derivatives, are continuous in [a, t], then Leibniz rule
for fractional differentiation takes the form:

RL
a Dq

t
(
ϕ(t)f (t)

)
=

n∑
k=0

(
q
k

)
dkϕ(t)

dtk
RL
a Dq–k

t f (t) – Rq
n(t),

where n ≥ q + 1, t ≥ a, a ∈ R,

Rq
n(t) =

(–1)n(t – q)n–q+1

n!�(–q)

∫ 1

0

∫ 1

0
Fq(t, ξ ,η) dξ dη,

Fq(t, ξ ,η) = f
(
a + η(t – a)

)
ϕ(n+1)(a + (t – a)(ξ + η – ξη)

)
,

and
(

q
k

)
=

�(q + 1)
k!�(q – k + 1)

.

In order to prove our theorems, we still need the following lemmas. Consider the fol-
lowing system:

C
a Dq

t x(t) = f (t, x(t), x
(
t – τ (t)

)
, (3)

where q ∈ (0, 1), 0 ≤ τ (t) ≤ τ ∗, f : R+ ×Rn ×Rn → Rn is continuous in t and locally Lipschitz
in x on [a,∞), a ∈ R.

Lemma 3 ([22]) Suppose that ω1,ω2 : R → R are continuous nondecreasing functions,
ω1(s) and ω2(s) are positive for s > 0, and ω1(0) = ω2(0) = 0, ω2 strictly increasing. If there
exists a continuously differentiable function V : R × R2n → R such that

ω1
(‖x‖)≤ V (t, x) ≤ ω2

(‖x‖) for t ∈ R, x ∈ R2n, (4)

and for any given a ∈ R, the Caputo fractional derivative of V along the solution x(t) of
system (3) satisfies

⎧⎨
⎩

C
a Dq

t V (t, x(t)) ≤ 0,

whenever sup0≤τ (t)≤τ∗ V (t – τ (t), x(t – τ (t))) = V (t, x(t)), t ≥ a,
(5)

then system (3) is uniformly stable.

Lemma 4 ([22]) Suppose all of the conditions of Lemma 3 are satisfied. If, in addition, there
exist three positive constants μ1,μ2,μ3 with μ3 > τ ∗ and q2–q+1

μ
q
3�(1–q)

+ μ1
(1– τ∗

μ3
)q – μ2 ≤ 0 such

that

C
a Dq

t V
(
t, x(t)

)≤ –μ2V
(
t, x(t)

)
+ μ1 sup

0≤τ (t)≤τ∗
V
(
t – τ (t), x

(
t – τ (t)

))
, (6)

for t ≥ a, then system (3) is globally uniformly asymptotically stable.
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Proof See the Appendix. �

In addition, we introduce the following assumptions:
(H1) The feedback regulation functions fi, gi are Lipschitz continuous. That is, there exist

positive constants γi, Li, i = 1, 2, . . . , n, such that

∣∣fi(x) – fi(y)
∣∣ < γi|x – y|, ∣∣gi(x) – gi(y)

∣∣ < Li|x – y|, i = 1, 2, . . . , n (7)

for all x, y ∈ R with x 	= y.
(H2) There exist positive constants δi (i = 1, 2, . . . , 2n) such that λ > 0,

where λi = (ai – ãi) – δn+i
δi

(di + d̃i + ei + ẽi), λn+i = (ci – c̃i) –
∑n

j=1
δj

δn+i
((|wji| + w̃ji)γi +

(|kji| + k̃ji)Li), i = 1, 2, . . . , n,λ = min1≤i≤2n{λi}.
(H3) The norm-bounded structured uncertainties’ functions �ai(t), �ci(t), �di(t),

�ei(t), �wij(t), �kij(t) satisfy: |�ai(t)| < ãi, |�ci(t)| < c̃i, |�di(t)| < d̃i, |�ei(t)| < ẽi,
|�wij(t)| < w̃ij, |�kij(t)| < k̃ij, where ãi, c̃i, d̃i, ẽi, w̃ij, k̃ij are positive constants.

(H4) There exists a constant μ > τ ∗ such that

q2 – q + 1
μq�(1 – q)

+
K̂

(1 – τ∗
μ

)q
– λ ≤ 0, (8)

where K̂ = max1≤i≤n{ δn+i
δi

(ei + ẽi),
∑n

j=1
δj

δn+i
(|kji| + k̃ji)Li}.

Remark 1 The proof method of Lemma 4 is similar to that of Theorem 3.2 in [22], but the
conditions are different.

The inequality q2–q+1
μ

q
3�(1–q)

+ μ1
(1– τ∗

μ3
)q –μ2 ≤ 0 can imply μ1 < μ2 in [22], but not the converse.

If we choose μ1 and μ3, there exists μ2 satisfying

μ1 < μ2 <
q2 – q + 1
μ

q
3�(1 – q)

+
μ1

(1 – τ∗
μ3

)q
, (9)

moreover, we find that μ2 satisfying the above inequality is unstable in the numerical ex-
ample, which shows that the condition of Lemma 4 is better than that of Theorem 3.2 in
[22].

Remark 2 The condition of Lemma 4 depends on the fractional-order q.

3.1 The existence and uniqueness of the equilibrium point of DFGRNs
By using the contraction mapping theorem, we have the following conclusion.

Theorem 1 If assumptions (H1), (H2), and (H3) hold, then DFGRN (1) has a unique equi-
librium point (m∗, p∗), where m∗ = (m∗

1, . . . , m∗
n)T , p∗ = (p∗

1, . . . , p∗
n)T .
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Proof Let w = (u1, . . . , un, v1, . . . , vn)T and m = (m1, . . . , mn, p1, . . . , pn)T . Define a mapping
H : R2n → R2n as

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Hi(w) = δi
∑n

j=1(wij + �wij)fj(
vj

(cj+�cj)δn+j
)

+ δi
∑n

j=1(kij + �kij)gj(
vj

(cj+�cj)δn+j
) + δiBi,

Hn+i(w) = δn+i(di + �di) ui
(ai+�ai)δi

+ δn+i(ei + �ei) ui
(ai+�ai)δi

, i = 1, 2, . . . , n,

(10)

where H(w) = (H1(w), H2(w), . . . , H2n(w))T , and H is endowed with the l1 norm.
Due to (H2), we obtain

0 ≤
n∑

j=1

δj

δn+i(ci – c̃i)
((|wji| + w̃ji

)
γi +

(|kji| + k̃ji
)
Li
)

< 1,

0 ≤ δn+i

δi(ai – ãi)
(di + d̃i + ei + ẽi) < 1, i = 1, 2, . . . , n.

Denote

θ1 = max
1≤i≤n

{ n∑
j=1

δj

δn+i(ci – c̃i)
((|wji| + w̃ji

)
γi +

(|kji| + k̃ji
)
Li
)}

,

θ2 = max
1≤i≤n

{
δn+i

δi(ai – ãi)
(di + d̃i + ei + ẽi)

}
, i = 1, 2, . . . , n,

θ = max{θ1, θ2}.

Obviously, we have 0 ≤ θ1 < 1, 0 ≤ θ2 < 1, and 0 ≤ θ < 1.
For any two different vectors w ∈ R2n and m ∈ R2n, from (10), we get

∣∣Hi(w) – Hi(m)
∣∣

=

∣∣∣∣∣δi

n∑
j=1

(wij + �wij)
[

fj

(
vj

(cj + �cj)δn+j

)
– fj

(
pj

(cj + �cj)δn+j

)]

+ δi

n∑
j=1

(kij + �kij)
[

gj

(
vj

(cj + �cj)δn+j

)
– gj

(
pj

(cj + �cj)δn+j

)]∣∣∣∣∣

≤
∣∣∣∣∣δi

n∑
j=1

(wij + �wij)
∣∣∣∣fj

(
vj

(cj + �cj)δn+j

)
– fj

(
pj

(cj + �cj)δn+j

)∣∣∣∣
∣∣∣∣

+

∣∣∣∣∣δi

n∑
j=1

(kij + �kij)

∣∣∣∣∣gj

(
vj

(cj + �cj)δn+j

)
– gj

(
pj

(cj + �cj)δn+j

)∣∣∣∣
∣∣∣∣

≤ δi

n∑
j=1

(|wij| + w̃ij
) γj

(cj – c̃j)δn+j
|vj – pj|

+ δi

n∑
j=1

(|kij| + k̃ij
) Lj|vj – pj|

(cj – c̃j)δn+j
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= δi

n∑
j=1

[((|wij| + w̃ij
)
γj +

(|kij| + k̃ij
)
Lj
) 1

(cj – c̃j)δn+j
|vj – pj|

]
,

and

∣∣Hn+i(w) – Hn+i(m)
∣∣ =

δn+i|di + �di|
(ai + �ai)δi

|ui – mi| +
δn+i|ei + �ei|
(ai + �ai)δi

|ui – mi|

≤ δn+i

(ai – ãi)δi
(di + d̃i + ei + ẽi)|ui – mi|.

(11)

According to the above two formulas and due to assumptions (H2) and (H3), we obtain

n∑
i=1

∣∣Hi(w) – Hi(m)
∣∣ +

n∑
i=1

∣∣Hn+i(w) – Hn+i(m)
∣∣

≤
n∑

i=1

n∑
j=1

δi

[((|wij| + w̃ij
)
γj +

(|kij| + k̃ij
)
Lj
) |vj – pj|

(cj – c̃j)δn+j

]

+
n∑

i=1

δn+i

(ai – ãi)δi
(di + d̃i + ei + ẽi)|ui – mi| (12)

≤
n∑

i=1

θ1|vi – pi| +
n∑

i=1

θ2|ui – mi|

≤ θ

( n∑
i=1

|vi – pi| +
n∑

i=1

|ui – mi|
)

.

Due to the definition of the l1 norm, we have

∥∥H(w) – H(m)
∥∥≤ θ‖w – m‖, (13)

which means that the mapping H(w) is a contraction mapping on R2n. Hence, there is a
unique fixed point u∗ = (u∗

1, u∗
2, . . . , u∗

n, v∗
1, v∗

2, . . . , v∗
n)T ∈ R2n such that H(u∗) = u∗, i.e.,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

δi
∑n

j=1(wij + �wij)fj(
v∗

j
(cj+�cj)δn+j

)

+ δi
∑n

j=1(kij + �kij)gj(
v∗

j
(cj+�cj)δn+j

) + δiBi = u∗
i ,

δn+i(di + �di)
u∗

i
(ai+�ai)δi

+ δn+i(ei + �ei)
u∗

i
(ai+�ai)δi

= v∗
i , i = 1, 2, . . . , n.

(14)

Denote m∗
i = u∗

i
(ai+�ai)δi

and p∗
j =

v∗
j

(cj+�cj)δn+j
, where i, j = 1, 2, . . . , n. We have

⎧⎨
⎩

–(ai + �ai)m∗
i +
∑n

j=1(wij + �wij)fj(p∗
j ) +

∑n
j=1(kij + �kij)gj(p∗

j ) + Bi = 0,

–(ci + �ci)p∗
i + (di + �di)m∗

i + (ei + �ei)m∗
i = 0, i = 1, 2, . . . , n,

and this, together with the uniqueness of u∗, implies that DFGRN (1) has a unique equi-
librium point (m∗, p∗), where m∗ = (m∗

1, . . . , m∗
n)T , p∗ = (p∗

1, . . . , p∗
n)T . �
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3.2 Global uniform asymptotical stability
According to Theorem 1, DFGRN (1) has a unique equilibrium point (m∗, p∗), where m∗ =
(m∗

1, . . . , m∗
n)T , p∗ = (p∗

1, . . . , p∗
n)T . Let xi(t) = mi(t) – m∗

i , yi(t) = pi(t) – p∗
i , i = 1, 2, . . . , n. Then

system (1) will be transformed into

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

CDq
t xi(t) = –(ai + �ai(t))xi(t) +

∑n
j=1(wij + �wij(t))[fj(yj(t) + p∗

j ) – fj(p∗
j )]

+
∑n

j=1(kij + �kij(t))[gj(yj(t – τ1(t)) + p∗
j ) – gj(p∗

j )],
CDq

t yi(t) = –(ci + �ci(t))yi(t) + (di + �di(t))xi(t)

+ (ei + �ei(t))xi(t – τ2(t)), i = 1, 2, . . . , n.

(15)

Theorem 2 If assumptions (H1),(H2), (H3), and (H4) hold, then system (1) is globally uni-
formly asymptotically stable.

Proof Suppose that (x(t), y(t))T is an arbitrary solution of system (15), where x(t) =
(x1(t), x2(t), . . . , xn(t))T , y(t) = (y1(t), y2(t), . . . , yn(t))T .

Let δ∗ = min1≤i≤2n{δi}, δ∗ = max1≤i≤2n{δi}, X(t) = (x1(t), . . . , xn(t), y1(t), . . . , yn(t))T ,
‖X(t)‖ =

∑n
i=1 |xi(t)| +

∑n
i=1 |yi(t)|. Take V (t) =

∑n
i=1 δi|xi(t)| +

∑n
i=1 δn+i|yi(t)|, ω1(‖X‖) =

δ∗‖X‖, ω2(‖X‖) = δ∗‖X‖. Then we have ω1(‖X‖) ≤ V (t) ≤ ω2(‖X‖).
From Lemma 1, we know that the solution (x(t), y(t))T of system (15) satisfies

CDq
t |xi(t)| ≤ sgn(xi(t))CDq

t xi(t) and CDq
t |yi(t)| ≤ sgn(yi(t))CDq

t yi(t), 0 < q ≤ 1, i = 1, 2, . . . , n,
respectively.

After calculating the fractional-order derivative of V (t) along the solutions of system
(15), due to (H1), (H2), and (H3), we obtain

CDq
t V (t) ≤

n∑
i=1

δi sgn
(
xi(t)

)CDq
t xi(t) +

n∑
i=1

δn+i sgn
(
yi(t)

)CDq
t yi(t)

=
n∑

i=1

δi sgn
(
xi(t)

){
–
(
ai + �ai(t)

)
xi(t)

+
n∑

j=1

(
wij + �wij(t)

)[
fj
(
yj(t) + p∗

j
)

– fj
(
p∗

j
)]

+
n∑

j=1

(
kij + �kij(t)

)[
gj
(
yj
(
t – τ1(t)

)
+ p∗

j
)

– gj
(
p∗

j
)]}

+
n∑

i=1

δn+i sgn
(
yi(t)

){
–
(
ci + �ci(t)

)
yi(t) +

(
di + �di(t)

)
xi(t)

+
(
ei + �ei(t)

)
xi
(
t – τ2(t)

)}

≤
n∑

i=1

δi

{(
–(ai – ãi)

)∣∣xi(t)
∣∣ +

n∑
j=1

γj
(|wij| + w̃ij

)∣∣yj(t)
∣∣

+
n∑

j=1

Lj
(|kij| + k̃ij

)∣∣yj
(
t – τ1(t)

)∣∣
}

+
n∑

i=1

δn+i
{

–(ci – c̃i)
∣∣yi(t)

∣∣ + (di + d̃i)
∣∣xi(t)

∣∣
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+ (ei + ẽi)
∣∣xi
(
t – τ2(t)

)∣∣}

=
n∑

i=1

(
–(ai – ãi) +

δn+i(di + d̃i)
δi

)
δi
∣∣xi(t)

∣∣

+
n∑

i=1

( n∑
j=1

(|wji| + w̃ji
)
γi

δj

δn+i
– (ci – c̃i)

)
δn+i
∣∣yi(t)

∣∣

+
n∑

i=1

(
δn+i

δi
(ei + ẽi)

)
δi
∣∣xi
(
t – τ2(t)

)∣∣

+
n∑

i=1

( n∑
j=1

δj

δn+i

(|kji| + k̃ji
)
Li

)
δn+i
∣∣yi
(
t – τ1(t)

)∣∣

≤
n∑

i=1

(–λi)δi
∣∣xi(t)

∣∣ +
n∑

i=1

(–λn+i)δn+i
∣∣yi(t)

∣∣

+ K̂

( n∑
i=1

δi
∣∣xi
(
t – τ2(t)

)∣∣ +
n∑

i=1

δn+i
∣∣yi
(
t – τ1(t)

)∣∣
)

≤ (–λ)

( n∑
i=1

δi
∣∣xi(t)

∣∣ +
n∑

i=1

δn+i
∣∣yi(t)

∣∣
)

+ K̂ sup
0≤τ (t)≤τ∗

( n∑
i=1

δi
∣∣xi
(
t – τ (t)

)∣∣ +
n∑

i=1

δn+i
∣∣yi
(
t – τ (t)

)∣∣
)

= –λV (t) + K̂ sup
0≤τ (t)≤τ∗

V
(
t – τ (t)

)
.

By (H2), we have λ > 0, K̂ > 0. By virtue of (H4), we obtain K̂ < λ, so we have CDq
t V (t) ≤

–(λ – K̂)V (t) ≤ 0 when the Razumikhin condition V (t – τ (t)) ≤ V (t), 0 ≤ τ (t) ≤ τ ∗ holds.
According to Lemma 4, the system (1) is globally uniformly asymptotically stable. �

Remark 3 If we adopt �ai(t) = �wij(t) = �kij(t) = �ci(t) = �di(t) = �ei(t) = 0 in system
(1), the conditions (H2) and (H4) become the following (Ĥ2) and (Ĥ4), respectively.

(Ĥ2) There exist positive constants δi (i = 1, 2, . . . , 2n) such that λ̄ > 0, where

λ̄ = min
1≤i≤n

{λ̄i}, λ̄i = ai –
δn+i

δi
(di + ei), λ̄n+i = ci –

n∑
j=1

δj

δn+i

(|wji|γi + |kji|Li
)
.

(Ĥ4) There exists a constant μ > τ ∗ such that

q2 – q + 1
μq�(1 – q)

+
K̄

(1 – τ∗
μ

)q
– λ̄ ≤ 0, (16)

where

K̄ = max
1≤i≤n

{
δn+i

δi
ei,

n∑
j=1

δj

δn+i
|kji|Li

}
.

Then we obtain the following result.
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Corollary 1 If assumptions (H1), (Ĥ2), and (Ĥ4) hold, then system (1) without structured
uncertainties is globally uniformly asymptotically stable.

Remark 4 Corollary 1 is still new.

Remark 5 If we adopt �ai(t) = �wij(t) = �kij(t) = �ci(t) = �di(t) = �ei(t) = 0 and τ1(t) =
τ2(t) = τ (constant), DFGRN (1) will degenerate into system (2.2) in [21]. The conclusion
of Corollary 1 in this paper is stronger than that of Theorem 3.6 in [21].

4 Numerical example
In this section, we give two numerical examples to illustrate the effectiveness of our the-
oretical results obtained in Sect. 3. In the following examples, the functions fj and gj have
the Hill form, the initial conditions are random. In addition, we improve the Adams–
Bashforth–Moulton predictor–corrector scheme [32] with Matlab to make it available for
the fractional-order differential equations with time-varying delays. When t ∈ [–τ ∗, 0], we
take mi(t) = hi(t) and pi(t) = ĥi(t), respectively, where hi(t) and ĥi(t) are random functions,
i = 1, 2, 3. We repeat the computations 5 times with different initial values and the step-
length h = 0.1. In order to better illustrate the global uniform asymptotic stability, we take
five different initial values for (m1, m2, m3, p1, p2, p3)T as

• (0.2147, 0.5058, 0.1270, 0.0913, 0.2324, 0.0975)T ,
• (0.0278, 0.2469, 0.3575, 0.0049, 0.2576, 0.1970)T ,
• (0.1655, 0.0152, 0.0186, 0.0489, 0.0456, 0.1463)T ,
• (0.3094, 0.4547, 0.2760, 0.2797, 0.1551, 0.1626)T , and
• (0.0119, 0.3284, 0.0695, 0.3404, 0.3853, 0.0220)T ,

respectively.

Example 1 Consider the following DFGRN of three mRNA and protein nodes with time-
varying delays and structured uncertainties:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

CDq
t mi(t) = –(ai + �ai(t))mi(t) +

∑3
j=1(wij + �wij(t))

pr
j (t)

1+pr
j (t)

+
∑3

j=1(kij + �kij(t))
ps

j (t–τ1(t))
1+ps

j (t–τ1(t)) + Bi,
CDq

t pi(t) = –(ci + �ci(t))pi(t) + (di + �di(t))mi(t)

+ (ei + �ei(t))mi(t – τ2(t)), i = 1, 2, 3,

(17)

where τ1(t) = τ2(t) = 20 cos t, r = s = 2, ai = 3, ci = 3.5, di = 1, ei = 0.3, i = 1, 2, 3. Let

�A(t) = diag
([

�a1(t),�a2(t),�a3(t)
])

= diag
([

0.0066 sin(t), 0.0020 cos(t), 0.0034 sin(t)
])

,

�C(t) = diag
([

�c1(t),�c2(t),�c3(t)
])

= diag
([

0.0042 sin(t), 0.0022 cos(t), 0.0048 sin(t)
])

,

�D(t) = diag
([

�d1(t),�d2(t),�d3(t)
])

= diag
([

0.0028 sin(t), 0.0036 cos(t), 0.0026 sin(t)
])

,

�E(t) = diag
([

�e1(t),�e2(t),�e3(t)
])
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= diag
([

0.0050 sin(t), 0.0040 cos(t), 0.0038 sin(t)
])

,

W = (wij)3×3 =

⎛
⎜⎝

0.9421 –0.0598 0.8212
–0.9561 0.2348 0.0154
0.5752 0.6532 –0.0430

⎞
⎟⎠ ,

K = (kij)3×3 =

⎛
⎜⎝

0.0507 0.1943 –0.0889
0.1947 –0.1353 0.2234

–0.2195 0.1641 0.0567

⎞
⎟⎠ ,

�W (t) =
(
�wij(t)

)
3×3 =

⎛
⎜⎝

0.0040 sin(t) 0.0036 cos(t) 0.0044 sin(t)
0.0018 sin(t) 0.0026 cos(t) 0.0024 sin(t)
0.0028 sin(t) 0.0028 cos(t) 0.0032 sin(t)

⎞
⎟⎠ ,

and

�K(t) =
(
�kij(t)

)
3×3 =

⎛
⎜⎝

0.0026 sin(t) 0.0034 cos(t) 0.0040 sin(t)
0.0018 sin(t) 0.0016 cos(t) 0.0018 sin(t)
0.0018 sin(t) 0.0026 cos(t) 0.0024 sin(t)

⎞
⎟⎠ .

Obviously, τ ∗ = 20. By calculating we can find positive constants γi = 1 and Li = 1 (i =
1, 2, 3) such that (7) holds, which implies that the condition (H1) is satisfied. We can take
δ1 = 0.14, δ2 = 0.15, δ3 = 0.16, δ4 = 0.21, δ5 = 0.22, and δ6 = 0.23. Since λi = (ai – ãi)– δ3+i

δi
(di +

d̃i + ei + ẽi) and λ3+i = (ci – c̃i) –
∑3

j=1
δj

δ3+i
((|wji| + w̃ji)γi + (|kji| + k̃ji)Li), i = 1, 2, 3, we have

λ1 = 1.0350 > 0, λ2 = 1.0786 > 0,λ3 = 1.1167 > 0,λ4 = 1.3967 > 0,λ5 = 2.4775 > 0, and λ6 =
2.7067 > 0. So, the condition (H2) holds. Furthermore, letting k̂i =

∑3
j=1

δj
δ3+i

(|kji| + k̃ji)Li, i =
1, 2, 3, we have k̂1 = 0.3445, k̂2 = 0.3398, k̂3 = 0.2438. Then we obtain K̂ = max{ δ4

δ1
(e1 +

ẽ1), δ5
δ2

(e2 + ẽ2), δ6
δ3

(e3 + ẽ3), k̂1, k̂2, k̂3} = 0.4552 and λ = min{λ1,λ2,λ3,λ4,λ5,λ6} = 1.0350.
Due to Theorem 1, DFGRN (17) has a unique equilibrium point (m∗, p∗), where m∗ =
(0.0507, 0.3643, 0.0924)T , p∗ = (0.0189, 0.1357, 0.0344)T . When we take q = 0.95 and μ =
34.6001 > 20 = τ ∗, then q2–q+1

μq�(1–q) + K̂
(1– τ∗

μ )q – λ ≤ 0. According to Theorem 2, DFGRN (17)

is globally uniformly asymptotically stable. Similarly, if we take q = 0.6 and μ = 27.6001 >
20 = τ ∗, then the conclusion also holds.

Subsequently, we use the improved predictor–corrector method [32] to calculate the
numerical solutions of DFGRN (17). The trajectories of variables mi(t) and pi(t) (i = 1, 2, 3)
with q = 0.95, q = 0.6 and different initial values are shown in Figs. 1 and 2, respectively.
The convergence behaviors are obvious.

Example 2 Consider the following DFGRN of three mRNA and protein nodes with time-
varying delays and without structured uncertainties:

⎧⎨
⎩

CDq
t mi(t) = –aimi(t) +

∑3
j=1 wij

pr
j (t)

1+pr
j (t) +

∑3
j=1 kij

ps
j (t–τ1(t))

1+ps
j (t–τ1(t)) + Bi,

CDq
t pi(t) = –cipi(t) + dimi(t) + eimi(t – τ2(t)), i = 1, 2, 3.

(18)

All parameters are the same as in Example 1. We can take δ1 = 0.14, δ2 = 0.15, δ3 =
0.16, δ4 = 0.21, δ5 = 0.22, and δ6 = 0.23. Due to λi � ai – δ3+i

δi
(di + ei) and λ3+i � ci –
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Figure 1 Response curves of system (17) with q = 0.95 and (a)m1(t),m2(t),m3(t); (b) p1(t),p2(t),p3(t)

Figure 2 Response curves of system (17) with q = 0.60 and (a)m1(t),m2(t),m3(t); (b) p1(t),p2(t),p3(t)

∑3
j=1

δj
δ3+i

(|wji|γi + |kji|Li), we have λ1 = 1.05 > 0, λ2 = 1.0933 > 0,λ3 = 1.1312 > 0,λ4 =
1.4106 > 0,λ5 = 2.4916 > 0, and λ6 = 2.7209 > 0. So, the condition (H2) holds. Furthermore,
letting k̂i =

∑3
j=1

δj
δ3+i

|kji|Li, i = 1, 2, 3, we have k̂1 = 0.3401, k̂2 = 0.3352, k̂3 = 0.2393. Then
we obtain K̂ = max{ δ4

δ1
e1, δ5

δ2
e2, δ6

δ3
e3, k̂1, k̂2, k̂3} = 0.45 and λ = min{λ1,λ2,λ3,λ4,λ5,λ6} =

1.05. Due to Theorem 1, DFGRN (18) has a unique equilibrium point (m∗, p∗), where
m∗ = (0.0508, 0.3644, 0.0925)T , p∗ = (0.0189, 0.1353, 0.0343)T . When we take q = 0.95 and
μ = 34.0001 > 20 = τ ∗, so q2–q+1

μq�(1–q) + K̂
(1– τ∗

μ )q – λ ≤ 0. According to Theorem 2, DFGRN (18)

is globally uniformly asymptotically stable. Similarly, if we take q = 0.6 and μ = 27.2001 >
20 = τ ∗, then the conclusion also holds.

Subsequently, we also calculate the numerical solutions of DFGRN (18). The trajectories
of variables mi(t) and pi(t) (i = 1, 2, 3) with q = 0.95, q = 0.6 and different initial values are
shown in Figs. 3 and 4, respectively. The convergence behaviors are obvious.

From Figs. 1–4, we find that the effect of small structured uncertainties on stability of
DFGRNs is not obvious. Meanwhile, we also find that the fractional-order q can affect the
time of stability of DFGRNs. To illustrate the bigger structured uncertainties’ effect on the
stability of DFGRN (17), we set

�A(t) = diag
([

�a1(t),�a2(t),�a3(t)
])

= diag
([

0.33 sin(t), 0.10 cos(t), 0.17 sin(t)
])

,
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Figure 3 Response curves of system (18) with q = 0.95 and (a)m1(t),m2(t),m3(t); (b) p1(t),p2(t),p3(t)

Figure 4 Response curves of system (18) with q = 0.60 and (a)m1(t),m2(t),m3(t); (b) p1(t),p2(t),p3(t)

�C(t) = diag
([

�c1(t),�c2(t),�c3(t)
])

= diag
([

0.21 sin(t), 0.11 cos(t), 0.24 sin(t)
])

,

�D(t) = diag
([

�d1(t),�d2(t),�d3(t)
])

= diag
([

0.14 sin(t), 0.18 cos(t), 0.13 sin(t)
])

,

�E(t) = diag
([

�e1(t),�e2(t),�e3(t)
])

= diag
([

0.25 sin(t), 0.20 cos(t), 0.19 sin(t)
])

,

�W (t) =
(
�wij(t)

)
3×3 =

⎛
⎜⎝

0.20 sin(t) 0.18 cos(t) 0.22 sin(t)
0.09 sin(t) 0.13 cos(t) 0.12 sin(t)
0.14 sin(t) 0.14 cos(t) 0.16 sin(t)

⎞
⎟⎠ ,

and

�K(t) =
(
�kij(t)

)
3×3 =

⎛
⎜⎝

0.13 sin(t) 0.17 cos(t) 0.20 sin(t)
0.09 sin(t) 0.08 cos(t) 0.09 sin(t)
0.09 sin(t) 0.13 cos(t) 0.12 sin(t)

⎞
⎟⎠ .

Then we calculate q2–q+1
μq�(1–q) + K̂

(1– τ∗
μ )q – λ = 1.4002 > 0 with q = 0.95 and 1.3848 > 0 with

q = 0.6, respectively. So the condition (H4) doesn’t hold. The trajectories of variables mi(t)
and pi(t) (i = 1, 2, 3) with q = 0.95 and q = 0.6 are shown in Figs. 5 and 6, respectively. The
DFGRN (17) is obviously unstable.
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Figure 5 Response curves of system (17) with q = 0.95 and (a)m1(t),m2(t),m3(t); (b) p1(t),p2(t),p3(t)

Figure 6 Response curves of system (17) with q = 0.60 and (a)m1(t),m2(t),m3(t); (b) p1(t),p2(t),p3(t)

From Figs. 5–6, we find that bigger structured uncertainties can make DFGRN (17) un-
stable.

5 Conclusion
In this paper, we have proposed a class of fractional-order gene regulatory network models
with time-varying delays and structured uncertainties, and we have obtained the following
results related to DFGRNs: (1) By using the contraction mapping theorem, we obtained
that DFGRNs have a unique equilibrium point; (2) Based on Lyapunov function and Razu-
mikhin technique, we proved that DFGRNs are globally uniformly asymptotically stable.
Furthermore, numerical simulations showed the stability condition q2–q+1

μq�(1–q) + K̂
(1– τ∗

μ )q –λ ≤
0, which depends on the fractional-order q, is better than that of Theorem 3.2 in [22];
(3) We found that the influence of smaller structured uncertainties on the stability is not
obvious, but bigger structured uncertainties can change the stability of DFGRNs in a nu-
merical example.
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Appendix

Proof of Lemma 4 Let

�(t) = (t – a + μ3)qV
(
t, x(t)

)
, �∗(t) = sup

a–τ∗≤θ≤t
�
(
θ , x(θ )

)
, V ∗(t) = sup

a≤θ≤t
V (θ ).

From properties (i) and (ii) in Lemma 2, for t ≥ a, we have

C
a Dq

t �(t)

= RL
a Dq

t �(t) –
μ

q
3V (a)

�(1 – q)
(t – a)–q

≤ (t – a + μ3)qRL
a Dq

t V (t) –
μ

q
3V (a)

�(1 – q)
(t – a)–q + q2(t – a + μ3)q–1RL

a Dq–1
t V (t)

≤ (t – a + μ3)qC
a Dq

t V (t) +
(1 + 2q)V (a)

�(1 – q)
+ q2(t – a + μ3)q–1RL

a Dq–1
t V (t)

≤ (t – a + μ3)qC
a Dq

t V (t) +
(1 + 2q)�∗(t)
μ

q
3�(1 – q)

+ q2(t – a + μ3)q–1RL
a Dq–1

t V (t).

(19)

For any given t ≥ a, there exists a θ∗ ∈ [–τ ∗, 0] such that sup–τ∗≤θ≤0 V (t + θ ) = V (t + θ∗).
From condition (6), we have

(t – a + μ3)qC
a Dq

t V (t) ≤ –μ2�(t) + μ1(t – a + μ3)qV
(
t + θ∗)

≤ –μ2�(t) + μ1

(
t – a + μ3

t – a + μ3 + θ∗

)q

�
(
t + θ∗)

≤ –μ2�(t) + μ1

(
μ3

μ3 + θ∗

)q

�
(
t + θ∗)

≤ –μ2�(t) + μ1

(
μ3

μ3 – τ ∗

)q

�∗(t).

(20)

Then, for t ≥ a, we have

q2(t – a + μ3)q–1RL
a Dq–1

t V (t) =
q2

�(1 – q)
(t – a + μ3)q–1

∫ t

a
(t – s)–qV (s) ds

=
q2

�(1 – q)
(t – a + μ3)q–1V ∗(t)

∫ t

a
(t – s)–q ds

=
q2

�(2 – q)
(t – a + μ3)q–1V ∗(t)(t – a)1–q

≤ q2

�(2 – q)
V ∗(t) ≤ q2

μ
q
3�(2 – q)

�∗(t).

(21)

From (19)–(21), we can show that

⎧⎨
⎩

C
a Dq

t �(t) ≤ ( q2–q+1
μ

q
3�(1–q)

+ μ1
(1– τ∗

μ3
)q – μ2)�(t) ≤ 0,

whenever �∗(t) = �(t), t ≥ a.
(22)
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By the above arguments, we can get

�∗(t) = �(t), t ≥ a.

Now, for any given ε > 0, δ > 0, and ‖φ‖ ≤ δ, we have

ω1
(∥∥x(t)

∥∥)≤ V
(
t, x(t)

)
=

1
(t – a + μ3)q �

(
t, x(t)

)

≤ 1
(t – a + μ3)q �∗(t)

≤ 1
(t – a + μ3)q �(a)

≤ μ
q
3

(t – a + μ3)q V (a)

≤
(

μ3

t – a + μ3

)q

ω2
(‖φ‖)

≤
(

μ3

t – a + μ3

)q

ω2(δ) ≤ ω1(ε),

(23)

but this implies that ‖x(t)‖ ≤ ε, for t ≥ a + T , where T = [( ω2(δ)
ω1(ε) )

1
q – 1]μ3.

The system (3) is globally uniformly stable. The proof is completed. �

Acknowledgements
The authors are grateful to the editor and the anonymous referees for their valuable comments and suggestions on the
paper.

Funding
This work is supported by the Hunan Provincial Natural Science Foundation (No. 2019JJ50222, 13JJ4065), the Scientific
Research Fund of Hunan Provincial Education Department (No. 19C0911).

Availability of data and materials
All authors declare that all the data can be accessed in our manuscript in the numerical simulation section.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors contributed equally to the writing of this paper. All authors read and approved the final version of the
manuscript.

Author details
1School of Mathematics and Statistics, Huaiyin Normal University, 223300, Huaian, P.R. China. 2School of Computer
Science and Technology, Huaiyin Normal University, 223300, Huaian, P.R. China. 3College of Information and Intelligence
Science, Hunan Agricultural University, 410128, Changsha, P.R. China.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 1 June 2020 Accepted: 15 January 2021

References
1. Huang, C., Cao, J., Xiao, M.: Hybrid control on bifurcation for a delayed fractional gene regulatory network. Chaos

Solitons Fractals 87, 19–29 (2016)
2. De Jong, H.: Modeling and simulation of genetic regulatory systems: a literature review. J. Comput. Biol. 9(1), 67–103

(2002)
3. Chaouiya, C., Remy, E., Thieffry, D.: Petri net modelling of biological regulatory networks. J. Discret. Algorithms 6(2),

165–177 (2008)



Wu et al. Advances in Difference Equations         (2021) 2021:93 Page 18 of 18

4. Friedman, N., Linial, M., Nachman, I., Pe’er, D.: Using Bayesian networks to analyze expression data. J. Comput. Biol.
7(3–4), 601–620 (2000)

5. Tao, B., Xiao, M., Sun, Q., Cao, J.: Hopf bifurcation analysis of a delayed fractional-order genetic regulatory network
model. Neurocomputing 275, 677–686 (2018)

6. Yu, T., Zhang, X., Zhang, G., Niu, B.: Hopf bifurcation analysis for genetic regulatory networks with two delays.
Neurocomputing 164, 190–200 (2015)

7. Zhang, Z., Zhang, J., Ai, Z.: A novel stability criterion of the time-lag fractional-order gene regulatory network system
for stability analysis. Commun. Nonlinear Sci. Numer. Simul. 66, 96–108 (2019)

8. Fan, X., Xue, Y., Zhang, X., Ma, J.: Finite-time state observer for delayed reaction–diffusion genetic regulatory networks.
Neurocomputing 227, 18–28 (2017)

9. Wu, L., Liu, K., Lü, J., Gu, H.: Finite-time adaptive stability of gene regulatory networks. Neurocomputing 338, 222–232
(2019)

10. Yue, D., Guan, Z., Li, J., Liu, F., Xiao, J., Ling, G.: Stability and bifurcation of delay-coupled genetic regulatory networks
with hub structure. J. Franklin Inst. Eng. Appl. Math. 356(5), 2847–2869 (2019)

11. Ren, F., Cao, F., Cao, J.: Mittag-Leffler stability and generalized Mittag-Leffler stability of fractional-order gene
regulatory networks. Neurocomputing 160, 185–190 (2015)

12. Zhang, Y., Pu, Y., Zhang, H., Cong, Y., Zhou, J.: An extended fractional Kalman filter for inferring gene regulatory
networks using time-series data. Chemom. Intell. Lab. Syst. 138, 57–63 (2014)

13. Wang, Y., Wang, Z., Liang, J.: On robust stability of stochastic genetic regulatory networks with time delays: a delay
fractioning approach. IEEE Trans. Syst. Man Cybern., Part B, Cybern. 40(3), 729–740 (2010)

14. He, Y., Zeng, J., Wu, M., Zhang, C.-K.: Robust stabilization and H∞ controllers design for stochastic genetic regulatory
networks with time-varying delays and structured uncertainties. Math. Biosci. 236(1), 53–63 (2012)

15. Chesi, G., Hung, Y.S.: Stability analysis of uncertain genetic sum regulatory networks. Automatica 44(9), 2298–2305
(2008)

16. Kim, T.-H., Hori, Y., Hara, S.: Robust stability analysis of gene–protein regulatory networks with cyclic
activation–repression interconnections. Syst. Control Lett. 60(6), 373–382 (2011)

17. Zhang, W., Fang, J.-A., Tang, Y.: Robust stability for genetic regulatory networks with linear fractional uncertainties.
Commun. Nonlinear Sci. Numer. Simul. 17(4), 1753–1765 (2012)

18. Wang, Q., Perc, M., Duan, Z., Chen, G.: Synchronization transitions on scale-free neuronal networks due to finite
information transmission delays. Phys. Rev. E 80(2), 026206 (2009)

19. Zang, H., Zhang, T., Zhang, Y.: Bifurcation analysis of a mathematical model for genetic regulatory network with time
delays. Appl. Math. Comput. 260, 204–226 (2015)

20. Zhang, J., Jin, Z., Yan, J., Sun, G.: Stability and Hopf bifurcation in a delayed competition system. Nonlinear Anal.,
Theory Methods Appl. 70(2), 658–670 (2009)

21. Wu, Z., Wang, Z., Zhou, T.: Global stability analysis of fractional-order gene regulatory networks with time delay. Int. J.
Biomath. 12(6), 1950067 (2019)

22. Chen, B., Chen, J.: Razumikhin-type stability theorems for functional fractional-order differential systems and
applications. Appl. Math. Comput. 254, 63–69 (2015)

23. Stamova, I.: Global Mittag-Leffler stability and synchronization of impulsive fractional-order neural networks with
time-varying delays. Nonlinear Dyn. 77(4), 1251–1260 (2014)

24. Stamova, I., Stamov, G.: Mittag-Leffler synchronization of fractional neural networks with time-varying delays and
reaction-diffusion terms using impulsive and linear controllers. Neural Netw. 96, 22–32 (2017)

25. Wu, Z., Wang, Z., Zhou, T., Tan, S.: Global synchronization and anti-synchronization of fractional-order complex-valued
gene regulatory networks with time-varying delays. IEEE Access 8, 150555–150572 (2020)

26. Wu, Z., Wang, Z., Zhou, T.: Finite-time stability of fractional-order time-varying delays gene regulatory networks with
structured uncertainties and controllers. Complexity 2020, 2315272 (2020)

27. Zhang, Z., Toshimitsu, U., Ai, Z., Zhang, J.: Novel stability condition for delayed fractional-order composite systems
based on vector Lyapunov function. Nonlinear Dyn. 99, 1253–1267 (2020)

28. Zhang, Z., Zhang, J.: Asymptotic stabilization of general nonlinear fractional-order systems with multiple time delays.
Nonlinear Dyn. 102, 605–619 (2020)

29. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)
30. Ren, F., Cao, J.: Asymptotic and robust stability of genetic regulatory networks with time-varying delays.

Neurocomputing 71(4), 834–842 (2008)
31. Zhang, S., Yu, Y., Hu, W.: Robust stability analysis of fractional-order Hopfield neural networks with parameter

uncertainties. Math. Probl. Eng. 2014, Article ID 302702 (2014)
32. Diethelm, K., Ford, N.J., Freed, A.D., Gray, H.R.: A predictor-corrector approach for the numerical solution of fractional

differential equations. Nonlinear Dyn. 29, 3–22 (2002)


	Global uniform asymptotical stability for fractional-order gene regulatory networks with time-varying delays and structured uncertainties
	Abstract
	MSC
	Keywords

	Introduction
	Preliminaries
	Main results
	The existence and uniqueness of the equilibrium point of DFGRNs
	Global uniform asymptotical stability

	Numerical example
	Conclusion
	Appendix
	Acknowledgements
	Funding
	Availability of data and materials
	Competing interests
	Authors' contributions
	Author details
	Publisher's Note
	References


