
Chatzarakis et al. Advances in Difference Equations         (2021) 2021:85 
https://doi.org/10.1186/s13662-021-03246-7

R E S E A R C H Open Access

An oscillation criterion of linear delay
differential equations
George E. Chatzarakis1*, Božena Dorociaková2 and Rudolf Olach2

*Correspondence:
geaxatz@otenet.gr;
gea.xatz@aspete.gr
1Department of Electrical and
Electronic Engineering Educators,
School of Pedagogical and
Technological Education (ASPETE),
Athens, Greece
Full list of author information is
available at the end of the article

Abstract
In this paper, we present a new sufficient condition for the oscillation of all solutions
of linear delay differential equations. The obtained result improves known conditions
in the literature. We also give an example to illustrate the applicability and strength of
the obtained condition over known ones.

MSC: Primary 34K06; secondary 34K11

Keywords: Oscillation; Delay differential equation; Oscillatory solutions;
Nonoscillatory solutions; Sufficient conditions

1 Introduction
This paper is devoted to studying the oscillation of the first-order delay differential equa-
tion of the form

x′(t) + p(t)x
(
t – r(t)

)
= 0, t ≥ T0, (1)

where T0 ∈R+, p, r ∈ C([T0,∞), (0,∞)), and 0 < r(t) < t, and limt→∞(t – r(t)) = ∞.
The problem of the oscillatory properties of the solutions of delay differential equations

has been recently investigated by many authors. See, for example [1–11] and the references
therein. We mention some results for the purpose of this paper.

Chatzarakis and Li [5] studied the oscillation of delay differential equations with non-
monotone arguments. The results reported in this paper (regarding the oscillation of first-
order delay differential equations) have numerous applications (e.g., comparison princi-
ples) in the study of oscillation and asymptotic behavior of higher-order differential equa-
tions; see, for instance, [1, 6, 10, 11] for more detail.

In 1972, Ladas, Lakshmikantham, and Papadakis [9] proved that if

lim sup
t→∞

∫ t

t–r(t)
p(s) ds > 1, (2)

then all solutions of (1) are oscillatory.
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Ladas [8] in 1979, and Koplatadze and Chanturiya [7] in 1982 improved (2) to

lim inf
t→∞

∫ t

t–r(t)
p(s) ds >

1
e

. (3)

Concerning the constant 1
e in (3), it is to be pointed out that if the inequality

∫ t

t–r(t)
p(s) ds ≤ 1

e

eventually holds, then, according to a result in [4], (1) has a nonoscillatory solution.
In the recent paper [3] the authors established the following oscillation criterion for (1)

when r(t) = τ , τ > 0.

Theorem 1.1 ([3]) Let p : [T0,∞) → R+ be a nonnegative, bounded, and uniformly con-
tinuous function such that

lim inf
t→∞

∫ t

t–τ

p(s) ds > 0.

Moreover, suppose that the function

A(t) =
∫ t

t–τ

p(s) ds, t ≥ T0 + τ ,

is slowly varying at infinity. Then

lim sup
t→∞

∫ t

t–τ

p(s) ds >
1
e

implies that all solutions of (1) are oscillatory.

Our aim is establishing a new condition for the oscillation of all solutions of (1), includ-
ing the cases where conditions (2)–(3) and Theorem 1.1 cannot be applied. We also give
an example illustrating the applicability and strength of the obtained condition over the
known ones.

2 Main result
The proof of our main result is essentially based on the following lemmas.

Lemma 2.1 Let x be an eventually positive solution of (1). Then for sufficiently large t0 >
T0,

ln
x(t – τ )

x(t)
=

∫ t

t–τ

p(s)
x(s – r(s))

x(s)
ds, t ≥ t0 + τ .

Proof Let x be an eventually positive solution of (1). Then x(t – r(t)) > 0 for t ≥ t0 + τ ,
where t0 > T0 is sufficiently large. From (1), for t ≥ t0 + τ , we obtain

x′(t)
x(t)

+ p(t)
x(t – r(t))

x(t)
= 0,
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or

∫ t

t–τ

x′(s)
x(s)

ds +
∫ t

t–τ

p(s)
x(s – r(s))

x(s)
ds = 0,

that is,

ln
x(t – τ )

x(t)
=

∫ t

t–τ

p(s)
x(s – r(s))

x(s)
ds, t ≥ t0 + τ .

The proof of the lemma is complete. �

Lemma 2.2 Let x be an eventually positive solution of (1). Then

ln
x(t – τ )

x(t)
= p(t)

∫ t

t–τ

x(s – r(s))
x(s)

ds

+
[
p(t) – p(t – τ )

] ∫ t–τ

t0

x(s – r(s))
x(s)

ds

–
∫ t

t–τ

p′(s)
∫ s

t0

x(u – r(u))
x(u)

du ds, t ≥ t0 + τ . (4)

Proof It is obvious that

∫ t

t–τ

p(s)
x(s – r(s))

x(s)
ds

= p(t)
∫ t

t–τ

x(s – r(s))
x(s)

ds

+
[
p(t) – p(t – τ )

] ∫ t–τ

t0

x(s – r(s))
x(s)

ds –
∫ t

t–τ

p′(s)
∫ s

t0

x(u – r(u))
x(u)

du ds,

or

ln
x(t – τ )

x(t)
= p(t)

∫ t

t–τ

x(s – r(s))
x(s)

ds

+
[
p(t) – p(t – τ )

] ∫ t–τ

t0

x(s – r(s))
x(s)

ds

–
∫ t

t–τ

p′(s)
∫ s

t0

x(u – r(u))
x(u)

du ds, t ≥ t0 + τ .

The proof of the lemma is complete. �

Now we focus on the function

R(t) = –
∫ t

t–τ

p′(s)
∫ s

t0

x(u – r(u))
x(u)

du ds, t ≥ t0 + τ .

Lemma 2.3 Let x be an eventually positive solution of (1). Assume that:
(H1) the function p ∈ C1([T0,∞), (0,∞));
(H2) p((2n + 1)τ ) – p(2nτ ) = 0, n ∈N;
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(H3) there exists Tn ∈ (2nτ , (2n + 1)τ ) such that p′(t) > 0 for t ∈ (Tn – τ , Tn) and p′(t) < 0
for t ∈ (Tn, (2n + 1)τ ], n ∈N;

(H4) inf{– ∫ (2n+1)τ
Tn

(t – Tn)p′(t) dt, n ∈N} > 0.
Then

inf
{

R
(
(2n + 1)τ

)
, n ∈N

}
> 0.

Proof We easily see that

R
(
(2n + 1)τ

)

= –
∫ (2n+1)τ

2nτ

p′(t)
∫ t

t0

x(s – r(s))
x(s)

ds dt

= –
∫ Tn

2nτ

p′(t)
∫ t

t0

x(s – r(s))
x(s)

ds dt –
∫ (2n+1)τ

Tn

p′(t)
∫ t

t0

x(s – r(s))
x(s)

ds dt

≥ –
∫ Tn

2nτ

p′(t) dt
∫ Tn

t0

x(s – r(s))
x(s)

ds –
∫ (2n+1)τ

Tn

p′(t) dt
∫ Tn

t0

x(s – r(s))
x(s)

ds

–
∫ (2n+1)τ

Tn

p′(t)
∫ t

Tn

x(s – r(s))
x(s)

ds dt

=
(

–
∫ Tn

2nτ

p′(t) dt –
∫ (2n+1)τ

Tn

p′(t) dt
)∫ Tn

t0

x(s – r(s))
x(s)

ds

–
∫ (2n+1)τ

Tn

p′(t)
∫ t

Tn

x(s – r(s))
x(s)

ds dt

=
[
p(2nτ ) – p

(
(2n + 1)τ

)]∫ Tn

t0

x(s – r(s))
x(s)

ds –
∫ (2n+1)τ

Tn

p′(t)
∫ t

Tn

x(s – r(s))
x(s)

ds dt

= –
∫ (2n+1)τ

Tn

p′(t)
∫ t

Tn

x(s – r(s))
x(s)

ds dt.

Since x(t) is decreasing, x(t – r(t)) ≥ x(t), t ≥ t0 + τ . Thus

R
(
(2n + 1)τ

) ≥ –
∫ (2n+1)τ

Tn

p′(t)
∫ t

Tn

x(s – r(s))
x(s)

ds dt

≥ –
∫ (2n+1)τ

Tn

(t – Tn)p′(t) dt, n ∈N.

In view of (H4), we get inf{R((2n + 1)τ ), n ∈N} > 0.
The proof of the lemma is complete. �

Theorem 2.1 Suppose that (H1)–(H4) hold, r(t) ≥ τ , p(t) is periodic with period 2τ , and

p′(t – τ ) – p′(t) > 0, t ∈ (
Tn, (2n + 1)τ

)
, n ∈N, (5)

lim inf
t→∞

∫ t

t–r(t)
p(s) ds > 0. (6)

Then all solutions of (1) are oscillatory.



Chatzarakis et al. Advances in Difference Equations         (2021) 2021:85 Page 5 of 10

Proof Assume that (1) has a positive solution x. The derivative of the function R(t) is

R′(t) = –p′(t)
∫ t

t0

x(s – r(s))
x(s)

ds + p′(t – τ )
∫ t–τ

t0

x(s – r(s))
x(s)

ds

= –p′(t)
∫ t

t–τ

x(s – r(s))
x(s)

ds – p′(t)
∫ t–τ

t0

x(s – r(s))
x(s)

ds

+ p′(t – τ )
∫ t–τ

t0

x(s – r(s))
x(s)

ds

= –p′(t)
∫ t

t–τ

x(s – r(s))
x(s)

ds

+
[
p′(t – τ ) – p′(t)

]∫ t–τ

t0

x(s – r(s))
x(s)

ds, t ≥ t0 + τ .

Condition (5) implies that R′(t) > 0 for t ∈ (Tn, (2n + 1)τ ). Thus the function R(t) is increas-
ing on (Tn, (2n+1)τ ), n ∈N. Since R(Tn) < 0, n ∈N, by Lemma 2.3 there exist tn ∈ (Tn, (2n+
1)τ ) such that R(tn) = 0, n ∈ N. Condition (H4) implies that inf{(2n + 1)τ – Tn, n ∈ N} > 0.
Put

H(t) = p(t) – p(t – τ ), t ∈ (
Tn, (2n + 1)τ

]
, n ∈N.

According to (5) and (H2), we have

H ′(t) = p′(t) – p′(t – τ ) < 0, t ∈ (
Tn, (2n + 1)τ

)
,

and H((2n + 1)τ ) = 0, n ∈N. Then

H(t) = p(t) – p(t – τ ) > 0 for t ∈ (
Tn, (2n + 1)τ

)
, n ∈ N. (7)

Now assume that

tn ≤ bn = (2n + 1)τ – ε, n ∈N,

where 0 < ε < inf{(2n + 1)τ – Tn, n ∈N}. In view of (4), we get

ln
x(bn – τ )

x(bn)

= p(bn)
∫ bn

bn–τ

x(s – τ )
x(s)

ds

+
[
p(bn) – p(bn – τ )

] ∫ bn–τ

t0

x(s – τ )
x(s)

ds + R(bn), bn ≥ t0 + τ , n ∈N.

Condition (6) implies that x(t –r(t))/x(t) is bounded [7]. Since x(t –r(t))/x(t) ≥ x(t –τ )/x(t),
it is obvious that there exists a constant K > 0 such that x(t – τ )/x(t) ≤ K , t ≥ T ≥ t0 + τ ,
where T is sufficiently large. Thus

ln K ≥ p(bn)
∫ bn

bn–τ

x(s – r(s))
x(s)

ds
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+
[
p(bn) – p(bn – τ )

] ∫ bn–τ

t0

x(s – r(s))
x(s)

ds + R(bn), bn ≥ T . (8)

Otherwise, for sufficiently large bn ≥ T , by (7) and the periodicity of p(t), we get

[
p(bn) – p(bn – τ )

]∫ bn–τ

t0

x(s – r(s))
x(s)

ds > ln K ,

which contradicts (8).
Now assume that there exists a sequence {tn} such that

tn → (2n + 1)τ as n → ∞, R(tn) = 0, tn ∈ (
Tn, (2n + 1)τ

)
, n ∈N.

Then

R
(
(2n + 1)τ

)

= –
∫ (2n+1)τ

2nτ

p′(t)
∫ t

t0

x(s – r(s))
x(s)

ds dt

= –
∫ Tn

2nτ

p′(t)
∫ t

t0

x(s – r(s))
x(s)

ds dt –
∫ (2n+1)τ

Tn

p′(t)
∫ t

t0

x(s – r(s))
x(s)

ds dt

= –
∫ Tn

tn–τ

p′(t)
∫ t

t0

x(s – r(s))
x(s)

ds dt +
∫ 2nτ

tn–τ

p′(t)
∫ t

t0

x(s – r(s))
x(s)

ds dt

–
∫ tn

Tn

p′(t)
∫ t

t0

x(s – r(s))
x(s)

ds dt –
∫ (2n+1)τ

tn

p′(t)
∫ t

t0

x(s – r(s))
x(s)

ds dt

= –
∫ tn

tn–τ

p′(t)
∫ t

t0

x(s – r(s))
x(s)

ds dt +
∫ 2nτ

tn–τ

p′(t)
∫ t

t0

x(s – r(s))
x(s)

ds dt

–
∫ (2n+1)τ

tn

p′(t)
∫ t

t0

x(s – r(s))
x(s)

ds dt

= R(tn) +
∫ 2nτ

tn–τ

p′(t)
∫ t

t0

x(s – r(s))
x(s)

ds dt –
∫ (2n+1)τ

tn

p′(t)
∫ t

t0

x(s – r(s))
x(s)

ds dt

=
∫ 2nτ

tn–τ

p′(t)
∫ t

t0

x(s – r(s))
x(s)

ds dt

–
∫ (2n+1)τ

tn

p′(t)
∫ t

t0

x(s – r(s))
x(s)

ds dt, n ∈N.

Since tn → (2n + 1)τ as n → ∞, clearly,

∫ 2nτ

tn–τ

p′(t)
∫ t

t0

x(s – r(s))
x(s)

ds dt → 0

and

–
∫ (2n+1)τ

tn

p′(t)
∫ t

t0

x(s – r(s))
x(s)

ds dt → 0.
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Thus

R
(
(2n + 1)τ

) → 0 as tn → (2n + 1)τ and n → ∞.

This contradicts inf{R((2n + 1)τ ), n ∈ N} > 0.
The proof of the theorem is complete. �

Example Consider the delay differential equation

x′(t) +
(

a
πe

+ δ sin at
)

x
(

t –
π

a

)
= 0, t ≥ 0, (9)

where a > 0, δ ∈ (0, a
πe ).

Equation (9) is a particular case of (1) when r(t) = τ = π
a , T0 = 0, and

p(t) =
a
πe

+ δ sin at.

It is easy to see that (H1) is satisfied. For condition (H2), we have

p
(
(2n + 1)τ

)
– p(2nτ )

=
a
πe

+ δ sin a(2n + 1)
π

a
–

a
πe

– δ sin a2n
π

a

= δ
[
sin(2n + 1)π – sin 2nπ

]
= 0, n ∈N.

In condition (H3), Tn = (2n + 0.5) π
a , and

p′(t) = aδ cos at > 0 for t ∈
(

(2n – 0.5)
π

a
, (2n + 0.5)

π

a

)
,

p′(t) < 0 for t ∈
(

(2n + 0.5)
π

a
, (2n + 1)

π

a

]
, n ∈N.

For condition (H4), we get

– aδ

∫ (2n+1) π
a

(2n+0.5) π
a

(
t – (2n + 0.5)

π

a

)
cos at dt

= aδ(2n + 0.5)
π

a

∫ (2n+1) π
a

(2n+0.5) π
a

cos at dt – aδ

∫ (2n+1) π
a

(2n+0.5) π
a

t cos at dt

= δ(2n + 0.5)
π

a
[
sin(2n + 1)π – sin(2n + 0.5)π

]
– aδ

[
1
a2 cos(2n + 1)π

+
1
a

(2n + 1)
π

a
sin(2n + 1)π –

1
a2 cos(2n + 0.5)π –

1
a

(2n + 0.5)
π

a
sin(2n + 0.5)π

]

= –δ(2n + 0.5)
π

a
– aδ

[
–

1
a2 –

1
a

(2n + 0.5)
π

a

]

= –δ(2n + 0.5)
π

a
– δ

[
–

1
a

– (2n + 0.5)
π

a

]
=

δ

a
.
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Thus

inf

{
–

∫ (2n+1)τ

Tn

(t – Tn)p′(t) dt, n ∈N

}

= inf

{
–aδ

∫ (2n+1) π
a

(2n+0.5) π
a

(
t – (2n + 0.5)

π

a

)
cos at dt, n ∈N

}
=

δ

a
> 0.

In addition, we have

p′(t – τ ) – p′(t) = p′
(

t –
π

a

)
– p′(t) = aδ cos a

(
t –

π

a

)
– aδ cos at

= aδ
[
cos(at – π ) – cos at

]
= aδ(– cos at – cos at)

= –2aδ cos at > 0 for t ∈
(

(2n + 0.5)
π

a
, (2n + 1)

π

a

)
, n ∈N,

that is, condition (5) is satisfied. Also,

∫ t

t– π
a

(
a
πe

+ δ sin as
)

ds

=
a
πe

t –
δ

a
cos at –

a
πe

(
t –

π

a

)
+

δ

a
cos a

(
t –

π

a

)

= –
δ

a
cos at +

1
e

+
δ

a
cos(at – π ) =

1
e

–
δ

a
cos at –

δ

a
cos at

=
1
e

–
2δ

a
cos at.

Therefore

lim inf
t→∞

∫ t

t– π
a

p(s) ds = lim inf
t→∞

∫ t

t– π
a

(
a
πe

+ δ sin as
)

ds

=
1
e

–
2δ

a
> 0, δ ∈

(
0,

a
πe

)
,

so that all conditions of Theorem 2.1 are satisfied, which means that all solutions of (9)
are oscillatory.

Observe, however, that

lim sup
t→∞

∫ t

t– π
a

p(s) ds =
1
e

+
2δ

a
<

π + 2
πe

< 1, δ ∈
(

0,
a
πe

)

and

lim inf
t→∞

∫ t

t– π
a

p(s) ds =
1
e

–
2δ

a
<

1
e

, δ ∈
(

0,
a
πe

)
,

which means that conditions (2) and (3) are not satisfied.
Moreover, the function f (t) is not slowly varying at infinity. Indeed,

f (t) =
∫ t

t– π
a

p(s) ds =
1
e

–
2δ

a
cos at, δ ∈

(
0,

a
πe

)
,
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and

f (t + s) – f (t) = –
2δ

a
cos a(t + s) +

2δ

a
cos at

=
2δ

a
[
cos at – cos a(t + s)

]
, s ∈R.

For s = π/a, we get

f
(

t +
π

a

)
– f (t) =

2δ

a

[
cos at – cos a

(
t +

π

a

)]

=
2δ

a
[cos at + cos at] =

4δ

a
cos at �→ 0 as t → ∞, δ ∈

(
0,

a
πe

)
.

Thus Theorem 1.1 cannot be applied. Recall (see, e.g., [3, 12]) that a function f : [t0,∞) →
R is slowly varying at infinity if for every s ∈R,

f (t + s) – f (t) → 0 as t → ∞.
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