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Abstract

In this paper, we study the nonnegativity and stability properties of the solutions of a
newly proposed extended SEIR epidemic model, the so-called SE(Is)(Ih)AR epidemic
model which might be of potential interest in the characterization and control of the
COVID-19 pandemic evolution. The proposed model incorporates both
asymptomatic infectious and hospitalized infectious subpopulations to the standard
infectious subpopulation of the classical SEIR model. In parallel, it also incorporates
feedback vaccination and antiviral treatment controls. The exposed subpopulation
has three different transitions to the three kinds of infectious subpopulations under
eventually different proportionality parameters. The existence of a unique
disease-free equilibrium point and a unique endemic one is proved together with the
calculation of their explicit components. Their local asymptotic stability properties
and the attainability of the endemic equilibrium point are investigated based on the
next generation matrix properties, the value of the basic reproduction number, and
nonnegativity properties of the solution and its equilibrium states. The reproduction
numbers in the presence of one or both controls is linked to the control-free
reproduction number to emphasize that such a number decreases with the control
gains. We also prove that, depending on the value of the basic reproduction number,
only one of them is a global asymptotic attractor and that the solution has no limit
cycles.

Keywords: SEIR epidemic model; SE(Is)(Ih)AR epidemic model; Vaccination control;
Antiviral treatment control; Reproduction number; Nonnegativity of solutions; Limit
cycles

1 Introduction

Along the last two decades, an important effort has been devoted to the research of
mathematical epidemic models based on integro-differential equations and/or difference
equations. Such models describe the evolution through time of various subpopulations
integrated in the epidemic model. The classical so-called SEIR (Susceptible—Exposed—
Infectious—Recovered) epidemic model splits the infectious population into two subpopu-
lations (or compartments), namely, the so-called “infected” or “exposed” (E) (those having

the disease but with no external symptoms) and the “infectious” or “infective” (I) (those
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having external symptoms). The SEIR model has multiple variants with different degrees
of complexity, including those admitting controls like, for instance, constant and feedback
vaccination and treatment controls and/or impulsive controls (exerted on very short peri-
ods of time) or those involving several interacting patches associated with different towns
or regions; see, for instance, [1-3] and [4—12] and references therein. In [11] an epidemic
model subject to a ratio-dependent saturation incidence rate is proposed. On the other
hand, a new SIR (Susceptible—Infectious—Recovered) epidemic model under impulsive
vaccination is investigated in [12], and a nonautonomous SIRVS epidemic model with vac-
cination controls is proposed and studied in [13]. Also, an epidemic delayed model with
diffusion is characterized and studied in [14]. It is worth mentioning that a relevant at-
tention has been paid to the investigation of the stability and nonnegativity and positivity
properties of epidemic models in both vaccination-free and vaccination control situations.
See, for instance, [14—26], and also [17, 18] in the stochastic framework context. On the
other hand, we can point out that the nonnegativity of the solution is commonly required
in biological processes to appropriately approach in a coherent fashion their natural evo-
lution. See, for instance, [27] and some references therein, concerning the Beverton—Holt
equation of population model evolution at successive stages.

On the other hand, it is known that there may be some individuals who are infective but
have no significant external symptoms, the so-called “asymptomatic” (A) subpopulation;
see [28—32], and references therein. This occurs even in the common known influenza dis-
ease. If such an asymptomatic subpopulation is incorporated to the model, then it turns
out that the exposed have different transitions to the infective and to the asymptomatic
in such a way that a proportion of the exposed become asymptomatic after a certain time
period while others become infectious. Note, for instance, that in the Ebola disease the
lying dead corpses are also infective [4, 28—31, 33], which can cause very serious sanitary
problems in third-world tropical countries with low or scarce sanitary means. In particu-
lar, SEIADR-type epidemic models are considered in [29-31], which incorporate asymp-
tomatic and dead populations to the typical SEIR models and which include, in general,
vaccination and treatment controls as well as impulsive controls to retire the infective
bodies from the streets in third-world countries hit by Ebola outbreaks.

In this paper, we propose and investigate an extended SEIR model with six subpopu-
lations, the so-called SE(Is)(Ih)AR. There are four infective subpopulations integrated in
such a model, which are the exposed subpopulation, the symptomatic slight infectious
subpopulation, the symptomatic serious infection subpopulation, and the asymptomatic
subpopulation. It is important to specifically consider the seriously infectious subpopula-
tion as a separate one from the slightly infectious individuals due to their high consump-
tion of hospital resources (intensive care attention means, respirators, etc.) and special
staff attention related to the slight infectious individuals. Each individual of exposed sub-
population has a transition either to one of the symptomatic infectious subpopulation or
to the asymptomatic one. The respective transmission rates are different in general be-
cause of different reasons; for instance, the asymptomatic individuals do not cough or can
cough occasionally due to other reasons than COVID disease such as allergies, asthma, or
gastroesophageal reflux disease, so it is expected that their transmission rate for contagion
of susceptible individuals is smaller than that of the infectious ones. Also, the hospitalized
individuals do not contact usually the same average numbers of susceptible as the asymp-
tomatic or slight infectious contact, whereas the hospital staff members that contact with
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them are expected to have protection suits and sanitary contact means. So, it is also ex-
pected that the hospitalized individuals have a smaller transmission rates than those of the
slight infectious ones. The proposed epidemic model is also subject, in the most general
framework, to feedback vaccination and treatment controls. It is tested through numeri-
cal worked and tested examples under parameterizations related to the recent COVID-19
pandemic, which is exhaustively studied in the medical and computational background
literature; see, for instance, [34—48] and references therein. Therefore the current study is
of important potential interest, although nowadays there is no yet an approved vaccine for
COVID-19 to be applied on the population. It turns out that COVID-19 is a respiratory
viral infectious disease, which has a very high contagiousness related to the typical in-
fluenza or the known common cold. Therefore intervention rules, such as confinements,
social distance keeping, limitation of events, and attendance numbers or use of face masks,
are recommended or even mandatory to mitigate the disease spread. The use of masks is
probably the simpler, cheaper, and most efficient weapon against the pandemic, although
it can have also secondary effects on the health [43], mainly due to the incomplete ejec-
tion of carbon dioxide outside with the exhalation of air phase. COVID-19 pandemic also
exhibits very different symptoms and later secondary effects depending on the particular
infected individual running from asymptomatic, or very slight, symptoms to very seri-
ous ones, needing extreme hospital care, sometimes producing serious damage in organs
like lungs, liver, or heart and sometimes ending with the patient’s death. In particular,
the particle swarm optimization algorithm (PSO) is used to estimate an SEIR model pa-
rameterization of COVID-19 using available Hubei province data. Also, a fractional-order
model SEIRD model (an SEIR model, which includes deceased) is proposed in [35] for
COVID-19 pandemic emphasizing that the fractional models possess an inherent mem-
ory effect. On the other hand, an epidemic model for COVID-19 that takes into account
undetected infective cases and different sanitary and infectiousness conditions of the hos-
pitalized individuals is discussed in [36], whereas an extended SEIR model is considered in
[37], which incorporates as a new subpopulation the concentration of the coronavirus in
the environment reservoir. Also, the dynamics of such a concentration is driven by the ex-
posed and infectious subpopulations. Ageing population layers for control interventions
and re-susceptibility and time delay are considered in [38].

Some new recent work [44] is devoted to discussion of the relevance of lockdowns and
quarantines to fight against the spread of the recent COVID-19 pandemic. Further work
in the fractional framework for a SIRV model under combined vaccination and treatment
controls is reported in [45] and also in [49] concerning rubella propagation. On the other
hand, the use of vaccination controls for an SEIRS model under temporary immunity is
discussed in [50], whereas the use of impulsive vaccination under short term immunity is
proposed in [51] for an SEIR epidemic model. Also, polynomial approaches for the analysis
of epidemic models were also proposed. In particular, the use of a Hermite polynomial
approach for the solution of an SIR epidemic model is discussed in [52].

The paper is organized as follows. In Sect. 2, we establish a new SE(Is)(Ih)AR epidemic
model, which involves six subpopulations, namely, Susceptible (S), Exposed (E), Slight
Symptomatic Infectious I; (not requiring hospital care), Seriously Symptomatic Infectious,
or hospitalized, I, (requiring hospital care), Asymptomatic (A), and Recovered (R). The
exposed subpopulation has transitions to the slight, hospitalized, and asymptomatic in-
fectious, in general, under distinct proportions, and those proportions belong to the set
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of parameters of the model as it has been previously mentioned. In general, one defines a
basic transmission rate for contacts of slight infectious to susceptible, whereas the other
two transmission rates for asymptomatic versus susceptible and hospitalized versus sus-
ceptible are characterized by relative transmission rates related to the above basic one.
On the other hand, it is assumed that the disease mortality affects the fraction of the hos-
pitalized subpopulation only. The model is subject eventually to two different feedback
controls, which can be combined, namely, the vaccination control on the susceptible and
the treatment control on the hospitalized infectious. In general, the transmission rate and
the feedback control gains can be time-varying. The property of nonnegativity of any so-
lution under any nonnegative initial conditions is investigated and proved as well as the
boundedness of all the subpopulations for all time, which is a global Lyapunov stability
property. Section 3 is devoted to the characterization of the location of the disease-free
and the endemic equilibrium points, which are proved to be unique, and to proving their
local asymptotic stability conditions. It is seen that the disease-free equilibrium point is
locally asymptotically stable when the basic reproduction number is smaller than unity. It
is proved that the endemic equilibrium point is attainable (or reachable) in the sense that
the nonnegativity of the solutions is kept for all time, as the disease-free equilibrium point
is unstable. On the other hand, it is also emphasized that the equilibrium points are depen-
dent on the basic reproduction number (and, equivalently, on the transmission rate if all
the remaining model parameters are fixed) and that increase of the values of control gains
reduces the value of the basic reproduction number. As a result, the disease-free equilib-
rium point can be an attractor for higher values of the transmission rate in comparison
with the control-free case. It is also shown that no limit cycle can surround any or both
equilibrium points if the transmission rate and the control gains converge asymptotically
to constant values. As a result, no limit cycle exists under weak conditions on the param-
eterization of the uncontrolled model and the control gains, whereas only one of the two
equilibrium points is a global asymptotic attractor depending on the current value of the
basic reproduction number compared to unity.

Section 4 is devoted to the discussion of some numerical examples based on previously
tested parameterizations of COVID-19, which are available in the background literature.
Finally, some conclusions end the paper.

2 The SE(Is)(Ih)AR epidemic model

The proposed SE(Is)(Ih)AR model is an extended SEIR model with the following charac-
teristics: It includes the subpopulations “Susceptible” (S), “Exposed’, who are infected but
not yet infective (E), “Slight Symptomatic Infective” or “Slight Symptomatic Infectious”
(Z5), “Seriously Symptomatic Infectious” or “Hospitalized”(J),), “Asymptomatic Infectious”
(A), and “Recovered” (R). These subpopulations are appropriate to describe COVID-19,
where there is a wide range of influence of the virus on different people, and the model
may be the basis of a generic classification of the infectious population into asymptomatic
individuals, slightly infectious individuals, and hospitalized individuals. The tested slightly
infectious individuals and the asymptomatic ones stay typically at home or in ad hoc pre-
pared and monitored lodgings until further recovery. The slight infectious, serious in-
fectious, and asymptomatic individuals are considered distinct subpopulations since they
are originated by different transitions from the exposed subpopulation. Furthermore, the
slight and asymptomatic individuals do not need hospital treatment.
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The proposed model also incorporates two optional feedback control actions, the stan-
dard vaccination control V(¢) on the susceptible and the antiviral treatment 7'(¢) on the
hospitalized infectious subpopulation. The slight and asymptomatic infectious do not
need intensive treatment. Therefore the vaccination control is applied to the susceptible
individuals, and the treatment control is applied to the hospitalized or seriously infectious
individuals. Through the paper, we both formally and intuitively emphasize how those
controls help to reduce the reproduction number. See, for instance, [29-31] and [36-38]
and references therein for the motivation and use of the controls and the modeling issues
for COVID-19, respectively. The SE(Is)(Ih)AR model to be discussed is the following one:

S8(£) = by = [by + BE)(L(£) + BurIn(®) + BarA®)) + ky (£)]S(2) + nR(8), 1)
E(t) = =(by + y)E(®) + B()(I(2) + BurIu(t) + BarA(2))S(2), 2)
I(£) = —(by + T0)L(£) + y p:E(8), 3)
Iu(t) = = (b2 + o + 70 + kr () In(£) + v puE(®), (4)
A(8) = (b + T0)A(1) + y (1 - ps — pE(®), (5)
R(8) = —(by + MR + 7o (L(2) + In(2) + A®)) + kr(OL,(8) + kv S(E), (6)

for t > 0 with initial conditions S(0) = Sy, E(0) = Ey, I;(0) = I, 1;(0) = I, A(0) = Ag, and
R(0) = Ry subject to min(Sy, Eg, Lso, 150, Ao, Ry) > 0, where: b is the recruitment rate, b,
is the natural average death rate, B(t), By, B(t), BurB(t) are the transmission rates to the
susceptible from the respective slight (un-hospitalized) symptomatic infectious, serious
(hospitalized) symptomatic infectious, and asymptomatic infectious subpopulations, 7 is
a parameter such that 1/7 is the average duration of the immunity period reflecting a tran-
sition from the recovered to the susceptible, y is the transition rate from the exposed to
all (i.e. both symptomatic and asymptomatic) infectious, « is the average extra mortality
associated with the symptomatic infectious subpopulation, 7y is the natural immune re-
sponse rate for the whole infectious subpopulation (i.e. A + 1), ps, pn, pa = 1 — ps — pj, are the
fractions of the exposed that become slight symptomatic infectious, serious symptomatic
infectious, and asymptomatic infectious, respectively.

V(t) = ky(£)S(t) and T(t) = kr(t)I;(¢) are, respectively, the vaccination and antiviral
treatment linear feedback controls on the susceptible and hospitalized infectious, respec-
tively, of gains kv, k7 : Roy — Ros.

Note that deterministic models offer a balanced trade-off between complexity and real-
ity representation capabilities. In this way, they are able to reproduce accurately the real
behavior of the spreading while maintaining a lower degree of mathematical complexity
that allows gaining deep insight into the underlying aspects of the propagation. On the
other hand, it has been recently reported that sometimes simple models can give good
results in the research on COVID-19. See, for instance, [53], where the main objective is
determining the rates of infective contacts along different periods of time. Therefore, in
this study, we prefer a deterministic framework for the model in contrast to more sophis-
ticated ones. On the other hand, the integrated inclusion of four infective subpopulations,
namely, exposed, asymptomatic, slight asymptomatic infectious, and seriously infectious
requiring hospital care, with three different transitions from the exposed individuals to
various subpopulation of infectious, is well adapted to the transmission characteristics of
the recent COVID-19 pandemic.
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Remark 1 In the above parameterization, all parameters are positive while we assume
that B(#) can be time-varying in general. This is a reasonable assumption due to differ-
ent factors like seasonality or geographic area of application (for instance, rural, popu-
lated or with very high population density), which can influence the contacts infectious—
susceptible, or the public intervention actions (like confinement, quarantines, or isolation
measures), which also modify the average number of infective contagions. The relative
values of the other two transmission rates f;,, and B, are assumed to be constant. In prac-
tice, the primary infectivity of the hospitalized infectious can be smaller than that of the
slight ones S(£) due to potentially taken protection measures on the hospital staff related
and due to the fact that they have less numbers of contacts than average. The transmis-
sion rates of the asymptomatic infectious can also be smaller than B(¢) due, for instance,
to the fact that they cough less intensively. So, it will not be surprising that the values of
the relative transmission rates from the hospitalized and asymptomatic S, and B, to the
susceptible might typically be less than one.

The following result relies on the solutions in closed form of the proposed SE(Is)(Ih)AR
epidemic model, which will be also used to prove the nonnegativity of any solution under

any given arbitrary nonnegative initial conditions.

Theorem 1 Each solution of the SE(Is)(Ih)AR model (1)—(6) is uniquely defined, and it is
nonnegative all the time for any given nonnegative initial conditions and any given vacci-
nation and antiviral controls V(t) = ky(t)S(t) and T(t) = kr(t)I,(t) of gains kv, kr : Roy —
Ro.. Each solution is expressed in closed form as follows:

t
S(t) = e o e@drg 4 / el @E)ds (h1 + nR(t)) dr, VteRy,, (7)
0
t
E@t) = e 02E, 4 / eIy (2)S(1)dr, Vi€ Ry, (8)
0

from (1)—(2), where
O(t)=W(t) + by +ky(2),  W(t) = BWO)(L() + Burln(t) + BarA(D)), VEERp,.  (9)

Also, from (3)—(6) we get that

t
I(t) = e P2l 4 yp, / e 20T dr,  VteRg,, (10)
0
t
L,(t) = e~ brrarto-fgkr@drp )/ph/ e—(b2+oz+r0)(t—r)—ffkr(é)déE(r)dT’
0
vVt € Ry, (11)
t
A(t) = e @270 A(0) + y (1 - ps — pi) f 20N E(r) dT,  VteRy,, (12)
0
t
R(t) = e L2*MiR, + f eP2TQ(1)dr, VteRy,, (13)
0

where Q(t) = to(L(¢) + Iy(2) + A(2)) + kr(£)I4(2) + kyS(t), Vt € Ry,. Now from (7) we have
that So > 0= S(t) > 0, Vt € Ry, and since Ey > 0 and S(t) > 0, Vt € Ry,, from (8) we have
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E(t) > 0, Vt € Ro,. Then from (10)—(12) it follows that I(t) > 0, I;(t) > 0, and A(t) > 0,
Vt € Ry, since E(t) > 0, Vt € Ry, and Iy > 0,10 > 0, and Ag > 0. Finally, from (13) it
follows that R(t) > 0, Vt € Ry, since Ry > 0 and Q(t) > 0, Vt € Ry,. The proof is complete.

The boundedness of the subpopulations all the time is proved in the subsequent result,
whose proof is supported by the nonnegativity of the state-trajectory solution concluded
from Theorem 1.

Theorem 2 We have the following properties under the assumptions of Theorem 1:
(i) limsup,_, o, In(¢) < b1/«
(i) The total population N(t) = S(t) + E(t) + L(¢) + In(¢) + A(£) + R(¢) is bounded for
t € Ry, under any initial finite conditions
(ili) max(sup;cg,, S(£),SUPcr,, £(£), SUPcr,, L5(2), SUP,cry, In(2), SUp;cg,, A(),
SUP,cg,, R(2)) < +00 for any given finite nonnegative initial conditions. As a result,
system (1)—(6) is globally Lyapunov stable.

Proof Assume that limsup,_, . I(¢£) > b1/« and proceed by contradiction. By summing up
(1)-(6) we get:

N(t) = -byN(¢) + by —aly(t), VteRy,, (14)

which leads to the following unique solution for any given N(0) = Ny:

N(t):eb2‘<N0+ / tebﬂ(bl—alh(r)) dt), Vt € Ry (15)
0

We proceed by contradiction by assuming that limsup,_, ., I;(¢) > b;/a. Then there is
a finite #; € Ro, such that I(¢) > bi/a, YVt € A = [tr,00)\ Ao, where Ag C [tr,00) N Ry, is
empty or nonempty but of zero Lebesgue measure. Note that A has infinite Lebesgue
measure by construction. Thus from (15) we have:

tf t
litminf<—N(t)+ / e 27 (by — auly(1)) dr - / ebz(t’)(alh(r)—bl)d1>
— 00 0 tf

i
= liminf(—N(t) + / e‘bZ(t_”(bl —aly(t))dt - / e‘bZ(’_’)(th(r) - by) dt)
0 A

[—00
1_ e—bz(t—tf)

> lim inf(—N(t) +C(tr) -
t—00 b2

/ e 2 (aly () - by) d‘[) >0, (16)
A

where C(¢) = fot e 2=9\b; — alj(t)|dt, Vt € Ry,, implies that C(ts) < +o0 since [0, t) is
a finite interval and the integrand is a continuous and thus bounded function of time,
and % fA e 22 (o], (1) = by) dt = +00. Then lim,_, o, N(£) = —00, a contradiction if
limsup,_, o, [s(¢) < b1/« does not hold. As a result, limsup,_, ., I;(t) < b1/, and property
(i) is proved. Now, from property (i) and (15) it follows that, for some finite ,,

ta ¢
N@) <e Ny + / e’bZ(t”)|b1 —aly(t)|dT + / e 2 (by — aly(r)) de
0

ta

t
Se—thNO + C(ta)‘l'/ e*hz(lfff)(bl _a[h(‘[)) dt
tg



De la Sen and Ibeas Advances in Difference Equations (2021) 2021:92 Page 8 of 30

1 — e_bZ(t—tu)
<Ny+C(t,)+ ———— sup |b1 —alh(t)‘
bZ ty<t<+o0
<No+Clts) +by" sup |by1—aly(t)| <+oo, VteRo,, (17)
g <t<+00

and property (ii) is proved. Since by Theorem 1 all the subpopulations are nonnegative all
the time, property (ii) implies that they are also bounded all the time, and property (iii) is
proved. d

Remark 2 Note that Theorems 1-2 hold irrespectively of the vaccination and treatment
control laws V(¢) = ky(£)S(¢) and T (¢) = kr(t)I;(¢) of gains kv, k1 : Roy — Ro,, which also
covers the absence of one of both such controls. In particular, note from (15) that the total
population is not constant through time in general because of the recruitment and disease
mortality in its differential form (14). This fact is also clearly viewable in some simulated
experiments of Sect. 4.

3 Equilibrium points and stability results

In this section, we discuss the equilibrium points and their associated properties of local
and global stability. As a final combined result of the local stability with the global stability
and the nonnegativity properties proved in the former section, we establish the global
asymptotic stability.

3.1 Disease-free equilibrium point and its local stability and instability properties
The following result is concerned with the disease-free equilibrium point and its local sta-
bility properties if the basic reproduction number is less than one and the control gains
converge to constant values. The result visualizes the dependence of the basic reproduc-
tion number with the asymptotic values of the control gains. Basically, the reproduction
number is seen to become smaller as the limit control gains increase as time tends to in-
finity. In other words, the stability of the disease-free equilibrium point is improved by the
vaccination and treatment control compared to the control-free situation. In parallel, we
see that the reachable susceptible and recovered disease-free equilibrium values can be
monitored by appropriate choices of the limit control gains.

Theorem 3 Assume that B(t) — Bo, kv (t) — kyo, and kr(t) — k7o as t — oo. Then the
following properties hold:
(i) There is a unique disease-free equilibrium point

* . * * * * * T * x \ T
Xy = lim x(t) = (St Eapr g Tiapr A Rig) - = (S30,0,0,0,R,) (18)
where
bRy by(by+ ) (19)
b byrn+kvo  balby+1n+kyo)
« kVOS;f _ kv()bl

= = ) (20)
D byt bylby+n + ko)

leading to a total population at the disease-free equilibrium point:

b
Ny = Sy + Ry = b—: 21)
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(i) Suppose, in addition, that kyy = 0, that is, there is no limiting vaccination control.
Then the basic reproduction number is

0 (22)

b S 'y arfF a
Boy b1 (P N BurPn +/319>.

:bz(b2+y) b2+T0 b2+(¥+T0+kT0 b2+7.'0

If this number is less than one, then the disease-free equilibrium point is locally
asymptotically stable in the sense of Lyapunov. If it exceeds one, then the disease-free
equilibrium point is unstable.

(iii) Assume that kyo # 0. Then the basic reproduction number is

(23)

IBOVbl(bZ + fl) < Ds n ,Bhrph n ,Burpa )

02b2(b2+)/)(l’)2+7]+k\/0) h2+7,'0 b2+a+T0+kT0 b2+T0

If this number is less than one, then the disease-free equilibrium point is locally
asymptotically stable in the sense of Lyapunov. If it exceeds one, then the disease-free
equilibrium point is unstable.

Proof Property (i) follows directly by equalizing to zero (1)-(6) with E;f = Is*df = de =
AZf = 0 and the constraints 8(¢£) — Bo, kv (t) = kvo, and kr(t) — k7o as t — oo. This leads
directly to (19)—(20), which summed up yield (21). To prove property (ii), first note that
the Jacobian matrix of the linearized trajectory solution of (1)—(6) is

—(ba + kyo) 0 —BoSyy —BoPwSyy —BoBarSys n
0 =(b2+y)  BoSy BoBmrSyy BoBarSys 0
A* = 0 YPs —(b2 + 10) 0 0 0
df 0 YPn 0 —(bz +a+ T+ kT()) 0 0
0 YPa 0 0 —(bz + 'L’()) 0
kvo 0 To o + k10 To ~(by + 1)
(24)
If there is no limit vaccination control, then, in particular, it becomes
Ajifo = A;kif]kv0=0
B2 0 —BoSyy —BoBirSys —BoBarSys no]
0 _(b2 + ]/) ,BOS;f ﬁOﬂhrS;f ﬁOIBarS;f 0
| o0 Y Ds —(by + 19) 0 0 0
0 YPh 0 —(by + & + 19 + k70) 0 0 ’
0 Y Pa 0 0 —(b2 + TQ) 0
L 0 0 70 To + kT() 70 —(b2 + 7’])_
(25)

so that it has two stable eigenvalues —b, < 0 and —(b, + 1) < 0, and thus A:‘ifo is a stability
matrix if and only if the following fourth-order matrix of is also a stability matrix:

=(b2+y)  BoSy BoBurSys BoBarSys
= —(by + T 0 0
Adfo _ VPs (b2 + 10) -Q+P, (26)
YDPh 0 —(by + a + 19 + k70) 0

YPa 0 0 —(by + 10)
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where Q is the transition matrix, and P is the transmission matrix, which are defined by

—(by+y) 0 0 0
s —(b 0 0
Q- yp (b2 + 0) (27)
Y P 0 —(by + a + 1o + k70) 0
YPa 0 0 —(by + 10)
and
01 lghr :Bar
0 0 O 0
P = ByS%Po; Py = 28
BoSarPo 1o 0 o o (28)
0 0 O 0

Note that Q is a lower-triangular stability matrix (thus nonsingular with inverse Q! =
(Q;l)) Then

Ajifo =Q(L+Q'P) = (I + ﬁoSZfPoQ_l)Q =Q(I + ﬂOSZfQ_IPO) (29)

is a stability matrix ifand only if the spectral radius 7(PQ™!) of PQ~! is less than one. Under
the stronger condition that for any matrix norm, [|[PQ!| < 1, since 7(PQ™!) < |[PQ7!|, by
the Banach perturbation lemma [54] we get:

(o3 __ Qi

1 , 30
=< 1— BoSyyr(QPy) ~ 1- [Q 1P| 30

[A%e ] <1+ Q') [ |Q

so that ”Ajif(} || if 5OS2f < 1/r(Q~1Py), which proves the sufficiency part. To prove the ne-
cessity part, note that:

(a) If By = 0, then Ajifo = I is nonsingular;

(b) the eigenvalues of any matrix are continuous functions with respect to any of its
entries;

(c) the only possibly nonunity eigenvalue of I, + Q1P is A = 1 + ,BOS;;f(lel + B Q3 +
B.Q;1), which is nonzero only if ﬂoS;f < 1/r(Q"1Py), which proves the “only if” part, where

—(by +y)7! 0 0 0
Q- _(b2+yy)1(7bsz+fo) (b2 + 7)™ O 0
—(b};lf;)(bz +o+ T+ kTO) 0 —(b2 +o+ T+ kT())_1 0 ’
- (b2+)3/)1(722+f0) 0 0 —(by +10)7"
(31)
so that the unique nonzero row of Q1P is its first row such that
(Q_IPO)H = Q;ll + ﬂth?:ll + :BarQ;ll: (32)
and thus
BorS;
A=1- 4 Ps + Pupn + Parpa >0 (33)
by+y \by+1g by+ta+t+krg byt 710

Page 10 of 30
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with S;’}f = Z—; in the absence of vaccination from (19), and I, + Q™! P is nonsingular if and
only if

Boy b1 ( Ps + Burbn + Barba ) <1, (34)

by(by +y)\by+19 by+a+t9+krg by+ 19

where p; = 1 - p; — pj.. Since all the eigenvalues of the Jacobian matrix Aj, around the
disease-free equilibrium point are in the stability region, the disease-free equilibrium
point is locally asymptotically stable. If the basic reproduction number exceeds one, then
the disease-free equilibrium point is unstable. Property (ii) is proved.

To prove property (iii), note that A:}f has the same determinant as

[ (b + ko) 0 —BoSyy
0 —(b2+y) BoSzy
A - 0 Y Ds ~(by + 19)
7 0 YPh 0
0 YPa 0
% k
L 0 0 To + ﬂosdfﬁ
_ﬂOIBhrS;f _IBOﬁarSZf n ]
BoBirSys PoBarSyys 0
0 0 0
(35)
—(b2 +0+ T+ kT()) 0 0
0 —(b2 + '(()) 0
7o + k1o + BoBirSiy juis To + BoBarSiy e —(ba + (1 + 7902-) |

with the last row defined by adding to it the first row multiplied by 6 = — bzkx/o . The ma-

trix A;‘lf defined in (24) is a stability matrix, so that its six eigenvalues are in the complex

open left-hand-side plane, and A;';f has two negative real eigenvalues —(b, + ky¢) < 0 and

—(by+n(1+ bzk+‘§<(:/o )) < 0 by direct inspection of (35). So, the product of the four remaining
eigenvalues must be a positive amount in order that both determinants be equal and A},
be a stability matrix. But by construction the remaining eigenvalues are those of the 4 x 4
submatrix Ajifo of (26) being common to A3, and fljlf obtained by deleting from both the
first and sixth rows and columns. It has been proved that such a submatrix is a stability
matrix if and only if Ry defined in (23) is less than one. As a result, Azf is a stability ma-
trix if and only if A7, is a stability matrix. Then the rest of the proof is identical to that
of property (ii). Then the local asymptotic stability of the disease-free equilibrium point
holds if and only if (33) holds with 5} = #% modified by the vaccination control
from (19) related to its value b1/b, in the vaccination-free case of property (ii). This results

in the following condition:

IBOVbl(bZ + Tl) Ps ,Bhrph ,Barpa
+ + <1, (36)
b2(b2+]/)(b2+77+kv0) b2+1'() h2+O[+‘L'0+kT0 l’)2+‘[0
and property (iii) is proved. d

Remark 3 Note that it is possible to quantify the attenuation of the basic reproduction
number depending on the limiting control gains related to the control-free situation or
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related to the case where only the vaccination or the treatment control is used. This quan-
tification of the improvement of the reproduction number by the control action (in the
sense that it is reduced) becomes explicit by comparing (23) and its particular cases re-
sulting when one or both controls are zero, that is, with its particular case given by (22).
This concern is an important issue associated with the use of controls against the control-
free case since the reproduction number is mathematically related to the relative stability
of the Jacobian matrix around the disease-free equilibrium point being a measure of how
far its dominant eigenvalue is from the unstable region, which is the closed complex right-
hand side plane. Biologically, the basic reproduction number is interpreted as the average
of primary contagions caused by each infectious individual. This number should be less

than one to asymptotically remove the infection. Simple calculations of comparisons of
(23) with (22) lead to

Ro(kvo, kr0) = Cavr (kvo, k1o)Ro(0,0),

Ro(kvo,0) = Cav(kvo)Ro(0,0),

Ro(0, k7o) = Cur(k10)R0(0,0),

and

by +n)(by +a + 7
Cavr(kyo, kro) = (2 77)( o+ o 0)

(by + 1 + kyo)(by + & + T9 + k70)
(Bs + Barba) by + o + Tg + ko) + Brrpu(ba + To)
(U5 + Barba) (b + o + 10) + Brpn(ba + T0)

Corlkro) = C.(0, ko) = (by + a + 70)(ps + Barpa) by + a + To + k7o) + Brrpn(ba + T0)
¢ “ (by +a + 70 + k7o) (Ps + BarPa) (b2 + & + T0) + Burpn(ba + T0)

by +1

Cav(kvo) = Calkyo,0) = ————,
by + 1+ kyo

where Ry(kyq, k19) is the reproduction number (23) denoted as a function of the two lim-
iting control gains to facilitate the immediate discussion which follows, and, in particular,
one of the two gains can be zero, and (22) is obtained if both of them are zero, which is
the basic reproduction number of the control-free case, and the coefficients Cy(:,-) are
the corresponding attenuation coefficients of the basic reproduction number under one

or both controls.

3.2 Endemic equilibrium point and its attainability and local stability

The next result gives the existence and uniqueness of the endemic equilibrium point and
it gives conditions for its attainability, nonattainability in the sense that all its components
are nonnegative, and the case where not all of them are nonnegative. Note that it is un-
derstood that the attainability (or reachability) of the endemic equilibrium point does not
mean, in principle, that it is stable, but that it is feasible related to the positivity property
of the SE(Is)(Ih)AR model in the sense that the state trajectory solution has nonnegative
components all the time under any nonnegative initial conditions (Theorem 1). The local
stability conditions of the endemic equilibrium point are also given related to the basic re-
production number value exceeding unity. Under weak supplementary conditions on the
parameters and the limit values of the transmission rate and control gains, the endemic
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equilibrium point is both attainable and locally asymptotically stable if the disease-free
one is unstable so if the reproduction number exceeds unity.

Theorem 4 Assume that
B(t) = Be, kv(t) > kve and kr(t) > kpp ast— oo

and, correspondingly to a basic reproduction number equal to unity, define the critical
transmission rate

by(by + y) (b + 0 + kyo) (by + 10)(by + a + T + ko)
Boy bi(by + 1) (s + BarpPa)(ba + o + To + k7o) + Burpn(bz + 7o)

:Bc = (37)
Then the following properties hold:
i) If Be = B., then there is a unique endemic equilibrium point
end - hmt‘"’ox(t) - ( end’ end’I:end’ hend’Aend’Rznd)T’ with IlllpOSil’iV@
components, that is, it is attainable.
(ii) Assume that B, = o = . (that is, Ry = 1), kv, = kyo, and kg, = kro. Then S% ; = S* .
In addition, E?, ; < 0,17, <0,I; ., <0,and A%  <0if B, = Bo < B (that is, if
Ry < 1), provided that by — by < a = %, or, in particular, provided that
70 < by < by, orif by < by and ky, = 0. As a result, the infective endemic equilibrium
subpopulations are negative if by —by <a and Ry <1 or if by —by <a and Ry < 1, so
that the endemic equilibrium point is not attainable.
(iii) If Be = Bo > Bc (that is, Ry > 1), then the attainable endemic equilibrium point is
locally asymptotically stable in the sense of Lyapunov.

Proof Firstly, equalize to zero (1)—(6) for nonzero equilibrium values of infective subpop-

ulations E?_, I% ., 1. ., and A7, to get the components of the endemic equilibrium point.
We get:
bl + nR*
:nd = 7 end ) (38)

by + lge(l:end + Bl hend T ﬂarA:nd) + kve

% _ (ﬂlsend + ﬂhrlﬁend + IB‘” end) end

end ~ b2 +y (39)
vYp
= CuE; end — by +“T0 >eknd’ (40)
vp
send = CiE, end — by +S_L_0 Ean’ (41)
YPh
Ihend CIhEend b Fo+ T +kTeE:nd’ (42)
* T (Isend + Aend) (kTe + TO)IlTend + kveS:nd
end ~ ’ (43)

by +1

which yields that all the infective subpopulations (40)—(42) are linked to the endemic one

(39) through positive real constants C4 = bzf = Cis = o= ”0, and Cy, = W Then
substituting (40)—(42) into (39), we get
)/ ,Bhrph IBarpa
E: = + . 44
end = by Send endﬁe(b +19 byt+a+T1o+kp b2+‘170) (44

Page 13 of 30
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Since E7 ; #0 at the endemic equilibrium point, we obtain

. by +y (by + a + 1o + k7p) (Do + Tp)

B (o Bap) (b + o+ 0 + ki) + Bupn(bs + 70) )
_ by +y % + yc_ljj
B (pwﬂ;g;la)ym + ﬂh%z;m
_ by +y uCris + psCry (46)

Y Be (ps + ,Barpa)phcls + BurpnpsCri )

Now by replacing (40)—(42) into (43) and comparing the resulting constraint with (38),

we get

E:nd(%[IO(CIS + Ca) + (kTe + TO)CIh - ,Be(CIs + ,BhrCIh + ﬁarca)]
2 0

— Be(Crs + BirCiy + ﬂurcﬂ)sjnd)

= (b2 + I(Ve(l — >>S§nd - by, (47)
b2 + To

so that

(ba(by + 7o) + Kve(ba + 19 — 1))S7,q — b1(b2 + T0)

Fend = (v Co) + (ke + 70)Cin) = (s # B Cin + BarCo) B + Bulbr + 2005t )
g
where
Ay = (by(by + 10) + Kve(ba + 70 — 1)) (0nCis + psCin) (b2 + ¥), (50)
Ay = yBeb1(ba + 70) ((ps + Barla)PuCirs + BurbnpsCii)» (51)
Az = (yBen(to(Crs + Ca) + (ke + 70)Cin) ) ((Bs + BarPa)PiCis + BurbnpsCi)» (52)
Ay = (Cis + B Con + BarCa) (v B0 (05 + Barba)PuCs + BurbnbsCin)
+ (by + 10)Be(b2 + ¥) (i Crs + psCry)). (53)

Note the following facts:

Fact 1: S, 4 is positive by (44) and is unique.

Fact 2: For sufficiently large transmission rate 8, > B, and some critical value of the
transmission rate . > 0, Ay > Ay, and Ay > As, E7_, is positive and unique by (47)—(48).

Fact 3: By Facts 1-2 and (37)—(42) the endemic equilibrium point x¥ ; := lim;_, .o x(¢) =
(St Esa Lonar It

end’ Eend? Lsend’ Ar R )7 is unique with all positive components (so that it is at-
tainable) for a sufficiently large transmission rate.

end’*“end’ ‘e

Fact 4: If B, = Bo, kve = kyo, and kg, = krg, then the basic reproduction number (23)
exceeds unity; equivalently, if . = B, = Bo in (37), then by (44)—(45) and (40)—(43) all
the endemic equilibrium subpopulations are nonnegative if Ry > 1 and b; — by > a =

kyon(b1-10) * * * ® .
by(n+1o)+b170m ° In the same way, Eend =0, Isend =0, Ihend =0, and Aend <0 if bl - b2 =a,
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or, in particular, if 79 < by < by, or if by < by and ky, = 0. As a result, the infective endemic
equilibrium subpopulations are negative if b; — b, <a and Ry <1 or if by — by < a and
Ro < 1, so that the endemic equilibrium point is not attainable.

Asaresult, property (i) follows from Fact 1. On the other hand, property (ii) follows from
property (i) Facts 1-4, since from (23) and (45) we conclude that if 8, is defined by (37)
and B, = Bo, kve = kvo, and k7, = k1o, then Ry = 1 and S,

nd = Sgr- The remaining conditions

on the nonattainability of the equilibrium point of property (ii) follow from (45) and (48)
and the proportionality relations of the infectious subpopulations to the exposed one in
(40)—(42).

To prove property (iii), note that the linearized trajectory solution around the endemic
equilibrium is defined by the Jacobian matrix

__(b2 + 'BE(I:end + IBhrI}Tend + ﬂ”VA:nd) +Kye) 0 _ﬂeSan
ﬁE(Is*end + ﬁhrlﬁend + ,BarA:nd) —(by +y) ﬁeS:nd
A:nd _ 0 Y Ps _(bZ + TO) ,
0 YPh 0
0 YPa 0
L 1<Ve 0 70
~BeBirSina  —PePurStna M|
ﬂeﬁhrsznd ,Beﬂarsznd 0
0 0 0
, (54)
—(by +a + 19 + kg) 0 0
0 —(bz + 'Co) 0
To + ke o —(ba+n) ]
which has the same determinant as the matrix
__(b2 + 'BE(I:end + ,BhrI}Tend + ,BurAan) + [<Ve) 0 _,BeSan
ﬂE(Is*end + ﬁhrlﬁend + ,BarA:nd) —(by +y) ﬂeS:nd
% _ 0 Y Ps _(b2 + TO)
end 0 YDn 0
0 YPa 0
| 0 0 To + |0e] BeSh g
—lselghrs:nd _IBeIBarS:nd n |
IBe,BhrS:nd lse,BarS:nd 0
0 0 0
(55)
—(by +a + 19 + k) 0 0
0 —(bg + ‘L'o) 0
To + kTe + |ee|/3€/3hrsjnd To + |ee|ﬂeﬂarsznd _(bZ + 77)(1 + |83|)_

since the last row is defined by adding to it the first row multiplied by 6. =

_ kve
bZ‘*‘ﬁe(I:end+ﬂhr1ﬁend+ﬁarA:nd)+KVe

the disease-free Jacobian matrix (26) versus (35), which has the same determinant. As a

. Now invoke a close reasoning as that previously used for

*

result, we conclude that A? , and A? ,

are nonsingular if and only if the 4 x 4 submatrix
A:lfo defined in (26) is nonsingular. In particular, A¥ , and A:nd are stability matrices if and

only if the 4 x 4 submatrix AZfo defined in (26) is a stability matrix, and, equivalently, they
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are unstable if and only if the 4 x 4 submatrix AZfO is unstable since two of the eigenvalues
of both of them are always stable by construction. Then, under the constraint 8, = o = 8,
if follows that A?_ , and A:nd are nonsingular if and only if 8,57, > 1/r(Q1Py). If such an
inequality becomes an inequality, then either a stable or unstable eigenvalue becomes a
critical eigenvalue so that AZH qand A%, become singular.

It is now proved that for Ry > 1 (equivalently, if 8, = By > B.), the endemic equilibrium
point is locally asymptotically stable or, equivalently, the nonsingular matrix A:nd (and,
equivalently, the nonsingular matrix A7 ;) has all eigenvalues in the open complex left-
hand side plane. Assume on the contrary that for Ry > 1, the endemic equilibrium point is
unstable. Since the disease-free one is unstable too [Theorem 3(iii)], a stable limit cycle has
to surround the endemic equilibrium point, since according to the Poincaré—Bendixson
theorem:

(a) If no stable limit cycle exists, then no attractor exists, and the SE(Is)(Ih)AR model is
not globally Lyapunov stable, which contradicts Theorem 2(iii). So, a stable limit
cycle should exist.

(b) The stable limit cycle has to surround one of the equilibrium points only since all
the singular values surrounding it have a net Poincaré index equal to unity, and the
Poincaré index of two singular points would be -2 if both are saddle points, +2 if no
one is a saddle point, and 0 if one is a saddle point while the other is not.

(c) The limit cycle cannot surround the disease-fee equilibrium point since then any
solution trajectory violates the nonnegativity property (Theorem 1).

However, if the endemic equilibrium point is unstable and is surrounded by a stable limit
cycle, then the Jacobian matrix A} ; of the linearized solution trajectory around the en-
demic equilibrium point within a small neighborhood centered at it has to have a critically
stable eigenvalue, but this implies that the inequality constraint 8.S% ,; > 1/r(Q7'Py) be-
comes violated by an equality implying that the reproduction number is unity. Therefore
it is impossible that for Ry > 1 (with the disease-free equilibrium point then being unsta-
ble), the endemic equilibrium point is also unstable and surrounded by a stable limit cycle.
Therefore if Ry > 1, then the disease-free equilibrium point is unstable, and the endemic
one is locally asymptotically stable. Property (iii) is proved. O

3.3 Global asymptotic stability

Some conclusions can be obtained about global stability from the characterizations of the
equilibrium points or periodic solutions and their local stability properties. Note from
Theorem 2 that the SE(Is)(Ih)AR model is globally stable under nonnegative initial finite
values of all subpopulations. It is proved that there is a unique disease-free equilibrium
point and a unique endemic one. On the other hand, the critical transmission rate 3, was
defined by equalizing the limit transmission rate (23) to unity. We saw that if the current
limit transmission rate equalizes to By and it is smaller than its critical value 8, then the
endemic equilibrium point is not attainable, whereas the disease-free one was proved to
be asymptotically stable in Theorem 2. Also, if the current limit transmission rate exceeds
the critical value, then the disease-free equilibrium point is unstable, whereas the endemic
one is locally asymptotically stable. As a result, only one of the equilibrium points is lo-
cally asymptotically depending on the value of the limit transmission rate compared to its
critical value, which gives a unity basic reproduction number. On the other hand, we saw
in the last part of the proof of Theorem 4 that no limit cycle can exist surrounding any of
the two equilibrium points or both of them.
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Theorem 5 Assume that

(1) B(&) = Bo = Ber kv (t) = kyo = kve, and kr(t) — kro = kg, as t — o0,

@) by <a- i

Then the following properties hold:

(1) The whole nonlinear linear SE(Is)(Ih)AR is globally asymptotically stable in the
sense of Lyapunov with the disease-free equilibrium point being the only global
attractor if By = B, < .

(2) The whole nonlinear linear SE(Is)(Ih)AR is globally asymptotically stable in the
sense of Lyapunov with the endemic equilibrium point being the only global
attractor if Bg = B. > Be.

Outline of Proof The proof is direct from the following previously proved results:

(a) Theorem 1 on the nonnegativity of any solution under nonnegative finite initial
conditions,

(b) Theorem 2 on the global stability in the sense of Lyapunov of any nonnegative
solution trajectory of the whole nonlinear SE(Is)(Ih)AR model,

(c) Theorem 3 on the local asymptotic stability in the sense of Lyapunov of the
disease-free equilibrium point if 8y < B,

(d) Theorem 4 on the local asymptotic stability of the endemic equilibrium point in the
sense of Lyapunov if By = B, > B, with the additional results: (1) it is unique, (2) its
attainability holds under the instability of the disease-free equilibrium point, and (3)
no limit cycle can surround one or both equilibrium points.

O

4 Numerical worked examples

This section contains some numerical simulation examples illustrating the theoretical re-
sults introduced in Sects. 2 and 3. Therefore we consider the parameter values correspond-
ing to COVID-19 and supplied in the background literature. Note that the estimation of
model parameters from available data faces two main challenges: (i) the first one is the
treatment of raw data. Data related to Covid-19 usually exhibit inconsistency and are sub-
ject to large uncertainties. Thus an exhaustive work of data preprocessing and analysis
is needed before using them in parameter estimation procedures. (ii) Furthermore, the
model has a large number of parameters making the estimation procedure complex. These
facts make the estimation problem hard to be tackled, requiring a special attention as a fo-
cused topic. Since the paper is devoted to the mathematical properties of the model and to
the effect of applying vaccination and antiviral control, we have employed the typical pa-
rameter values considered previously in the medical literature instead of starting from the
parameter identification process. There is a broad consensus in the scientific community
about the values considered for some parameters of the model, such as the basic repro-
duction numbers or average incubation periods. Therefore we believe that the presented
results are representative of the possibilities and usefulness of the method.

The numerical value of the reproduction number has been obtained through Eq. (23) by
using the numerical data collected in Table 1 from previous existing background literature.
Previous works report different reproduction numbers depending on the place and mo-
ment of the outbreak since the social habits and lifestyle, interchange level of population
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Table 1 Parameter values employed in simulations

Parameter Interpretation Value Source
by Recruitment rate 57,554 years’1 [55], year 2018
b, Natural average death rate 1/85 years™ [55]
B Transmission rate of symptomatic 1/N(0) [38], adjusted to provide a basic
reproduction number between 5-6
Bar Specific transmission rate factor of 1 [56, 57]
asymptomatic
Bhr Specific transmission rate factor of 1/50 (nominal) ~ Sensitivity analysis for By, € [1/10,1/100]
severe cases (hospitalized)
y Average incubation period 1/5.5 days™ [36]
n Average immunity loss rate 0 [36, 56]
Mortality rate for severe cases associated  12% [58]
with disease
T Average immune response rate 1/10 days™! [36]
ps Fraction of slight cases 55% [58,59]
Dh Fraction of severe cases 20% [58, 59]

Table 2 Initial conditions for simulations

Population  Value
50 6,778,382
E() 1

0
0
A(0) 0
0
6

,778,383

with neighboring areas, and population density are eventually different these values are
even different for the first and second waves since they are also strongly dependent on the
intervention measures and rules. However, the situation described in the paper represents
a benchmark to show the usefulness of the proposed approach.

It has to be highlighted that reported data regarding COVID-19 exhibit high variability
among outbreaks or are even inconsistent. Thus the parameter values could be subject to
changes as further knowledge on the infection is attained. Moreover, parameters may suf-
fer changes in time due to different public health policies implemented to fight against the
spread of COVID-19. The simulations are performed with the initially estimated values
given in Tables 1 and 2 for the specific demographic case of the Madrid Region (Comu-
nidad de Madrid).

From Table 2 we can deduce that all simulations start with the total population being
susceptible and a single exposed case. Figures 1 and 2 display the evolution of all popula-
tions in the absence of control actions (vaccination and treatment). We concluded from
Fig. 1 that the spreading of the disease would end up affecting the total population if no
control action was taken, as it was concluded in [56] as well.

We also observe in Fig. 2 a large number of severe infected people (hospitalized) attained
at the peak. Such a large number of severe cases would definitely overflow the hospital
available resources. To avoid this situation, two control actions, vaccination and treatment,
are considered and analyzed in the following. Figure 3 displays the evolution of the total
population, representing essentially the deaths caused by the disease. Note that the total
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Figure 1 Evolution of susceptible and recovered in the absence of control actions
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Figure 2 Evolution of exposed and infectious (slight, hospitalized, and asymptomatic) in the absence of
control actions

population is not constant through time as theoretically discussed in Remark 2. Figures 4
and 5 show the results of the sensitivity analysis performed for B, with values ranging
between B, =1/10 and By, =1/100. We deduced that the shape of exposed does not change
significantly as S, changes. In addition, observe in Figs. 1 and 2 that the model solution
is nonnegative and bounded as Theorems 1 and 2 establish.

Now we will discuss the effect of vaccination and treatment through simulation exam-
ples. Initially, we apply a vaccination action of ky = 0.001 to the model while no treatment

is used. In this case, we obtain Figs. 6, 7, and 8.
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Figure 3 Evolution of the total population in the absence of external actions
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Figure 4 Variation of the number of exposed individuals with B, in the absence of control actions

Observe in Fig. 7 a substantial reduction in the number of hospitalized cases, whereas
Fig. 6 shows that the population becomes immune faster than in the absence of control ac-
tions, as it could be intuitively expected. Furthermore, the death toll is also reduced as can
be concluded by comparing Figs. 3 and 8 regarding the evolution of the total population.
Figure 9 displays the vaccination action needed. The great improvement in the disease in-
cidence is achieved at the expense of a high effort in vaccination. Moreover, Fig. 10 shows
the effect of changing the vaccination gain ki between ky = 0.0005 and &y = 0.001 on the
evolution of hospitalized individuals. As the gain increases, the number of hospitalized
cases declines. As it is claimed in Sect. 3, the use of vaccination improves the behavior of

the coronavirus spread.
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Figure 5 Zoom on the variation of the number of exposed individuals with By, in the absence of control
actions

%108

.
0 20 40 60 80 100 120 140 160 180
time (days)

Figure 6 Evolution of susceptible and recovered when vaccination is applied and no treatment is used. The
vaccination gain is set to ky = 0.001

Now the value of ky is fixed to ky = 0.001, and the value of k7 ranges from k7 = 0.002
to kr = 0.008. Figure 11 displays the evolution of hospitalized cases in this situation. We
conclude that the combined application of treatment along with vaccination drastically
reduces the number of severe cases and prevents the overflow of hospital resources.

Figures 11, 12, 13, and 14 display the evolution of all subpopulations, including the total
one when, in particular, k< = 0.001 and k7 = 0.004. The corresponding vaccination and
treatment controls are displayed in Figs. 15 and 16, respectively.

Opverall, vaccination and treatment have the effect of counteracting the effects of coron-
avirus COVID-19 spreading. The larger these actions, the higher the improvement at the
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Figure 7 Evolution of exposed and infectious (slight, hospitalized, and asymptomatic) when vaccination is
applied and no treatment is used. The vaccination gain is set to ky = 0.001
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Figure 8 Evolution of the total population when vaccination is applied and no treatment is used. The

vaccination gain is set to ky = 0.001

expense of higher efforts and therefore a higher cost. With the proposed model, quanti-
tative prediction of the improvement and action efforts can be done as shown with the
simulation results. The basic reproduction number in the absence of external actions is
calculated through (23) as R(0,0) =5.78. When k1 = 0, Remark 3 allows calculating the ob-
tained reproduction number when a vaccination gain is applied. The shape of the curve is
depicted in Fig. 17 along with the calculated values of the reproduction number for some
particular vaccination gains. On the other hand, when there is no vaccination action and
a treatment is applied, the basic reproduction number changes a depicted in Fig. 18. We

deduce from Figs. 17 and 18 that vaccination has a stronger effect in modifying the repro-
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Figure 9 Vaccination action when ky =0.001 and no treatment is applied
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Figure 10 Effect of vaccination gain ky on the number of hospitalized infectious. The vaccination gain varies
between k, =0.0005 and ky = 0.001. No treatment control is applied

duction number and controlling the epidemic spreading than the application of treatment.
Thus vaccination is proposed as the main way for controller spreading, whereas treatment
is devoted to heal the hospitalized cases and recover their heath the soonest and safest as
possible. Furthermore, Remark 3 (or in an equivalent graphical way, Fig. 17) can be used
as a guideline to calculate the critical vaccination gain that provides a unity reproduction

number. Thus, if we make

by +1

Ro(kyo,0) =1 = Cay(kyo)Ro(0,0) = R(0,0),
bz +n+ kvo
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Figure 11 Effect of both actions, vaccination and treatment, on the evolution of hospitalized cases. The value

of ky is fixed to ky = 0.001, and the value of kr varies from kr = 0.002 to k7 = 0.008
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Figure 12 Evolution of Susceptible and Immune when vaccination and treatment are applied with

ky =0.001 and k7 = 0.004

then we can isolate ky (£) = kv as kyo = (by + 7)(R(0,0) — 1) = 6.425 - 107 for the parame-
ters considered. If a vaccination gain larger than this critical value is used, then the repro-
duction number is less than unity. Consequently, the theoretical developments contained

in Sect. 3 provide useful guidelines to design the vaccination action aimed at controlling
COVID-19 spread.

Remark 4 We observed the following features from both the theoretical analysis and the

performed numerical experiments:
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Figure 13 Evolution of exposed, infectious (slight and hospitalized), and asymptomatic when vaccination
and treatment are applied with ky = 0.001 and k7 = 0.004

678 < 10°

6.778 -

6.776

o

N

N

N
T

Total population, N(t)
2
N

o

3

3
T

6.768 -

6766 Il Il Il Il Il Il Il Il I
0 20 40 60 80 100 120 140 160 180

time (days)

Figure 14 Evolution of the total population when vaccination and treatment are applied with ky = 0.001 and
kr =0.004

(1) The obtained results allow the calculation of the amounts of vaccination and treat-
ment efforts (given by the vaccination and treatment gains) needed to counteract the
spread of Covid-19 depending on the estimated original reproduction number R(0,0)
in the absence of controls since this control-free reproduction number is related to
and higher than the respective current reproduction numbers Ry(kyvo,0), Ro(0, kro), and
Ro(kvo, kro) in the presence of one or both controls of respective limit gains kv for the
vaccination control and kg for the treatment control. Since the reproduction number is
proved to be dependent on the control gains and reduced related to its value in the control-

free case, it turns out that it is easier to keep the illness under low incidence levels by the
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Figure 16 Treatment action when kr = 0.004

correct planning of the vaccination policies. Note that since the reproduction number re-
flects the number of infections derived at a first stage from each primary one, keeping
such a number under unity is crucial to asymptotically extinguish the disease by leaving
the disease-free equilibrium as the unique attainable global asymptotic attractor.

(2) For a given population, the control gains allow determining the number of vaccina-
tion and treatment doses needed to keep the pandemic under control. This information
is crucial to go ahead with the purchase agreements with pharmaceutical companies with
the aim of investing the optimal economical burden in fighting against the infection, es-
pecially, in a situation where state public finances are subject to a great stress. The gen-
eral information is also useful for the sanitary authorities for planning their vaccination

policies, including the managing and monitoring aspects of generation, administration,
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Figure 18 Variation of the basic reproduction number with treatment and without vaccination

storage, and distribution of the vaccination and treatment doses. This featured point fol-
lows as a result of the proved mentioned dependence and reduction of the reproduction
number on the control gains.

5 Conclusions and potential related future research

This paper has developed an SE(Is)(Ih)AR epidemic model which involves six subpopu-
lations and can be useful for modelling the COVId-19 pandemic. The infectious subpop-
ulation of the standard SEIR model is split into three subpopulations, namely, the slight
infectious individuals who do not need hospital care, the hospitalized ones who are seri-
ously infected, and the asymptomatic ones. The three above infectious subpopulations are
originated by different transitions from the exposed subpopulation. The proposed and dis-
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cussed epidemic model is eventually assumed to be subject to vaccination and treatment
controls. In general, the transmission rate and the feedback control gains can be moni-
tored to be time-varying along the transients.

The properties of nonnegativity and boundedness of all the subpopulations are proved
under any given finite nonnegative initial conditions. Also, the disease-free and the en-
demic equilibrium points are explicitly calculated, and their uniqueness and local asymp-
totic stability properties are also investigated with respect to the reference unity value of
the basic reproduction number. It is shown that just one of them, depending on the value of
the basic reproduction number, is the unique global asymptotic attractor. It is also proved
that no limit cycle can surround any individual or jointly both equilibrium points if the
transmission rate and the control gains converge asymptotically to constant values. Fi-
nally, some numerical examples are developed and discussed based on previously tested
parameterizations of COVID-19 available in the background literature data.

We plan to focus the future investigation on the estimation of the disease transmission
rate from recorded infection data while fixing the remaining disease modeling parame-
ters from supplied tested medical background data and to integrate its estimation in the
model running. A second idea for future investigation is designing the control strategies
so that the maximum availability of beds for both ordinary hospitalization and intensive
care unit management can be prefixed under certain upper-bounding constraints to keep
some resources for its use in other sanitary needs. This concern seems to be important
since now there is a very high pressure on hospital derived from CoVID pandemic making
difficult the ordinary management of resources.

Acknowledgements

The authors are grateful to the Spanish Government for Grant RTI2018-094336-B-100 (MCIU/AEI/FEDER, UE) and to the
Basque Government for Grant IT1207-19. They also thank the Spanish Institute of Health Carlos Ill for its support through
Grant COV 20/01213. Finally, they thank the referees for their useful suggestions.

Funding
The research was funded by Grant RTI2018-094336-B-100 of the Spanish Government and the European Commission and
by Grant COV 20/01213 of the Spanish Institute of Health Carlos III.

Availability of data and materials
The data supporting the results of the tested numerical results are included in the list of references and cited in the
appropriate locations.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
Both authors contributed equally and significantly in writing this paper. Both authors read and approved the final
manuscript.

Author details
TInstitute of Research and Development of Processes IIDP, Leioa, Spain. ?Department of Telecommunications and
Systems Engineering, Universitat Autonoma de Barcelona, UAB, 08193, Barcelona, Spain.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Received: 4 September 2020 Accepted: 18 January 2021 Published online: 01 February 2021

References
1. Mollison, D. (ed.): Epidemic Models: Their Structure and Relation to Data, Publications of the Newton Institute
Cambridge University Press, Cambridge (1995) Denis Mollison Editor (transferred to digital printing 2003)
2. Keeling, M.J,, Rohani, P: Modeling Infectious Diseases in Humans and Animals. Princeton University Press, Princeton
(2008)



De la Sen and Ibeas Advances in Difference Equations (2021) 2021:92

3. Kar, TA, Batabyal, A.: Stability analysis and optimal control of an SIR epidemic model with vaccination. Biosystems
104(2-3),127-135(2011)

4. Al-Darabsah, I, Yuan, Y:: A time-delayed epidemic model for Ebola disease transmission. Appl. Math. Comput. 290,
307-325 (2016)

5. Sharma, S, Samanta, G.P: Stability analysis and optimal control of an epidemic model with vaccination. Int. J.
Biomath. 8(3), Article ID 1550030 (2015)

6. Khan, H., Mohapatra, RN, Vajravelu, K, Liao, S.J.: The explicit series solution of SIR and SIS epidemic models. Appl.
Math. Comput. 215(2), 653-669 (2009)

7. Song, X., Jiang, Y, Wei, H.M.: Analysis of a saturation incidence SVEIRS epidemic model with pulse and two time
delays. Appl. Math. Comput. 214(2), 381-390 (2009)

8. Etxeberria-Etxaniz, M., Alonso-Quesada, S., De la Sen, M.: On an SEIR epidemic model with vaccination of newborn
and periodic impulsive vaccination with eventual on-line adapted vaccination strategies to the varying levels of the
susceptible subpopulation. Appl. Sci. 10(22), Article ID 8296 (2020)

9. De la Sen, M, Alonso-Quesada, S.: On the stability of an SEIR epidemic model with distributed time-delay and a
general class of feedback vaccination rules. Appl. Math. Comput. 270, 953-976 (2015)

10. Dela Sen, M., Alonso-Quesada, S.: Vaccination strategies based on feedback control techniques for a SEIR- epidemic
model. Appl. Math. Comput. 218(7), 3888-3904 (2011)

11. Wang, X.L.: An SIRS epidemic model with vital dynamics and a ratio-dependent saturation incidence rate. Discrete
Dyn. Nat. Soc. 2015, Article ID 720682 (2015). https://doi.org/10.1155/2011/748608

12. He, ZL, Nie, L.F: The effect of pulse vaccination and treatment on SIR epidemic model with media impact. Discrete
Dyn. Nat. Soc. 2015, Article ID 532494 (2015). https://doi.org/10.1155/2011/532494

13. Zhang, T.L.: Permanence and extinction in a nonautonomous discrete SIRVS epidemic model with vaccination. Appl.
Math. Comput. 271, 716-729 (2015)

14. Liu, PP: Periodic solutions in an epidemic model with diffusion and delay. Appl. Math. Comput. 265, 275-291 (2015)

15. Khan, M.A, Badshah, Q, Islam, S, Khan, I, Shafie, S., Khan, S.A.: Global dynamics of SEIRS epidemic model with
non-linear generalized incidences and preventive vaccination. Adv. Differ. Equ. 2015, Article ID 88 (2015).
https://doi.org/10.1186/513662-015-0429-3

16. Shang, Y.L: Global stability of disease-free equilibria in a two-group SI model with feedback control. Nonlinear Anal,,
Model. Control 20(4), 501-508 (2015)

17. Lahrouz, A, Omari, L., Kiouach, D.: Global analysis of a deterministic and stochastic nonlinear SIRS epidemic model.
Nonlinear Anal., Model. Control 16(1), 59-76 (2011)

18. Khan, M.A, Badshah, Q, Islam, S., Khan, I, Shafie, S., Khan, S.A.: The use of generation stochastic models to study an
epidemic disease. Adv. Differ. Equ. 2013, Article ID 7 (2013). https://doi.org/10.1186/1687-1847-2013-7

19. Huang, S.Z.: A new SEIR epidemic model with applications to the theory of eradication and control of diseases, and
to the calculation of RO. Math. Biosci. 215(1), 84-104 (2008)

20. Boonyaprapasom, A, Natsupakpong, S., Ngiumsunthorn, PS., Thung-od, K.: Fractional order sliding mode control for
vaccination in epidemic systems. In: 2017 2nd International Coference on Control and Robotics Engineering (ICCRE),
1-3 April, Bangkok, Thailand, pp. 145-149 (2017)

21. Wang, X, Peng, H., Shi, B, Jiang, D., Zhang, S., Chen, B.: Optimal vaccination strategy of a constrained time-varying
SEIR epidemic model. Commun. Nonlinear Sci. Numer. Simul. 67, 37-48 (2019)

22. Yang, H.M,, Ribas-Freitas, AR.: Biological view of vaccination described by mathematical modellings: from rubella to
Dengue vaccines. Math. Biosci. Eng. 16(5), 3195-3214 (2019)

23. Ameen, I, Baleanu, D,, Ali, HM.: An efficient algorithm for solving the fractional optimal control of SIRV epidemic
model with a combination of vaccination and treatment. Chaos Solitons Fractals 17, Article ID 109892 (2020)

24. Cui, S.B, Beng, M.: Mathematical analysis of population migration and its effects to spread of epidemics. Discrete
Contin. Dyn. Syst,, Ser. B 20(9), 2819-2838 (2015)

25. Liy, L, Wang, J,, Liu, X.: Global stability of an SEIR epidemic model with age-dependent latency and relapse. Nonlinear
Anal,, Real World Appl. 24, 18-35 (2015)

26. Muroya, Y, Enatsu, Y, Kuniya, T.: Global stability for a multi-group SIRS epidemic model with varying population sizes.
Nonlinear Anal.,, Real World Appl. 14(3), 1693-1704 (2013)

27. De la Sen, M., Alonso-Quesada, S.: Model-matching-based control of the Beverton-Holt equation in ecology. Discrete
Dyn. Nat. Soc. 2008, 793512 (2008). https://doi.org/10.1155/2008/793512

28. Bellan, S.E,, Pulliam, JR.C, Dushoff, J,, Meyers, L.A.: Ebola control: effect of asymptomatic infection and acquired
immunity. Lancet 384(9953), 1499-1500 (2014)

29. De la Sen, M., Alonso-Quesada, S., Ibeas, A, Nistal, R.: On a new epidemic model with asymptomatic and
dead-infective subpopulations with feedback controls useful for Ebola disease. Discrete Dyn. Nat. Soc. 2017, Article
ID 4232971 (2017)

30. DelaSen, M, Ibeas, A, Alonso-Quesada, S., Nistal, R.: On an SEIADR epidemic model with vaccination, treatment and
dead-infectious corpses removal controls. Math. Comput. Simul. 163, 47-79 (2019)

31. Nistal, R, De la Sen, M., Alonso-Quesada, S., Ibeas, A On a new discrete SEIADR model with mixed controls: study of
its properties. Mathematics 7(1), Article ID 18 (2019)

32. DelaSen, M, Ibeas, A, Alonso-Quesada, S.: On vaccination controls for the SEIR epidemic model. Commun.
Nonlinear Sci. Numer. Simul. 17(6), 2637-2658 (2012)

33. Santermans, E., Robesyn, E, Ganiani, T, Sudre, B, Faes, C, Quinten, C,, Van Bortel, W, Haber, T, Kovac, T, Van Reeth, F,
Testa, M., Hens, N., Plachouras, D.: Spatiotemporal evolution of Ebola disease at sub-national level during the 2014
West Africa epidemic: model scrutinity and data meagreness. PLoS ONE 11(1),e0147172 (2016).
https://doi.org/10.1371/journal.pone.0147172

34. He, S, Peng, Y, Sun, K:: SEIR modelling of the COVID-19 and its dynamics. Nonlinear Dyn. (2020).
https://link springer.com/content/pdf/10.1007/511071-020-05743-y.pdf

35. Rajagopal, K, Hasanzadeh, N, Parastesh, F, Hamarash, 1.1, Jafari, S., Hussain, |.: A fractional-order model for the novel

coronavirus (COVID-19) outbreak. Nonlinear Dyn. (2020). https://doi.org/10.1007/511071-020-05757-6

Page 29 of 30


https://doi.org/10.1155/2011/748608
https://doi.org/10.1155/2011/532494
https://doi.org/10.1186/s13662-015-0429-3
https://doi.org/10.1186/1687-1847-2013-7
https://doi.org/10.1155/2008/793512
https://doi.org/10.1371/journal.pone.0147172
https://link.springer.com/content/pdf/10.1007/s11071-020-05743-y.pdf
https://doi.org/10.1007/s11071-020-05757-6

De la Sen and Ibeas Advances in Difference Equations (2021) 2021:92 Page 30 of 30

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

52.

53.

54.
55.

56.

57.

58.

59.

Ivorra, B, Ferrdndez, MR, Vela-Pérez, M,, Ramos, A.M.: Mathematical modeling of the spread of the coronavirus
disease 2019 (COVID-19) taking into account the undetected infections. The case of China. Commun. Nonlinear Sci.
Numer. Simul. 88, 105303 (2020)

Yang, C, Wang, J.: A mathematical model for the novel coronavirus epidemic in Wuhan, China. Math. Biosci. Eng.
17(3), 2708-2724 (2020)

Ng, K.Y, Gui, M.M.: COVID-19: development of a robust mathematical model and simulation package with
consideration for ageing population and time delay for control action and resusceptibility. Phys. D, Nonlinear
Phenom. 411, 132599 (2020)

Kumar, RK, Rani, M., Bhagavathula, A'S., Sah, R, Rodriguez-Morales, A.J,, Kalita, H., Nanda, C,, Sharma, S., Sharma, Y.D.,
Rabaan, A.A, Rahmani, J,, Kumar, P: Prediction of the COVID-19 pandemic for the top 15 affected countries: advanced
autoregressive integrated moving average (ARIMA) model. JMIR Public Health Surveill. 6(2), 19115 (2020)

Kuniya, T, Inaba, H.: Possible effects of mixed prevention strategy for COVID-19 epidemic: massive testing, quarantine
and social distance. AIMS Publ. Health 7(3), 490-503 (2020)

Prem, K., Liu, Y, Russell, TW,, Kucharski, A, Eggo, R.D., Davies, N.: The effect of control strategies to reduce social
mixing on outcomes of the COVID-19 epidemic in Wuhan, China: a modelling study. Lancet Publ. Health 5(5),
E261-E270 (2020)

Liu, Y.: Death toll estimation for COVID-19: is the curve flattened yet? SSRN preprint
https://ssrn.com/abstract=3592343

Atangana, E., Atangana, A.: Facemasks simple but powerful weapons to protect against COVID-19 spread: can they
have side effects? Results Phys. 19, 103425 (2020)

De la Sen, M, Ibeas, A., Agarwal, R.P: On confinement and quarantine concerns of an SEIR epidemic model with
simulated parameterizations for the COVID-19 pandemic. Symmetry 12(10), 1646 (2020)

Ameen, |, Baleanu, D, Ali, HM.: An efficient algorithm for solving the fractional optimal control of SIRV epidemic
model with a combination of vaccination and treatment. Chaos Solitons Fractals 137, 109892 (2020)

Liu, Z: Dynamics of positive solutions to SIR and SEIR epidemic models with saturated incidence rates. Nonlinear
Anal., Real World Appl. 14(3), 1286-1299 (2013)

Macias-Diaz, J.E, Ahmed, N., Rafig, M.: Analysis and non-standard numerical design of discrete three-dimensional
Hepatitis B epidemic model. Mathematics 7(12), article 1157 (2019)

Wang, W.B, Wu, ZN., Wang, C.F, Hu, RF: Modelling the spreading rate of controlled communicable epidemics
through and entropy-based thermodynamic model. Sci. China, Phys. Mech. Astron. 56(11), 2143-2150 (2013)
Qureshi, S.: Periodic dynamics of rubella under standard and fractional Caputo operator with real data from Pakistan.
Math. Comput. Simul. 178, 151-165 (2020)

Trawicki, M.B.: Deterministic SEIRS epidemic model for modelling vital dynamics, vaccinations and temporary
immunity. Mathematics 15(1), 7 (2017)

. Abouelkheir, I, Elkihad, F, Rachik, M., EImouki, I.: Optimal impulse vaccination approach for an SIR control model with

short-term immunity. Mathematics 7(5), 420 (2019)

Secer, A, Odezmir, N., Bayram, A.M.: A Hermite polynomial approach for solving the SIR model of epidemics.
Mathematics 6(12), 305 (2018)

Jahedi, S., Yorke, J.A: When the best pandemic models are the simplest. Biology 9, 11 (2020).
https://doi.org/10.3390/biology9110353

Ortega, J.M.: Numerical Analysis. Academic Press, New York (1972)

Demographic data of Madrid.
http://www.madrid.org/iestadis/fijas/estructu/demograficas/mnp/estructuespevida.htm, access date: June 29, 2020
Mishra, A.M.,, Purohit, S.D., Owolabi, KM, Sharma, Y.D.: A nonlinear epidemiological model considering asymptomatic
and quarantine classes for SARS CoV-2 virus. Chaos Solitons Fractals 138, 109953 (2020)

Gao, Z, Xu, Y, Sun, C, Wang, X, Guo, Y., Qiu, S, Ma, K.: A systematic review of asymptomatic infections with COVID-19.
J. Microbiol,, Immunol. Infect. 2020-May-15 (Epub 2020 May 15). https://doi.org/10.1016/jjmii.2020.05.001

Mahon, J, Oke, J,, Heneghan, C.: Declining death rate from COVID-19 in hospitals in England, The Centre for
Evidence-Based Medicine develops, promotes and disseminates better evidence for healthcare. Coronavirus disease
2019 (COVID-19) Situation Report 46.
https://www.cebm.net/covid-19/declining-death-rate-from-covid-19-in-hospitals-in-england/, access date: August
25,2020

Hiroshi, N, Kobayashi, T, Miyama, T, Suzuki, A., Jung, S., Hayashi, K., Kinoshita, R.: Estimation of the asymptomatic ratio
of novel coronavirus infections (COVID- 19). Int. J. Infect. Dis. 94, 154155 (2020)

Submit your manuscript to a SpringerOpen®
journal and benefit from:

» Convenient online submission

» Rigorous peer review

» Open access: articles freely available online
» High visibility within the field

» Retaining the copyright to your article

Submit your next manuscript at » springeropen.com



https://ssrn.com/abstract=3592343
https://doi.org/10.3390/biology9110353
http://www.madrid.org/iestadis/fijas/estructu/demograficas/mnp/estructuespevida.htm
https://doi.org/10.1016/j.jmii.2020.05.001
https://www.cebm.net/covid-19/declining-death-rate-from-covid-19-in-hospitals-in-england/

	On an SE(Is)(Ih)AR epidemic model with combined vaccination and antiviral controls for COVID-19 pandemic
	Abstract
	Keywords

	Introduction
	The SE(Is)(Ih)AR epidemic model
	Equilibrium points and stability results
	Disease-free equilibrium point and its local stability and instability properties
	Endemic equilibrium point and its attainability and local stability
	Global asymptotic stability

	Numerical worked examples
	Conclusions and potential related future research
	Acknowledgements
	Funding
	Availability of data and materials
	Competing interests
	Authors' contributions
	Author details
	Publisher's Note
	References


